Abstract

We have investigated the local density of optical states (LDOS) in titania and silicon inverse opals—three-dimensional photonic crystals that have been realized experimentally. We used the H-field plane-wave expansion method to calculate the density of states and the projected LDOS, which are directly relevant for spontaneous emission dynamics and strong coupling. We present the first quantitative analysis of the frequency resolution and of the accuracy of the calculated LDOS. We have calculated the projected LDOS for many different emitter positions and orientations in inverse opals in order to supply a theoretical interpretation for recent emission experiments and as reference results for future experiments and theory by other workers. The results show that the LDOS in inverse opals strongly depends on the crystal lattice parameter as well as on the position and orientation of emitting dipoles.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (13)

» Media 1: CSV (1 KB)     
» Media 2: CSV (57 KB)     
» Media 3: CSV (2 KB)     
» Media 4: CSV (4 KB)     
» Media 5: CSV (4 KB)     
» Media 6: CSV (3 KB)     
» Media 7: CSV (4 KB)     
» Media 8: CSV (3 KB)     
» Media 9: CSV (4 KB)     
» Media 10: CSV (64 KB)     
» Media 11: CSV (2 KB)     
» Media 12: CSV (5 KB)     
» Media 13: CSV (5 KB)     

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription