Abstract

We report on a two-channel magnetometer based on nonlinear magneto-optical rotation in a Cs glass cell with buffer gas. The Cs atoms are optically pumped and probed by free running diode lasers tuned to the D2 line. A wide frequency modulation of the pump laser is used to produce both synchronous Zeeman optical pumping and hyperfine repumping. The magnetometer works in an unshielded environment, and a spurious signal from distant magnetic sources is rejected by means of differential measurement. In this regime the magnetometer simultaneously gives the magnetic field modulus and the field difference. Rejection of the common-mode noise allows for high-resolution magnetometry with a sensitivity of 2pTHz. This sensitivity, in conjunction with long-term stability and a large bandwidth, makes it possible to detect water proton magnetization and its free induction decay in a measurement volume of 5cm3.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. G. Dehmelt, “Modulation of a light beam by precessing atoms,” Phys. Rev. 105, 1924-1925 (1957).
    [CrossRef]
  2. W. Bell and A. L. Bloom, “Optical detection of magnetic resonance in alkali metal vapor,” Phys. Rev. 107, 1559-1565 (1957).
    [CrossRef]
  3. A. L. Bloom, “Principles of operation of the rubidium vapor magnetometer,” Appl. Opt. 1, 61-68 (1962).
    [CrossRef]
  4. J. Dupont-Roc, S. Haroche, and C. Cohen-Tannoudji, “Detection of very weak magnetic fields (10−9 gauss) by Rb87 zero-field level crossing resonances,” Phys. Lett. 28A, 638-639 (1969).
    [CrossRef]
  5. C. Cohen-Tannoudji, J. Dupont-Roc, S. Haroche, and F. Laloe, “Detection of the static magnetic field produced by the oriented nuclei of optically pumped 3He gas,” Phys. Rev. Lett. 22, 758-760 (1969).
    [CrossRef]
  6. E. B. Alexandrov, M. V. Balabas, A. S. Pasgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-resonance atomic magnetometers: from gas discharge to laser pumping,” Laser Phys. 6, 244-251 (1996).
  7. R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark state,” Appl. Phys. B 68, 1-25 (1999).
    [CrossRef]
  8. D. Budker, V. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153-1201 (2002).
    [CrossRef]
  9. V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A 73, 053404 (2006).
    [CrossRef]
  10. M. V. Romalis and D. Budker, “Optical magnetometry,” Nat. Phys. 3, 227-234 (2007).
    [CrossRef]
  11. I. M. Savukov, S. K. Lee, and M. V. Romalis, “Optical detection of liquid state NMR,” Nature 442, 1021-1024 (2006).
    [CrossRef] [PubMed]
  12. I. M. Savukov and M. V. Romalis, “NMR detection with an atomic magnetometer,” Phys. Rev. Lett. 94, 123001 (2005).
    [CrossRef] [PubMed]
  13. Sh. Xu, V. V. Yashchuk, M. H. Donaldson, S. M. Rochester, and D. Budker, “Magnetic resonance imaging with an optical atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 103, 12668-12671 (2006).
    [CrossRef] [PubMed]
  14. I. M. Savukov, S. J. Seltzer, and M. V. Romalis, “Detection of NMR signals with a radio-frequency atomic magnetometer,” J. Magn. Reson. 185, 214-220 (2007).
    [CrossRef] [PubMed]
  15. M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
    [CrossRef] [PubMed]
  16. C. Andreeva, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, T. Karaulanov, C. Marinelli, E. Mariotti, and L. Moi, “Two-color coherent population trapping in a single Cs hyperfine transition, with application in magnetometry,” Appl. Phys. B 76, 667-675 (2003).
    [CrossRef]
  17. J. Belfi, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, and L. Moi, “Cesium coherent population trapping magnetometer for cardio signal detection in an unshielded environment,” J. Opt. Soc. Am. B 24, 2357-2362 (2007).
    [CrossRef]
  18. D. Suter and J. Mlynek, “Laser excitation and detection of magnetic resonance,” Adv. Magn. Opt. Reson. 16, 1-83 (1991).
  19. N. Beverini, P. Violino, and F. Strumia, “Optical pumping of cesium in the presence of heavy noble gases,” Z. Physiother. 265, 189-196 (1973).
  20. M. T. Graf, D. F. Kimball, S. M. Rochester, K. Kerner, C. Wong, D. Budker, E. B. Alexandrov, M. V. Balabas, and V. V. Yashchuk, “Relaxation of atomic polarization in paraffin-coated cesium vapor cells,” Phys. Rev. A 72, 023401 (2005).
    [CrossRef]
  21. J. S. Guzman, A. Wojciechowski, J. E. Stalnaker, K. Tsigutkin, V. V. Yashchuk, and D. Budker, “Nonlinear magneto-optical rotation, Zeeman and hyperfine relaxation of potassium atoms in a paraffin-coated cell,” Phys. Rev. A 74, 053415 (2006).
    [CrossRef]
  22. J. M. Higbie, E. Corsini, and D. Budker, “Robust, high-speed, all-optical atomic magnetometer,” Rev. Sci. Instrum. 77, 113106 (2006).
    [CrossRef]
  23. J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards, AdamHilger, ed. (Bristol, 1989), Chap. 3, p. 410.
  24. J. Belfi, G. Bevilacqua, V. Biancalana, Y. Dancheva, and L. Moi, “All-optical sensor for automated magnetometry based on coherent population trapping,” J. Opt. Soc. Am. B 24, 1482-1489 (2007).
    [CrossRef]
  25. P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76, 126103 (2005).
    [CrossRef]
  26. We use OSD15-5T (Centronic) photodiodes with a sensitivity of 0.45 A/W and 5 nA dark current. Each photo current is amplified using an OP484 chip (Analog devices), which contains four low-noise operational amplifiers (OAs). One OA is configured as a transimpedance amplifier with a feedback impedance made by a 68 kΩ resistor in parallel with a 47 pF capacitor. Another OA is used as a dc voltage amplifier while the two remaining OAs are used as cascaded bandpass amplifiers (each one has an ac coupled input and an RC parallel in its feedback with cutoff frequencies set at 10 and 40 kHz, respectively).

2008

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
[CrossRef] [PubMed]

2007

2006

J. S. Guzman, A. Wojciechowski, J. E. Stalnaker, K. Tsigutkin, V. V. Yashchuk, and D. Budker, “Nonlinear magneto-optical rotation, Zeeman and hyperfine relaxation of potassium atoms in a paraffin-coated cell,” Phys. Rev. A 74, 053415 (2006).
[CrossRef]

J. M. Higbie, E. Corsini, and D. Budker, “Robust, high-speed, all-optical atomic magnetometer,” Rev. Sci. Instrum. 77, 113106 (2006).
[CrossRef]

I. M. Savukov, S. K. Lee, and M. V. Romalis, “Optical detection of liquid state NMR,” Nature 442, 1021-1024 (2006).
[CrossRef] [PubMed]

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A 73, 053404 (2006).
[CrossRef]

Sh. Xu, V. V. Yashchuk, M. H. Donaldson, S. M. Rochester, and D. Budker, “Magnetic resonance imaging with an optical atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 103, 12668-12671 (2006).
[CrossRef] [PubMed]

2005

I. M. Savukov and M. V. Romalis, “NMR detection with an atomic magnetometer,” Phys. Rev. Lett. 94, 123001 (2005).
[CrossRef] [PubMed]

M. T. Graf, D. F. Kimball, S. M. Rochester, K. Kerner, C. Wong, D. Budker, E. B. Alexandrov, M. V. Balabas, and V. V. Yashchuk, “Relaxation of atomic polarization in paraffin-coated cesium vapor cells,” Phys. Rev. A 72, 023401 (2005).
[CrossRef]

P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76, 126103 (2005).
[CrossRef]

2003

C. Andreeva, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, T. Karaulanov, C. Marinelli, E. Mariotti, and L. Moi, “Two-color coherent population trapping in a single Cs hyperfine transition, with application in magnetometry,” Appl. Phys. B 76, 667-675 (2003).
[CrossRef]

2002

D. Budker, V. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153-1201 (2002).
[CrossRef]

1999

R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark state,” Appl. Phys. B 68, 1-25 (1999).
[CrossRef]

1996

E. B. Alexandrov, M. V. Balabas, A. S. Pasgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-resonance atomic magnetometers: from gas discharge to laser pumping,” Laser Phys. 6, 244-251 (1996).

1991

D. Suter and J. Mlynek, “Laser excitation and detection of magnetic resonance,” Adv. Magn. Opt. Reson. 16, 1-83 (1991).

1973

N. Beverini, P. Violino, and F. Strumia, “Optical pumping of cesium in the presence of heavy noble gases,” Z. Physiother. 265, 189-196 (1973).

1969

J. Dupont-Roc, S. Haroche, and C. Cohen-Tannoudji, “Detection of very weak magnetic fields (10−9 gauss) by Rb87 zero-field level crossing resonances,” Phys. Lett. 28A, 638-639 (1969).
[CrossRef]

C. Cohen-Tannoudji, J. Dupont-Roc, S. Haroche, and F. Laloe, “Detection of the static magnetic field produced by the oriented nuclei of optically pumped 3He gas,” Phys. Rev. Lett. 22, 758-760 (1969).
[CrossRef]

1962

1957

H. G. Dehmelt, “Modulation of a light beam by precessing atoms,” Phys. Rev. 105, 1924-1925 (1957).
[CrossRef]

W. Bell and A. L. Bloom, “Optical detection of magnetic resonance in alkali metal vapor,” Phys. Rev. 107, 1559-1565 (1957).
[CrossRef]

Acosta, V.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A 73, 053404 (2006).
[CrossRef]

Alexandrov, E. B.

M. T. Graf, D. F. Kimball, S. M. Rochester, K. Kerner, C. Wong, D. Budker, E. B. Alexandrov, M. V. Balabas, and V. V. Yashchuk, “Relaxation of atomic polarization in paraffin-coated cesium vapor cells,” Phys. Rev. A 72, 023401 (2005).
[CrossRef]

E. B. Alexandrov, M. V. Balabas, A. S. Pasgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-resonance atomic magnetometers: from gas discharge to laser pumping,” Laser Phys. 6, 244-251 (1996).

Andreeva, C.

C. Andreeva, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, T. Karaulanov, C. Marinelli, E. Mariotti, and L. Moi, “Two-color coherent population trapping in a single Cs hyperfine transition, with application in magnetometry,” Appl. Phys. B 76, 667-675 (2003).
[CrossRef]

Audoin, C.

J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards, AdamHilger, ed. (Bristol, 1989), Chap. 3, p. 410.

Balabas, M. V.

M. T. Graf, D. F. Kimball, S. M. Rochester, K. Kerner, C. Wong, D. Budker, E. B. Alexandrov, M. V. Balabas, and V. V. Yashchuk, “Relaxation of atomic polarization in paraffin-coated cesium vapor cells,” Phys. Rev. A 72, 023401 (2005).
[CrossRef]

E. B. Alexandrov, M. V. Balabas, A. S. Pasgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-resonance atomic magnetometers: from gas discharge to laser pumping,” Laser Phys. 6, 244-251 (1996).

Belfi, J.

Bell, W.

W. Bell and A. L. Bloom, “Optical detection of magnetic resonance in alkali metal vapor,” Phys. Rev. 107, 1559-1565 (1957).
[CrossRef]

Beverini, N.

N. Beverini, P. Violino, and F. Strumia, “Optical pumping of cesium in the presence of heavy noble gases,” Z. Physiother. 265, 189-196 (1973).

Bevilacqua, G.

Biancalana, V.

Bloom, A. L.

