Abstract

An efficient way to model the distributed Bragg reflector type of semiconductor devices with residual facet reflectivity is presented. Particularly, to improve the performance of such laser from two different ways of tuning—the differential or simultaneous tuning of two reflectors—the impacts of residual facet reflectivity on the sampled grating, and the static characteristics of such laser, including tuning behavior, output power, and side mode suppression ratio, are discussed. It revealed that the position of the facet relative to the gratings as well as their reflectivities are important parameters and should be carefully designed and fabricated to ensure good performance for such devices.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Buus and E. J. Murphy, “Tunable lasers in optical networks,” J. Lightwave Technol. 24, 5-11 (2006).
    [CrossRef]
  2. L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, and C. W. Coldren, “Tunable semiconductor lasers: a tutorial,” IEEE J. Lightwave Technol. 22, 193-202 (2004).
    [CrossRef]
  3. G. Sarlet, G. Morthier, and R. Baets, “Control of widely tunable SSG-DBR lasers for dense wavelength division multiplexing,” IEEE J. Lightwave Technol. 18, 1128-1138 (2000).
    [CrossRef]
  4. L. Ponnampalam, N. D. Whitbread, R. Barlow, G. Busico, A. J. Ward, J. P. Duck, and D. J. Robbins, “Dynamically controlled channel-to-channel switching in a full-band DS-DBR laser,” J. Quantum Electron. 42, 223-231 (2006).
    [CrossRef]
  5. A. Tsigopoulos, T. Sphicopoulos, I. Orfanos, and S. Pantelis, “Wavelength tuning analysis and spectral characteristics of three-section DBR lasers,” IEEE J. Quantum Electron. 28, 415-426 (1992).
    [CrossRef]
  6. B. Tromborg, H. Olesen, X. Pan, and S. Saito, “Transmission line description of optical feedback and injection locking for Fabry-Perot and DFB lasers,” IEEE J. Quantum Electron. 23, 1875-1889 (1987).
    [CrossRef]
  7. X. Pan, H. Olesen, and B. Tromberg, “A theoretical model of multielectrode DBR lasers,” IEEE J. Quantum Electron. 24, 2423-2432 (1988).
    [CrossRef]
  8. R. A. Soref and J. Larenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. 22, 873-879 (1986).
    [CrossRef]
  9. M. G. Davis and R. F. O'Dowd, “A transfer matrix method based large signal dynamic model for multielectrode DFB lasers,” IEEE J. Quantum Electron. 30, 2458-2466 (1994).
    [CrossRef]
  10. O. A. Lavrova and D. J. Blumenthal, “Detailed transfer matrix method-based dynamic model for multisecion widely tunable GCSR lasers,” J. Lightwave Technol. 18, 1274-1376 (2000).
    [CrossRef]
  11. G. P. Agrawal, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, 1986).
  12. D. Marcuse, “Computer simulation of laser photon fluctuations: theory of single-cavity laser,” IEEE J. Quantum Electron. 20, 1139-1148 (1984).
    [CrossRef]
  13. D. Marcuse, “Computer simulation of laser photon flucturations: DFB lasers,” IEEE J. Quantum Electron. 21, 161-167 (1985).
    [CrossRef]

2006

L. Ponnampalam, N. D. Whitbread, R. Barlow, G. Busico, A. J. Ward, J. P. Duck, and D. J. Robbins, “Dynamically controlled channel-to-channel switching in a full-band DS-DBR laser,” J. Quantum Electron. 42, 223-231 (2006).
[CrossRef]

J. Buus and E. J. Murphy, “Tunable lasers in optical networks,” J. Lightwave Technol. 24, 5-11 (2006).
[CrossRef]

2004

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, and C. W. Coldren, “Tunable semiconductor lasers: a tutorial,” IEEE J. Lightwave Technol. 22, 193-202 (2004).
[CrossRef]

2000

G. Sarlet, G. Morthier, and R. Baets, “Control of widely tunable SSG-DBR lasers for dense wavelength division multiplexing,” IEEE J. Lightwave Technol. 18, 1128-1138 (2000).
[CrossRef]

O. A. Lavrova and D. J. Blumenthal, “Detailed transfer matrix method-based dynamic model for multisecion widely tunable GCSR lasers,” J. Lightwave Technol. 18, 1274-1376 (2000).
[CrossRef]

