Abstract

Accurate control over the transient and steady-state regimes of stimulated Raman amplification is achieved in hydrogen-filled hollow-core photonic crystal fiber via the control of the fiber length and the internal gas pressure. The experimental evolution of the characteristic time that determines the limit between the two scattering regimes is shown to closely follow the theoretical prediction. Transient amplification is observed for pump-laser pulse lengths longer than 10 times the Raman dephasing time, opening new prospects for the generation of a coherent optical frequency comb using ultralong pump-laser pulses (>100ns).

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Woodbury and W. K. Ng, “Ruby laser operation in the near-IR,” Proc. IRE 50, 2367 (1962).
  2. N. Bloembergen and Y. R. Shen, “Coupling between vibrations and light waves in Raman laser media,” Phys. Rev. Lett. 12, 504-507 (1964).
    [CrossRef]
  3. C. S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482-494 (1969).
    [CrossRef]
  4. R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering” Phys. Rev. A 2, 60-72 (1970).
    [CrossRef]
  5. M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980-1993 (1981).
    [CrossRef]
  6. M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A 32, 332-344 (1985).
    [CrossRef] [PubMed]
  7. M. Belsley, D. T. Smithey, K. Wedding, and M. G. Raymer, “Observation of extreme sensitivity to induced molecular coherence in stimulated Raman scattering,” Phys. Rev. A 48, 1514-1525 (1993).
    [CrossRef] [PubMed]
  8. E. Sali, K. J. Mendham, J. W. G. Tisch, T. Halfmann, and J. P. Marangos, “High-order stimulated Raman scattering in a highly transient regime driven by a pair of ultrashort pulses,” Opt. Lett. 29, 495-497 (2004).
    [CrossRef] [PubMed]
  9. A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, “Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium,” Phys. Rev. Lett. 83, 2560-2563 (1999).
    [CrossRef]
  10. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399-402 (2002).
    [CrossRef] [PubMed]
  11. F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultra-high efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
    [CrossRef] [PubMed]
  12. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488-491 (2005).
    [CrossRef] [PubMed]
  13. F. Benabid, G. Antonopoulos, J. C. Knight, and P. St. J. Russell, “Stokes amplification regimes in quasi-CW pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
    [CrossRef] [PubMed]
  14. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118-1121 (2007).
    [CrossRef] [PubMed]
  15. A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85, 562-565 (2000).
    [CrossRef] [PubMed]
  16. M. G. Raymer and I. A. Walmsley, “The quantum coherence properties of stimulated Raman scattering,” Prog. Opt. 28, 181-270 (1990).
    [CrossRef]
  17. F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99, 143903 (2007).
    [CrossRef] [PubMed]
  18. M. Graf, E. Arimondo, E. S. Fry, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, and S. Y. Zhu, “Doppler broadening and collisional relaxation effects in a lasing-without-inversion experiment,” Phys. Rev. A 51, 4030-4037 (1995).
    [CrossRef] [PubMed]
  19. E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257-354 (1996).
    [CrossRef]
  20. E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems (Cambridge U. Press, 1984).
  21. W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113-3123 (1986).
    [CrossRef] [PubMed]
  22. G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidth and lineshifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A 34, 1944-1951 (1986).
    [CrossRef] [PubMed]
  23. R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472-473 (1953).
    [CrossRef]
  24. J. L. Carlsten and R. G. Wenzel, “Stimulated rotational Raman scattering in CO2-pumped para-H2,” IEEE J. Quantum Electron. 19, 1407-1413 (1983).
    [CrossRef]
  25. R. W. Carlson and W. R. Fenner, “Absolute Raman scattering cross-section of molecular hydrogen,” Astron. J. 178, 551-556 (1972).
  26. W. K. Bischel and G. Black, “Wavelength dependence of Raman scattering cross sections from 200-600 nm,” in Excimer Lasers-1983, C.K.Rhodes, H.Esser, and H.Pummer, eds. (AIP, 1983).
  27. M. G. Raymer, Z. W. Li, and I. A. Walmsley, “Temporal quantum fluctuations in stimulated raman scattering: Coherent-modes description,” Phys. Rev. Lett. 63, 1586-1589 (1989).
    [CrossRef] [PubMed]
  28. M. G. Raymer, “Quantum state entanglement and readout of collective atomic-ensemble modes and optical wave packets by stimulated Raman scattering,” J. Mod. Opt. 51, 1739-1759 (2004).