A. L. Bloom, “Principles of operation of the rubidium vapor magnetometer,” Appl. Opt. 1, 61-68 (1962).
[CrossRef]

W. Bell and A. L. Bloom, “Optical detection of magnetic resonance in alkali metal vapor,” Phys. Rev. 107, 1559-1565 (1957).
[CrossRef]

Budker, D.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
[CrossRef] [PubMed]

M. V. Romalis and D. Budker, “Optical magnetometry,” Nat. Phys. 3, 227-234 (2007).
[CrossRef]

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A 73, 053404 (2006).
[CrossRef]

Sh. Xu, V. V. Yashchuk, M. H. Donaldson, S. M. Rochester, and D. Budker, “Magnetic resonance imaging with an optical atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 103, 12668-12671 (2006).
[CrossRef] [PubMed]

J. S. Guzman, A. Wojciechowski, J. E. Stalnaker, K. Tsigutkin, V. V. Yashchuk, and D. Budker, “Nonlinear magneto-optical rotation, Zeeman and hyperfine relaxation of potassium atoms in a paraffin-coated cell,” Phys. Rev. A 74, 053415 (2006).
[CrossRef]

J. M. Higbie, E. Corsini, and D. Budker, “Robust, high-speed, all-optical atomic magnetometer,” Rev. Sci. Instrum. 77, 113106 (2006).
[CrossRef]

M. T. Graf, D. F. Kimball, S. M. Rochester, K. Kerner, C. Wong, D. Budker, E. B. Alexandrov, M. V. Balabas, and V. V. Yashchuk, “Relaxation of atomic polarization in paraffin-coated cesium vapor cells,” Phys. Rev. A 72, 023401 (2005).
[CrossRef]

D. Budker, V. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153-1201 (2002).
[CrossRef]

Cartaleva, S.

J. Belfi, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, and L. Moi, “Cesium coherent population trapping magnetometer for cardio signal detection in an unshielded environment,” J. Opt. Soc. Am. B 24, 2357-2362 (2007).
[CrossRef]

C. Andreeva, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, T. Karaulanov, C. Marinelli, E. Mariotti, and L. Moi, “Two-color coherent population trapping in a single Cs hyperfine transition, with application in magnetometry,” Appl. Phys. B 76, 667-675 (2003).
[CrossRef]

Cohen-Tannoudji, C.

J. Dupont-Roc, S. Haroche, and C. Cohen-Tannoudji, “Detection of very weak magnetic fields (10−9 gauss) by Rb87 zero-field level crossing resonances,” Phys. Lett. 28A, 638-639 (1969).
[CrossRef]

C. Cohen-Tannoudji, J. Dupont-Roc, S. Haroche, and F. Laloe, “Detection of the static magnetic field produced by the oriented nuclei of optically pumped 3He gas,” Phys. Rev. Lett. 22, 758-760 (1969).
[CrossRef]

Corsini, E.

J. M. Higbie, E. Corsini, and D. Budker, “Robust, high-speed, all-optical atomic magnetometer,” Rev. Sci. Instrum. 77, 113106 (2006).
[CrossRef]

Dancheva, Y.

Dehmelt, H. G.

H. G. Dehmelt, “Modulation of a light beam by precessing atoms,” Phys. Rev. 105, 1924-1925 (1957).
[CrossRef]

Donaldson, M. H.

Sh. Xu, V. V. Yashchuk, M. H. Donaldson, S. M. Rochester, and D. Budker, “Magnetic resonance imaging with an optical atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 103, 12668-12671 (2006).
[CrossRef] [PubMed]

Dupont-Roc, J.

C. Cohen-Tannoudji, J. Dupont-Roc, S. Haroche, and F. Laloe, “Detection of the static magnetic field produced by the oriented nuclei of optically pumped 3He gas,” Phys. Rev. Lett. 22, 758-760 (1969).
[CrossRef]

J. Dupont-Roc, S. Haroche, and C. Cohen-Tannoudji, “Detection of very weak magnetic fields (10−9 gauss) by Rb87 zero-field level crossing resonances,” Phys. Lett. 28A, 638-639 (1969).
[CrossRef]

Gawlik, V.

D. Budker, V. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153-1201 (2002).
[CrossRef]

Gawlik, W.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A 73, 053404 (2006).
[CrossRef]

Graf, M. T.