1994

M. G. Davis and R. F. O'Dowd, “A transfer matrix method based large signal dynamic model for multielectrode DFB lasers,” IEEE J. Quantum Electron. 30, 2458-2466 (1994).
[CrossRef]

1992

A. Tsigopoulos, T. Sphicopoulos, I. Orfanos, and S. Pantelis, “Wavelength tuning analysis and spectral characteristics of three-section DBR lasers,” IEEE J. Quantum Electron. 28, 415-426 (1992).
[CrossRef]

1988

X. Pan, H. Olesen, and B. Tromberg, “A theoretical model of multielectrode DBR lasers,” IEEE J. Quantum Electron. 24, 2423-2432 (1988).
[CrossRef]

1987

B. Tromborg, H. Olesen, X. Pan, and S. Saito, “Transmission line description of optical feedback and injection locking for Fabry-Perot and DFB lasers,” IEEE J. Quantum Electron. 23, 1875-1889 (1987).
[CrossRef]

1986

R. A. Soref and J. Larenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. 22, 873-879 (1986).
[CrossRef]

1985

D. Marcuse, “Computer simulation of laser photon flucturations: DFB lasers,” IEEE J. Quantum Electron. 21, 161-167 (1985).
[CrossRef]

1984

D. Marcuse, “Computer simulation of laser photon fluctuations: theory of single-cavity laser,” IEEE J. Quantum Electron. 20, 1139-1148 (1984).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, 1986).

Akulova, Y.

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, and C. W. Coldren, “Tunable semiconductor lasers: a tutorial,” IEEE J. Lightwave Technol. 22, 193-202 (2004).
[CrossRef]

Baets, R.

G. Sarlet, G. Morthier, and R. Baets, “Control of widely tunable SSG-DBR lasers for dense wavelength division multiplexing,” IEEE J. Lightwave Technol. 18, 1128-1138 (2000).
[CrossRef]

Barlow, R.

L. Ponnampalam, N. D. Whitbread, R. Barlow, G. Busico, A. J. Ward, J. P. Duck, and D. J. Robbins, “Dynamically controlled channel-to-channel switching in a full-band DS-DBR laser,” J. Quantum Electron. 42, 223-231 (2006).
[CrossRef]

Barton, J. S.

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, and C. W. Coldren, “Tunable semiconductor lasers: a tutorial,” IEEE J. Lightwave Technol. 22, 193-202 (2004).
[CrossRef]

Blumenthal, D. J.

Busico, G.

L. Ponnampalam, N. D. Whitbread, R. Barlow, G. Busico, A. J. Ward, J. P. Duck, and D. J. Robbins, “Dynamically controlled channel-to-channel switching in a full-band DS-DBR laser,” J. Quantum Electron. 42, 223-231 (2006).
[CrossRef]

Buus, J.

Coldren, C. W.

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, and C. W. Coldren, “Tunable semiconductor lasers: a tutorial,” IEEE J. Lightwave Technol. 22, 193-202 (2004).
[CrossRef]

Coldren, L. A.

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, and C. W. Coldren, “Tunable semiconductor lasers: a tutorial,” IEEE J. Lightwave Technol. 22, 193-202 (2004).
[CrossRef]

Davis, M. G.

M. G. Davis and R. F. O'Dowd, “A transfer matrix method based large signal dynamic model for multielectrode DFB lasers,” IEEE J. Quantum Electron. 30, 2458-2466 (1994).
[CrossRef]

Duck, J. P.

L. Ponnampalam, N. D. Whitbread, R. Barlow, G. Busico, A. J. Ward, J. P. Duck, and D. J. Robbins, “Dynamically controlled channel-to-channel switching in a full-band DS-DBR laser,” J. Quantum Electron. 42, 223-231 (2006).
[CrossRef]

Fish, G. A.

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, and C. W. Coldren, “Tunable semiconductor lasers: a tutorial,” IEEE J. Lightwave Technol. 22, 193-202 (2004).
[CrossRef]

Larenzo, J.

R. A. Soref and J. Larenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. 22, 873-879 (1986).
[CrossRef]

Lavrova, O. A.

Marcuse, D.

D. Marcuse, “Computer simulation of laser photon flucturations: DFB lasers,” IEEE J. Quantum Electron. 21, 161-167 (1985).
[CrossRef]

D. Marcuse, “Computer simulation of laser photon fluctuations: theory of single-cavity laser,” IEEE J. Quantum Electron. 20, 1139-1148 (1984).
[CrossRef]

Morthier, G.

G. Sarlet, G. Morthier, and R. Baets, “Control of widely tunable SSG-DBR lasers for dense wavelength division multiplexing,” IEEE J. Lightwave Technol. 18, 1128-1138 (2000).
[CrossRef]

Murphy, E. J.

O'Dowd, R. F.

M. G. Davis and R. F. O'Dowd, “A transfer matrix method based large signal dynamic model for multielectrode DFB lasers,” IEEE J. Quantum Electron. 30, 2458-2466 (1994).
[CrossRef]

Olesen, H.

X. Pan, H. Olesen, and B. Tromberg, “A theoretical model of multielectrode DBR lasers,” IEEE J. Quantum Electron. 24, 2423-2432 (1988).
[CrossRef]

B. Tromborg, H. Olesen, X. Pan, and S. Saito, “Transmission line description of optical feedback and injection locking for Fabry-Perot and DFB lasers,” IEEE J. Quantum Electron. 23, 1875-1889 (1987).
[CrossRef]

Orfanos, I.

A. Tsigopoulos, T. Sphicopoulos, I. Orfanos, and S. Pantelis, “Wavelength tuning analysis and spectral characteristics of three-section DBR lasers,” IEEE J. Quantum Electron. 28, 415-426 (1992).
[CrossRef]

Pan, X.

X. Pan, H. Olesen, and B. Tromberg, “A theoretical model of multielectrode DBR lasers,” IEEE J. Quantum Electron. 24, 2423-2432 (1988).
[CrossRef]

B. Tromborg, H. Olesen, X. Pan, and S. Saito, “Transmission line description of optical feedback and injection locking for Fabry-Perot and DFB lasers,” IEEE J. Quantum Electron. 23, 1875-1889 (1987).
[CrossRef]

Pantelis, S.

A. Tsigopoulos, T. Sphicopoulos, I. Orfanos, and S. Pantelis, “Wavelength tuning analysis and spectral characteristics of three-section DBR lasers,” IEEE J. Quantum Electron. 28, 415-426 (1992).
[CrossRef]

Ponnampalam, L.

L. Ponnampalam, N. D. Whitbread, R. Barlow, G. Busico, A. J. Ward, J. P. Duck, and D. J. Robbins, “Dynamically controlled channel-to-channel switching in a full-band DS-DBR laser,” J. Quantum Electron. 42, 223-231 (2006).
[CrossRef]

Robbins, D. J.

L. Ponnampalam, N. D. Whitbread, R. Barlow, G. Busico, A. J. Ward, J. P. Duck, and D. J. Robbins, “Dynamically controlled channel-to-channel switching in a full-band DS-DBR laser,” J. Quantum Electron. 42, 223-231 (2006).
[CrossRef]

Saito, S.

B. Tromborg, H. Olesen, X. Pan, and S. Saito, “Transmission line description of optical feedback and injection locking for Fabry-Perot and DFB lasers,” IEEE J. Quantum Electron. 23, 1875-1889 (1987).
[CrossRef]

Sarlet, G.

G. Sarlet, G. Morthier, and R. Baets, “Control of widely tunable SSG-DBR lasers for dense wavelength division multiplexing,” IEEE J. Lightwave Technol. 18, 1128-1138 (2000).
[CrossRef]

Soref, R. A.

R. A. Soref and J. Larenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. 22, 873-879 (1986).
[CrossRef]

Sphicopoulos, T.

A. Tsigopoulos, T. Sphicopoulos, I. Orfanos, and S. Pantelis, “Wavelength tuning analysis and spectral characteristics of three-section DBR lasers,” IEEE J. Quantum Electron. 28, 415-426 (1992).
[CrossRef]

Tromberg, B.

X. Pan, H. Olesen, and B. Tromberg, “A theoretical model of multielectrode DBR lasers,” IEEE J. Quantum Electron. 24, 2423-2432 (1988).
[CrossRef]

Tromborg, B.

B. Tromborg, H. Olesen, X. Pan, and S. Saito, “Transmission line description of optical feedback and injection locking for Fabry-Perot and DFB lasers,” IEEE J. Quantum Electron. 23, 1875-1889 (1987).
[CrossRef]

Tsigopoulos, A.

A. Tsigopoulos, T. Sphicopoulos, I. Orfanos, and S. Pantelis, “Wavelength tuning analysis and spectral characteristics of three-section DBR lasers,” IEEE J. Quantum Electron. 28, 415-426 (1992).
[CrossRef]

Ward, A. J.

L. Ponnampalam, N. D. Whitbread, R. Barlow, G. Busico, A. J. Ward, J. P. Duck, and D. J. Robbins, “Dynamically controlled channel-to-channel switching in a full-band DS-DBR laser,” J. Quantum Electron. 42, 223-231 (2006).
[CrossRef]

Whitbread, N. D.

L. Ponnampalam, N. D. Whitbread, R. Barlow, G. Busico, A. J. Ward, J. P. Duck, and D. J. Robbins, “Dynamically controlled channel-to-channel switching in a full-band DS-DBR laser,” J. Quantum Electron. 42, 223-231 (2006).
[CrossRef]

IEEE J. Lightwave Technol.

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, and C. W. Coldren, “Tunable semiconductor lasers: a tutorial,” IEEE J. Lightwave Technol. 22, 193-202 (2004).
[CrossRef]

G. Sarlet, G. Morthier, and R. Baets, “Control of widely tunable SSG-DBR lasers for dense wavelength division multiplexing,” IEEE J. Lightwave Technol. 18, 1128-1138 (2000).
[CrossRef]

IEEE J. Quantum Electron.

A. Tsigopoulos, T. Sphicopoulos, I. Orfanos, and S. Pantelis, “Wavelength tuning analysis and spectral characteristics of three-section DBR lasers,” IEEE J. Quantum Electron. 28, 415-426 (1992).
[CrossRef]

B. Tromborg, H. Olesen, X. Pan, and S. Saito, “Transmission line description of optical feedback and injection locking for Fabry-Perot and DFB lasers,” IEEE J. Quantum Electron. 23, 1875-1889 (1987).
[CrossRef]

X. Pan, H. Olesen, and B. Tromberg, “A theoretical model of multielectrode DBR lasers,” IEEE J. Quantum Electron. 24, 2423-2432 (1988).
[CrossRef]

R. A. Soref and J. Larenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. 22, 873-879 (1986).
[CrossRef]

M. G. Davis and R. F. O'Dowd, “A transfer matrix method based large signal dynamic model for multielectrode DFB lasers,” IEEE J. Quantum Electron. 30, 2458-2466 (1994).
[CrossRef]

D. Marcuse, “Computer simulation of laser photon fluctuations: theory of single-cavity laser,” IEEE J. Quantum Electron. 20, 1139-1148 (1984).
[CrossRef]

D. Marcuse, “Computer simulation of laser photon flucturations: DFB lasers,” IEEE J. Quantum Electron. 21, 161-167 (1985).
[CrossRef]

J. Lightwave Technol.

J. Quantum Electron.

L. Ponnampalam, N. D. Whitbread, R. Barlow, G. Busico, A. J. Ward, J. P. Duck, and D. J. Robbins, “Dynamically controlled channel-to-channel switching in a full-band DS-DBR laser,” J. Quantum Electron. 42, 223-231 (2006).
[CrossRef]

Other

G. P. Agrawal, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic structure of tunable SG-DBR laser.

Fig. 2
Fig. 2

Wavelength tuning versus currents of two SG reflector sections.

Fig. 3
Fig. 3

SMSR map versus currents of the front and the rear SG reflector sections.

Fig. 4
Fig. 4

Output power map versus currents of the front and the rear SG reflector sections.

Fig. 5
Fig. 5

Emission spectrum of the SG-DBR laser at a wavelength of 1576.59 nm.

Fig. 6
Fig. 6

SG reflection spectra illustrating distortion effects owing to facet reflections.

Fig. 7
Fig. 7

Tuning characteristics and output power of tunable lasers at three different front and rear facet reflectivities.

Fig. 8
Fig. 8

Tuning characteristics and SMSR of tunable lasers at three different front and rear facet reflectivities.

Fig. 9
Fig. 9

Tuning behaviors as a function of two facet reflectivities for different device designs.

Fig. 10
Fig. 10

Output power as a function of two facet reflectivities for different device designs.

Fig. 11
Fig. 11

SMSR as a function of two facet reflectivities for different device designs.