2007

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118-1121 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99, 143903 (2007).
[CrossRef] [PubMed]

2005

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St. J. Russell, “Stokes amplification regimes in quasi-CW pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
[CrossRef] [PubMed]

2004

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultra-high efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[CrossRef] [PubMed]

M. G. Raymer, “Quantum state entanglement and readout of collective atomic-ensemble modes and optical wave packets by stimulated Raman scattering,” J. Mod. Opt. 51, 1739-1759 (2004).

E. Sali, K. J. Mendham, J. W. G. Tisch, T. Halfmann, and J. P. Marangos, “High-order stimulated Raman scattering in a highly transient regime driven by a pair of ultrashort pulses,” Opt. Lett. 29, 495-497 (2004).
[CrossRef] [PubMed]

2002

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399-402 (2002).
[CrossRef] [PubMed]

2000

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85, 562-565 (2000).
[CrossRef] [PubMed]

1999

A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, “Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium,” Phys. Rev. Lett. 83, 2560-2563 (1999).
[CrossRef]

1996

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257-354 (1996).
[CrossRef]

1995

M. Graf, E. Arimondo, E. S. Fry, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, and S. Y. Zhu, “Doppler broadening and collisional relaxation effects in a lasing-without-inversion experiment,” Phys. Rev. A 51, 4030-4037 (1995).
[CrossRef] [PubMed]

1993

M. Belsley, D. T. Smithey, K. Wedding, and M. G. Raymer, “Observation of extreme sensitivity to induced molecular coherence in stimulated Raman scattering,” Phys. Rev. A 48, 1514-1525 (1993).
[CrossRef] [PubMed]

1990

M. G. Raymer and I. A. Walmsley, “The quantum coherence properties of stimulated Raman scattering,” Prog. Opt. 28, 181-270 (1990).
[CrossRef]

1989

M. G. Raymer, Z. W. Li, and I. A. Walmsley, “Temporal quantum fluctuations in stimulated raman scattering: Coherent-modes description,” Phys. Rev. Lett. 63, 1586-1589 (1989).
[CrossRef] [PubMed]

1986

W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113-3123 (1986).
[CrossRef] [PubMed]

G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidth and lineshifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A 34, 1944-1951 (1986).
[CrossRef] [PubMed]

1985

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A 32, 332-344 (1985).
[CrossRef] [PubMed]

1983

J. L. Carlsten and R. G. Wenzel, “Stimulated rotational Raman scattering in CO2-pumped para-H2,” IEEE J. Quantum Electron. 19, 1407-1413 (1983).
[CrossRef]

1981

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980-1993 (1981).
[CrossRef]

1972

R. W. Carlson and W. R. Fenner, “Absolute Raman scattering cross-section of molecular hydrogen,” Astron. J. 178, 551-556 (1972).

1970

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering” Phys. Rev. A 2, 60-72 (1970).
[CrossRef]

1969

C. S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482-494 (1969).
[CrossRef]

1964

N. Bloembergen and Y. R. Shen, “Coupling between vibrations and light waves in Raman laser media,” Phys. Rev. Lett. 12, 504-507 (1964).
[CrossRef]

1962

E. J. Woodbury and W. K. Ng, “Ruby laser operation in the near-IR,” Proc. IRE 50, 2367 (1962).

1953

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472-473 (1953).
[CrossRef]

Antonopoulos, G.

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St. J. Russell, “Stokes amplification regimes in quasi-CW pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Arimondo, E.

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257-354 (1996).
[CrossRef]

M. Graf, E. Arimondo, E. S. Fry, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, and S. Y. Zhu, “Doppler broadening and collisional relaxation effects in a lasing-without-inversion experiment,” Phys. Rev. A 51, 4030-4037 (1995).
[CrossRef] [PubMed]

Belsley, M.

M. Belsley, D. T. Smithey, K. Wedding, and M. G. Raymer, “Observation of extreme sensitivity to induced molecular coherence in stimulated Raman scattering,” Phys. Rev. A 48, 1514-1525 (1993).
[CrossRef] [PubMed]

Benabid, F.

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99, 143903 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118-1121 (2007).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St. J. Russell, “Stokes amplification regimes in quasi-CW pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
[CrossRef] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultra-high efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Bischel, W. K.

W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113-3123 (1986).
[CrossRef] [PubMed]

G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidth and lineshifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A 34, 1944-1951 (1986).
[CrossRef] [PubMed]

W. K. Bischel and G. Black, “Wavelength dependence of Raman scattering cross sections from 200-600 nm,” in Excimer Lasers-1983, C.K.Rhodes, H.Esser, and H.Pummer, eds. (AIP, 1983).

Black, G.

W. K. Bischel and G. Black, “Wavelength dependence of Raman scattering cross sections from 200-600 nm,” in Excimer Lasers-1983, C.K.Rhodes, H.Esser, and H.Pummer, eds. (AIP, 1983).

Bloembergen, N.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering” Phys. Rev. A 2, 60-72 (1970).
[CrossRef]

N. Bloembergen and Y. R. Shen, “Coupling between vibrations and light waves in Raman laser media,” Phys. Rev. Lett. 12, 504-507 (1964).
[CrossRef]

Bouwmans, G.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultra-high efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[CrossRef] [PubMed]

Carlson, R. W.

R. W. Carlson and W. R. Fenner, “Absolute Raman scattering cross-section of molecular hydrogen,” Astron. J. 178, 551-556 (1972).

Carlsten, J. L.

J. L. Carlsten and R. G. Wenzel, “Stimulated rotational Raman scattering in CO2-pumped para-H2,” IEEE J. Quantum Electron. 19, 1407-1413 (1983).
[CrossRef]

Carman, R. L.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering” Phys. Rev. A 2, 60-72 (1970).
[CrossRef]

Couny, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118-1121 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99, 143903 (2007).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultra-high efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[CrossRef] [PubMed]

Cussler, E. L.

E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems (Cambridge U. Press, 1984).

Dicke, R. H.

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472-473 (1953).
[CrossRef]

Dyer, M. J.

W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113-3123 (1986).
[CrossRef] [PubMed]

G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidth and lineshifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A 34, 1944-1951 (1986).
[CrossRef] [PubMed]

Elsaesser, T.

A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, “Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium,” Phys. Rev. Lett. 83, 2560-2563 (1999).
[CrossRef]

Fenner, W. R.

R. W. Carlson and W. R. Fenner, “Absolute Raman scattering cross-section of molecular hydrogen,” Astron. J. 178, 551-556 (1972).

Fry, E. S.

M. Graf, E. Arimondo, E. S. Fry, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, and S. Y. Zhu, “Doppler broadening and collisional relaxation effects in a lasing-without-inversion experiment,” Phys. Rev. A 51, 4030-4037 (1995).
[CrossRef] [PubMed]

Graf, M.

M. Graf, E. Arimondo, E. S. Fry, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, and S. Y. Zhu, “Doppler broadening and collisional relaxation effects in a lasing-without-inversion experiment,” Phys. Rev. A 51, 4030-4037 (1995).
[CrossRef] [PubMed]

Halfmann, T.

Harris, S. E.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85, 562-565 (2000).
[CrossRef] [PubMed]

Herring, G. C.

G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidth and lineshifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A 34, 1944-1951 (1986).
[CrossRef] [PubMed]

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St. J. Russell, “Stokes amplification regimes in quasi-CW pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
[CrossRef] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultra-high efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Korn, G.

A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, “Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium,” Phys. Rev. Lett. 83, 2560-2563 (1999).
[CrossRef]

Li, Z. W.

M. G. Raymer, Z. W. Li, and I. A. Walmsley, “Temporal quantum fluctuations in stimulated raman scattering: Coherent-modes description,” Phys. Rev. Lett. 63, 1586-1589 (1989).
[CrossRef] [PubMed]

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118-1121 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99, 143903 (2007).
[CrossRef] [PubMed]

Marangos, J. P.

Mendham, K. J.

Mostowski, J.

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A 32, 332-344 (1985).
[CrossRef] [PubMed]

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980-1993 (1981).
[CrossRef]

Nazarkin, A.

A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, “Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium,” Phys. Rev. Lett. 83, 2560-2563 (1999).
[CrossRef]

Ng, W. K.

E. J. Woodbury and W. K. Ng, “Ruby laser operation in the near-IR,” Proc. IRE 50, 2367 (1962).

Nikonov, D. E.

M. Graf, E. Arimondo, E. S. Fry, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, and S. Y. Zhu, “Doppler broadening and collisional relaxation effects in a lasing-without-inversion experiment,” Phys. Rev. A 51, 4030-4037 (1995).
[CrossRef] [PubMed]

Padmabandu, G. G.

M. Graf, E. Arimondo, E. S. Fry, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, and S. Y. Zhu, “Doppler broadening and collisional relaxation effects in a lasing-without-inversion experiment,” Phys. Rev. A 51, 4030-4037 (1995).
[CrossRef] [PubMed]

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118-1121 (2007).
[CrossRef] [PubMed]

M. G. Raymer, “Quantum state entanglement and readout of collective atomic-ensemble modes and optical wave packets by stimulated Raman scattering,” J. Mod. Opt. 51, 1739-1759 (2004).

M. Belsley, D. T. Smithey, K. Wedding, and M. G. Raymer, “Observation of extreme sensitivity to induced molecular coherence in stimulated Raman scattering,” Phys. Rev. A 48, 1514-1525 (1993).
[CrossRef] [PubMed]

M. G. Raymer and I. A. Walmsley, “The quantum coherence properties of stimulated Raman scattering,” Prog. Opt. 28, 181-270 (1990).
[CrossRef]

M. G. Raymer, Z. W. Li, and I. A. Walmsley, “Temporal quantum fluctuations in stimulated raman scattering: Coherent-modes description,” Phys. Rev. Lett. 63, 1586-1589 (1989).
[CrossRef] [PubMed]

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A 32, 332-344 (1985).
[CrossRef] [PubMed]

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980-1993 (1981).
[CrossRef]

Roberts, P. J.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118-1121 (2007).
[CrossRef] [PubMed]

Russell, P. St. J.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St. J. Russell, “Stokes amplification regimes in quasi-CW pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
[CrossRef] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultra-high efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Sali, E.

Scully, M. O.

M. Graf, E. Arimondo, E. S. Fry, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, and S. Y. Zhu, “Doppler broadening and collisional relaxation effects in a lasing-without-inversion experiment,” Phys. Rev. A 51, 4030-4037 (1995).
[CrossRef] [PubMed]

Shen, Y. R.

N. Bloembergen and Y. R. Shen, “Coupling between vibrations and light waves in Raman laser media,” Phys. Rev. Lett. 12, 504-507 (1964).
[CrossRef]

Shimizu, F.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering” Phys. Rev. A 2, 60-72 (1970).
[CrossRef]

Smithey, D. T.

M. Belsley, D. T. Smithey, K. Wedding, and M. G. Raymer, “Observation of extreme sensitivity to induced molecular coherence in stimulated Raman scattering,” Phys. Rev. A 48, 1514-1525 (1993).
[CrossRef] [PubMed]

Sobolewska, B.

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A 32, 332-344 (1985).
[CrossRef] [PubMed]

Sokolov, A. V.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85, 562-565 (2000).
[CrossRef] [PubMed]

Tisch, J. W. G.

Walker, D. R.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85, 562-565 (2000).
[CrossRef] [PubMed]

Walmsley, I. A.

M. G. Raymer and I. A. Walmsley, “The quantum coherence properties of stimulated Raman scattering,” Prog. Opt. 28, 181-270 (1990).
[CrossRef]

M. G. Raymer, Z. W. Li, and I. A. Walmsley, “Temporal quantum fluctuations in stimulated raman scattering: Coherent-modes description,” Phys. Rev. Lett. 63, 1586-1589 (1989).
[CrossRef] [PubMed]

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A 32, 332-344 (1985).
[CrossRef] [PubMed]

Wang, C. S.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering” Phys. Rev. A 2, 60-72 (1970).
[CrossRef]

C. S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482-494 (1969).
[CrossRef]

Wedding, K.

M. Belsley, D. T. Smithey, K. Wedding, and M. G. Raymer, “Observation of extreme sensitivity to induced molecular coherence in stimulated Raman scattering,” Phys. Rev. A 48, 1514-1525 (1993).
[CrossRef] [PubMed]

Wenzel, R. G.

J. L. Carlsten and R. G. Wenzel, “Stimulated rotational Raman scattering in CO2-pumped para-H2,” IEEE J. Quantum Electron. 19, 1407-1413 (1983).
[CrossRef]

Wittmann, M.

A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, “Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium,” Phys. Rev. Lett. 83, 2560-2563 (1999).
[CrossRef]

Woodbury, E. J.

E. J. Woodbury and W. K. Ng, “Ruby laser operation in the near-IR,” Proc. IRE 50, 2367 (1962).

Yavuz, D. D.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85, 562-565 (2000).
[CrossRef] [PubMed]

Yin, G. Y.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85, 562-565 (2000).
[CrossRef] [PubMed]

Zhu, S. Y.

M. Graf, E. Arimondo, E. S. Fry, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, and S. Y. Zhu, “Doppler broadening and collisional relaxation effects in a lasing-without-inversion experiment,” Phys. Rev. A 51, 4030-4037 (1995).
[CrossRef] [PubMed]

Astron. J.

R. W. Carlson and W. R. Fenner, “Absolute Raman scattering cross-section of molecular hydrogen,” Astron. J. 178, 551-556 (1972).

IEEE J. Quantum Electron.

J. L. Carlsten and R. G. Wenzel, “Stimulated rotational Raman scattering in CO2-pumped para-H2,” IEEE J. Quantum Electron. 19, 1407-1413 (1983).
[CrossRef]

J. Mod. Opt.

M. G. Raymer, “Quantum state entanglement and readout of collective atomic-ensemble modes and optical wave packets by stimulated Raman scattering,” J. Mod. Opt. 51, 1739-1759 (2004).

Nature

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev.

C. S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482-494 (1969).
[CrossRef]

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472-473 (1953).
[CrossRef]

Phys. Rev. A

M. Graf, E. Arimondo, E. S. Fry, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, and S. Y. Zhu, “Doppler broadening and collisional relaxation effects in a lasing-without-inversion experiment,” Phys. Rev. A 51, 4030-4037 (1995).
[CrossRef] [PubMed]

W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113-3123 (1986).
[CrossRef] [PubMed]

G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidth and lineshifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A 34, 1944-1951 (1986).
[CrossRef] [PubMed]

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering” Phys. Rev. A 2, 60-72 (1970).
[CrossRef]

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980-1993 (1981).
[CrossRef]

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A 32, 332-344 (1985).
[CrossRef] [PubMed]

M. Belsley, D. T. Smithey, K. Wedding, and M. G. Raymer, “Observation of extreme sensitivity to induced molecular coherence in stimulated Raman scattering,” Phys. Rev. A 48, 1514-1525 (1993).
[CrossRef] [PubMed]

Phys. Rev. Lett.

M. G. Raymer, Z. W. Li, and I. A. Walmsley, “Temporal quantum fluctuations in stimulated raman scattering: Coherent-modes description,” Phys. Rev. Lett. 63, 1586-1589 (1989).
[CrossRef] [PubMed]

N. Bloembergen and Y. R. Shen, “Coupling between vibrations and light waves in Raman laser media,” Phys. Rev. Lett. 12, 504-507 (1964).
[CrossRef]

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St. J. Russell, “Stokes amplification regimes in quasi-CW pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
[CrossRef] [PubMed]

A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, “Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium,” Phys. Rev. Lett. 83, 2560-2563 (1999).
[CrossRef]

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85, 562-565 (2000).
[CrossRef] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultra-high efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99, 143903 (2007).
[CrossRef] [PubMed]

Proc. IRE

E. J. Woodbury and W. K. Ng, “Ruby laser operation in the near-IR,” Proc. IRE 50, 2367 (1962).

Prog. Opt.

M. G. Raymer and I. A. Walmsley, “The quantum coherence properties of stimulated Raman scattering,” Prog. Opt. 28, 181-270 (1990).
[CrossRef]

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257-354 (1996).
[CrossRef]

Science

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399-402 (2002).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118-1121 (2007).
[CrossRef] [PubMed]

Other

E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems (Cambridge U. Press, 1984).

W. K. Bischel and G. Black, “Wavelength dependence of Raman scattering cross sections from 200-600 nm,” in Excimer Lasers-1983, C.K.Rhodes, H.Esser, and H.Pummer, eds. (AIP, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(A) Calculated collisional dephasing induced by the fiber’s core wall (grey dotted curve), natural Raman dephasing (light-grey dashed curve) and total Raman linewidth (black solid curve) as a function of H 2 pressure at room temperature in a HC-PCF with a core diameter of 10 μ m . (B) Calculated Raman gain g SS as a function of pressure.

Fig. 2
Fig. 2

(A) Stokes intensity I S growth from quantum noise fluctuation I S noise as a function of pump laser pulse width Γ normalized to the Raman halfwidth Г for different values of the Raman net gain g z . The transient region (shaded blue area) and the passage time τ 2 (dotted curve) are identified. (B) Zoom onto the short τ Г range with identification of the passage time τ 1 (dotted curve).

Fig. 3
Fig. 3

Experimental setup for measurement of τ 2 in HC-PCF filled with H 2 . DPSS laser, diode-pumped solid-state laser; FM, Flip mirror; PBS, Polarizing beamsplitter; λ 2 and λ 4 , Half- and quarter-waveplates, respectively; XYZ, Alignment stage with microscope objectives; SMF, single-mode fiber; OSA, Optical spectrum analyzer.

Fig. 4
Fig. 4

Measured threshold energy E th versus pulse width τ (black dots) for a hydrogen pressure of (A) 11.5   bars and (B) 14.7   bars and a HC-PCF length of 15 m . Analytical results from Eqs. (12, 13) are shown in solid red and dotted blue lines, respectively.

Fig. 5
Fig. 5

Experimental τ 2 as a function of the inverse of the H 2 pressure for HC-PCF fiber length of 15 m (red dots) and 25 m (blue circles). The corresponding theoretical evolution τ 2 g z Γ is represented in dotted red and solid blue lines, respectively.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Γ wall = 2.405 2 D 0 R 2 ( 1 + 6.8 λ mfp R ) .
Γ rot = 4 π k R 2 D 0 ρ + 3.8 10 2 + B ρ .
g SS α rot = 16 5 π 3 ν S c 2 n S 2 ( J + 1 ) ( J + 2 ) ( 2 J + 1 ) ( 2 J + 3 ) γ 2 h Γ 2 Δ N ,
L int = 0 L e α P z d z = ( 1 exp ( α P L ) ) α P ,
I S ( z , τ ) = h ν S Γ g z 2 ( e 2 Γ τ [ I 0 2 ( 2 g z Γ τ ) I 1 2 ( 2 g z Γ τ ) ] ) + h ν S Γ 2 g z ( 0 τ d τ e 2 Γ τ [ I 0 2 ( 2 g z Γ τ ) I 1 2 ( 2 g z Γ τ ) ] ) ,
I S SP ( z , τ ) = Γ g z h ν S 2 .
I S SS ( z , τ ) h ν S Γ e g z 2 π g z .
I S tr ( z , τ ) h ν S e 2 2 g z Γ τ 2 Γ τ 8 π τ .
E P , SP threshold ( τ ) e G th + α S L A eff g SS L int τ ,
E P , SS threshold ( τ ) ( G th + α S L ) A eff g SS L int τ ,
E P , tr threshold ( τ ) A eff 8 Γ g SS L int ( G th + α S L + ln [ 4 π Γ τ ] + 2 Γ τ ) 2
E P , SS threshold ( τ P , L , Γ ) α P ( G th + α S L ) A eff g SS ( 1 e α P L ) τ P + E 0 ,
E P , tr threshold ( τ P , L , Γ ) A eff 8 Γ g SS α P ( 1 e α P L ) ( G th + α S L + ln [ 4 π Γ τ P ] + 2 Γ τ P ) 2 + E 1 τ P .

Metrics