Abstract

A tunable cw Ti:sapphire laser is locked to a self-referenced femtosecond frequency comb generated by an erbium-doped fiber laser thereby creating a single-frequency optical frequency synthesizer. This synthesizer has a tuning range of 760–820 nm with an absolute frequency uncertainty less than 100 kHz. We demonstrate the precision of this cw optical frequency synthesizer by measuring the optical frequency of several transitions on the D2 lines of R85b and R87b using a saturated absorption spectrometer.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb Technology (Springer, 2005).
    [CrossRef]
  2. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
    [CrossRef] [PubMed]
  3. A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063-2068 (2004).
    [CrossRef] [PubMed]
  4. J. Jost, J. Hall, and J. Ye, “Continuously tunable, precise, single frequency optical signal generator,” Opt. Express 10, 515-520 (2002).
    [PubMed]
  5. F. Adler, K. Moutzouris, A. Leitenstorfer, H. Schnatz, B. Lipphardt, G. Grosche, and F. Tauser, “Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurements of optical frequencies,” Opt. Express 12, 5872-5880 (2004).
    [CrossRef] [PubMed]
  6. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jorgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250-252 (2004).
    [CrossRef] [PubMed]
  7. C. C. Tsai, R. S. Freeland, J. M. Vogels, H. M. J. M. Boesten, B. J. Verhaar, and D. J. Heinzen, “Two-color photoassociation spectroscopy of ground state Rb2,” Phys. Rev. Lett. 79, 1245-1248 (1997).
    [CrossRef]
  8. J. Bernard, NRC-INMS, Ottawa, ON, Canada (personal communication, 2009).
  9. J. Jiang, J. E. Bernard, A. A. Madej, A. Czajkowski, S. Drissler, and D. J. Jones, “Measurement of acetylene-d absorption lines with a self-referenced fiber laser frequency comb,” J. Opt. Soc. Am. B 24, 2727-2735 (2007).
    [CrossRef]
  10. A. K. Mills, Y.-F. Chen, J. Jiang, K. Madison, and D. J. Jones, “Using difference frequency generation to lock a cw visible laser to a fiber laser frequency comb,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2008), paper CFA4.
    [PubMed]
  11. J. Ye, S. Swartz, P. Jungner, and J. L. Hall, “Hyperfine structure and absolute frequency of the R87bP53/2 state,” Opt. Lett. 21, 1280-1282 (1996).
    [CrossRef] [PubMed]
  12. A. Banerjee, D. Das, and V. Natarajan, “Precise frequency measurements of atomic transitions by use of a Rb-stabilized resonator,” Opt. Lett. 28, 1579-1581 (2003).
    [CrossRef] [PubMed]

2008 (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef] [PubMed]

2007 (1)

2004 (3)

2003 (1)

2002 (1)

1997 (1)

C. C. Tsai, R. S. Freeland, J. M. Vogels, H. M. J. M. Boesten, B. J. Verhaar, and D. J. Heinzen, “Two-color photoassociation spectroscopy of ground state Rb2,” Phys. Rev. Lett. 79, 1245-1248 (1997).
[CrossRef]

1996 (1)

Adler, F.

Banerjee, A.

Bernard, J.

J. Bernard, NRC-INMS, Ottawa, ON, Canada (personal communication, 2009).

Bernard, J. E.

Boesten, H. M. J. M.

C. C. Tsai, R. S. Freeland, J. M. Vogels, H. M. J. M. Boesten, B. J. Verhaar, and D. J. Heinzen, “Two-color photoassociation spectroscopy of ground state Rb2,” Phys. Rev. Lett. 79, 1245-1248 (1997).
[CrossRef]

Chen, Y. -F.

A. K. Mills, Y.-F. Chen, J. Jiang, K. Madison, and D. J. Jones, “Using difference frequency generation to lock a cw visible laser to a fiber laser frequency comb,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2008), paper CFA4.
[PubMed]

Coddington, I.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef] [PubMed]

Cundiff, S. T.

J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb Technology (Springer, 2005).
[CrossRef]

Czajkowski, A.

Das, D.

Diddams, S. A.

Drissler, S.

Felinto, D.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063-2068 (2004).
[CrossRef] [PubMed]

Freeland, R. S.

C. C. Tsai, R. S. Freeland, J. M. Vogels, H. M. J. M. Boesten, B. J. Verhaar, and D. J. Heinzen, “Two-color photoassociation spectroscopy of ground state Rb2,” Phys. Rev. Lett. 79, 1245-1248 (1997).
[CrossRef]

Grosche, G.

Hall, J.

Hall, J. L.

Heinzen, D. J.

C. C. Tsai, R. S. Freeland, J. M. Vogels, H. M. J. M. Boesten, B. J. Verhaar, and D. J. Heinzen, “Two-color photoassociation spectroscopy of ground state Rb2,” Phys. Rev. Lett. 79, 1245-1248 (1997).
[CrossRef]

Jiang, J.

J. Jiang, J. E. Bernard, A. A. Madej, A. Czajkowski, S. Drissler, and D. J. Jones, “Measurement of acetylene-d absorption lines with a self-referenced fiber laser frequency comb,” J. Opt. Soc. Am. B 24, 2727-2735 (2007).
[CrossRef]

A. K. Mills, Y.-F. Chen, J. Jiang, K. Madison, and D. J. Jones, “Using difference frequency generation to lock a cw visible laser to a fiber laser frequency comb,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2008), paper CFA4.
[PubMed]

Jones, D. J.

J. Jiang, J. E. Bernard, A. A. Madej, A. Czajkowski, S. Drissler, and D. J. Jones, “Measurement of acetylene-d absorption lines with a self-referenced fiber laser frequency comb,” J. Opt. Soc. Am. B 24, 2727-2735 (2007).
[CrossRef]

A. K. Mills, Y.-F. Chen, J. Jiang, K. Madison, and D. J. Jones, “Using difference frequency generation to lock a cw visible laser to a fiber laser frequency comb,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2008), paper CFA4.
[PubMed]

Jorgensen, C. G.

Jost, J.

Jungner, P.

Lawall, J. R.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063-2068 (2004).
[CrossRef] [PubMed]

Leitenstorfer, A.

Lipphardt, B.

Madej, A. A.

Madison, K.

A. K. Mills, Y.-F. Chen, J. Jiang, K. Madison, and D. J. Jones, “Using difference frequency generation to lock a cw visible laser to a fiber laser frequency comb,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2008), paper CFA4.
[PubMed]

Marian, A.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063-2068 (2004).
[CrossRef] [PubMed]

Mills, A. K.

A. K. Mills, Y.-F. Chen, J. Jiang, K. Madison, and D. J. Jones, “Using difference frequency generation to lock a cw visible laser to a fiber laser frequency comb,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2008), paper CFA4.
[PubMed]

Moutzouris, K.

Natarajan, V.

Newbury, N. R.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef] [PubMed]

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jorgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250-252 (2004).
[CrossRef] [PubMed]

Nicholson, J. W.

Schnatz, H.

Stowe, M. C.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063-2068 (2004).
[CrossRef] [PubMed]

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef] [PubMed]

Swartz, S.

Tauser, F.

Tsai, C. C.

C. C. Tsai, R. S. Freeland, J. M. Vogels, H. M. J. M. Boesten, B. J. Verhaar, and D. J. Heinzen, “Two-color photoassociation spectroscopy of ground state Rb2,” Phys. Rev. Lett. 79, 1245-1248 (1997).
[CrossRef]

Verhaar, B. J.

C. C. Tsai, R. S. Freeland, J. M. Vogels, H. M. J. M. Boesten, B. J. Verhaar, and D. J. Heinzen, “Two-color photoassociation spectroscopy of ground state Rb2,” Phys. Rev. Lett. 79, 1245-1248 (1997).
[CrossRef]

Vogels, J. M.

C. C. Tsai, R. S. Freeland, J. M. Vogels, H. M. J. M. Boesten, B. J. Verhaar, and D. J. Heinzen, “Two-color photoassociation spectroscopy of ground state Rb2,” Phys. Rev. Lett. 79, 1245-1248 (1997).
[CrossRef]

Washburn, B. R.

Yan, M. F.

Ye, J.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063-2068 (2004).
[CrossRef] [PubMed]

J. Jost, J. Hall, and J. Ye, “Continuously tunable, precise, single frequency optical signal generator,” Opt. Express 10, 515-520 (2002).
[PubMed]

J. Ye, S. Swartz, P. Jungner, and J. L. Hall, “Hyperfine structure and absolute frequency of the R87bP53/2 state,” Opt. Lett. 21, 1280-1282 (1996).
[CrossRef] [PubMed]

J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb Technology (Springer, 2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef] [PubMed]

C. C. Tsai, R. S. Freeland, J. M. Vogels, H. M. J. M. Boesten, B. J. Verhaar, and D. J. Heinzen, “Two-color photoassociation spectroscopy of ground state Rb2,” Phys. Rev. Lett. 79, 1245-1248 (1997).
[CrossRef]

Science (1)

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063-2068 (2004).
[CrossRef] [PubMed]

Other (3)

J. Bernard, NRC-INMS, Ottawa, ON, Canada (personal communication, 2009).

A. K. Mills, Y.-F. Chen, J. Jiang, K. Madison, and D. J. Jones, “Using difference frequency generation to lock a cw visible laser to a fiber laser frequency comb,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2008), paper CFA4.
[PubMed]

J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb Technology (Springer, 2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Self-referenced erbium-doped fiber laser frequency comb system. The reference signals, f rep and f o , are used to stabilize the FFC and are derived in the referencing branch. These signals are compared to stable reference frequencies from two reference synthesizers using PFDs, and the resultant error signals are used to stabilize the FFC. The measurement branch is a copy of the FFC that is spectrally broadened using HNF and is frequency doubled to serve as a frequency reference for the cw laser.

Fig. 2
Fig. 2

Apparatus for referencing a cw Ti:sapphire laser to a FFC using SHG. After the FFC is frequency doubled in the PPLN crystal, the SHG comb and the cw laser are combined on a beam splitter and directed into a fast photodiode to produce the heterodyne beat note. The beat note is then referenced to a stable rf, f cw , using a phase-frequency detector and fed back to the cw laser with the use of a loop filter to complete the optical phase-locked loop. For the SNR measurements, the photodetector output is connected to an rf spectrum analyzer rather than the phase-frequency detector.

Fig. 3
Fig. 3

SNR spectrum resulting from a heterodyne beat-note measurement between the cw laser and the SHG comb generated from the measurement branch of the FFC. The horizontal dotted line indicates the required 25 dB locking threshold and the inset shows the power spectrum of the measurement branch. The vertical dotted lines in the inset show the approximate spectral bandwidth that contributes to the SHG comb over the 760–820 nm range.

Fig. 4
Fig. 4

Saturated absorption spectrum with third harmonic lock-in detection for (a) R 85 b and (b) R 87 b . The frequency axes are plotted as the absolute frequency offset from the F = 3 state of R 85 b and the F = 2 state of R 87 b . The residuals from the fits are shown on the same vertical scale but are offset from the data for clarity. We do not fit the saturated absorption crossover resonances.

Metrics