Fig. 12
Fig. 12

Tuning behaviors, output power, and SMSR as functions of two facet reflectivities for different device designs.

Fig. 13
Fig. 13

Wavelength variation versus the invisible F–P cavity length change.

Fig. 14
Fig. 14

Tuning behaviors as a function of the rear section for L R values.

Tables (1)

Tables Icon

Table 1 Parameters of the SG-DBR Laser [5, 6, 7, 8, 9]

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

r SG 1 ( λ , N 1 ) C out r SG 2 ( λ , N 2 ) exp { 2 j k 1 ( λ , N 3 ) l 3 } exp { 2 j k 2 ( λ , N 4 ) l 4 } = 1 ,
k 1 ( λ , N 3 ) = 2 π λ n 3 ( λ , N 3 ) + 1 2 j ( g ( λ , N 3 ) α 3 ( N 3 ) ) ,
k 2 ( λ , N 4 ) = 2 π λ [ n 0 + Δ n ( λ , N 4 ) ] 1 2 j ( α 0 + Δ α ( λ , N 4 ) ) ,
Δ n ( λ , N ) = e 2 λ 2 8 π 2 c 2 n ε 0 ( N e m e + N h m h ) ,
Δ α ( λ , N ) = e 3 λ 2 4 π 2 c 3 n ε 0 ( N e m e μ e + N h m h μ h ) ,
m h = m h h 3 / 2 + m l h 3 / 2 m h h 1 / 2 + m l h 1 / 2 ,
I i = η i e V i R i ( N i ) ,     i = 1 , 2 , 4 ,
R ( N ) = A N + B N 2 + C N 3 .
g th ( λ ) = α 3 ( λ , N 3 ) + l 4 l 3 α 0 + l 4 l 3 Δ α ( λ , N 4 ) + 1 l 3 ln | 1 r SG 1 ( λ , N 1 ) r SG 2 ( λ , N 2 ) C out | ,
h ( λ ) = 4 π n 3 l 3 λ + 4 π ( n 0 + Δ n ( λ , N 4 ) ) l 4 λ arg { r SG 1 ( λ , N 1 ) r SG 2 ( λ , N 2 ) } = 2 π .
α m ( λ m ) = α 3 ( λ m , N 3 ) + l 4 l 3 α 0 + l 4 l 3 Δ α ( λ m , N 4 ) + 1 l 3 ln | 1 r SG 1 ( λ m , N 1 ) r SG 2 ( λ m , N 2 ) C out | ,
F B ( k ) ( λ ) = [ n 3 g + n 4 g 2 n 3 g n 4 g n 3 g n 4 g 2 n 3 g n 4 g n 3 g n 4 g 2 n 3 g n 4 g n 3 g + n 4 g 2 n 3 g n 4 g ] [ e j β Λ / 2 0 0 e j β Λ / 2 ] [ n 4 g + n 3 g 2 n 3 g n 4 g n 4 g n 3 g 2 n 3 g n 4 g n 4 g n 3 g 2 n 3 g n 4 g n 4 g + n 3 g 2 n 3 g n 4 g ] [ e j β Λ / 2 0 0 e j β Λ / 2 ] .
F S ( k ) ( λ ) = [ e j β L s 0 0 e j β L s ] ,
F R ( λ ) = [ e j β L R 0 0 e j β L R ] ,
T R = 1 1 R R [ e j ϕ r / 2 R R e j ϕ r / 2 R R e j ϕ r / 2 e j ϕ r / 2 ] ,
T L = 1 1 R L [ e j ϕ l / 2 R L e j ϕ l / 2 R l e j ϕ l / 2 e j ϕ l / 2 ] ,
M SG 2 = [ [ F s ] [ F B ] n ] N [ F R ] [ T L ] ,
G m = a ( N N 0 ) b ( λ λ p ) 2 ,
d S m ( t ) d t = c n r Γ g m ( N 3 , λ m ) S m ( t ) c n r α m ( λ m , N 1 , N 2 , N 3 , N 4 ) S m ( t ) + Γ γ K m N ( t ) τ sp ,
d N 3 ( t ) d t = I 3 e V 3 R 3 ( N 3 ( t ) ) c n r [ m g ( N 3 , λ m ) S m ( t ) ] ,
d N i ( t ) d t = I i ( t ) e V i R i ( N i ( t ) ) ,     i = 1 , 2 , 4 ,

Metrics