M. T. Graf, D. F. Kimball, S. M. Rochester, K. Kerner, C. Wong, D. Budker, E. B. Alexandrov, M. V. Balabas, and V. V. Yashchuk, “Relaxation of atomic polarization in paraffin-coated cesium vapor cells,” Phys. Rev. A 72, 023401 (2005).
[CrossRef]

Guzman, J. S.

J. S. Guzman, A. Wojciechowski, J. E. Stalnaker, K. Tsigutkin, V. V. Yashchuk, and D. Budker, “Nonlinear magneto-optical rotation, Zeeman and hyperfine relaxation of potassium atoms in a paraffin-coated cell,” Phys. Rev. A 74, 053415 (2006).
[CrossRef]

Haroche, S.

J. Dupont-Roc, S. Haroche, and C. Cohen-Tannoudji, “Detection of very weak magnetic fields (10−9 gauss) by Rb87 zero-field level crossing resonances,” Phys. Lett. 28A, 638-639 (1969).
[CrossRef]

C. Cohen-Tannoudji, J. Dupont-Roc, S. Haroche, and F. Laloe, “Detection of the static magnetic field produced by the oriented nuclei of optically pumped 3He gas,” Phys. Rev. Lett. 22, 758-760 (1969).
[CrossRef]

Higbie, J. M.

J. M. Higbie, E. Corsini, and D. Budker, “Robust, high-speed, all-optical atomic magnetometer,” Rev. Sci. Instrum. 77, 113106 (2006).
[CrossRef]

Hollberg, L.

P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76, 126103 (2005).
[CrossRef]

Hovde, D. C.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A 73, 053404 (2006).
[CrossRef]

Karaulanov, T.

C. Andreeva, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, T. Karaulanov, C. Marinelli, E. Mariotti, and L. Moi, “Two-color coherent population trapping in a single Cs hyperfine transition, with application in magnetometry,” Appl. Phys. B 76, 667-675 (2003).
[CrossRef]

Kerner, K.

M. T. Graf, D. F. Kimball, S. M. Rochester, K. Kerner, C. Wong, D. Budker, E. B. Alexandrov, M. V. Balabas, and V. V. Yashchuk, “Relaxation of atomic polarization in paraffin-coated cesium vapor cells,” Phys. Rev. A 72, 023401 (2005).
[CrossRef]

Kimball, D. F.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A 73, 053404 (2006).
[CrossRef]

M. T. Graf, D. F. Kimball, S. M. Rochester, K. Kerner, C. Wong, D. Budker, E. B. Alexandrov, M. V. Balabas, and V. V. Yashchuk, “Relaxation of atomic polarization in paraffin-coated cesium vapor cells,” Phys. Rev. A 72, 023401 (2005).
[CrossRef]

D. Budker, V. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153-1201 (2002).
[CrossRef]

Kitching, J.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
[CrossRef] [PubMed]

P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76, 126103 (2005).
[CrossRef]

Knappe, S.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
[CrossRef] [PubMed]

Laloe, F.

C. Cohen-Tannoudji, J. Dupont-Roc, S. Haroche, and F. Laloe, “Detection of the static magnetic field produced by the oriented nuclei of optically pumped 3He gas,” Phys. Rev. Lett. 22, 758-760 (1969).
[CrossRef]

Ledbetter, M. P.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
[CrossRef] [PubMed]

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A 73, 053404 (2006).
[CrossRef]

Lee, S. K.

I. M. Savukov, S. K. Lee, and M. V. Romalis, “Optical detection of liquid state NMR,” Nature 442, 1021-1024 (2006).
[CrossRef] [PubMed]

Marinelli, C.

C. Andreeva, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, T. Karaulanov, C. Marinelli, E. Mariotti, and L. Moi, “Two-color coherent population trapping in a single Cs hyperfine transition, with application in magnetometry,” Appl. Phys. B 76, 667-675 (2003).
[CrossRef]

Mariotti, E.

C. Andreeva, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, T. Karaulanov, C. Marinelli, E. Mariotti, and L. Moi, “Two-color coherent population trapping in a single Cs hyperfine transition, with application in magnetometry,” Appl. Phys. B 76, 667-675 (2003).
[CrossRef]

Michalak, D. J.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
[CrossRef] [PubMed]

Mlynek, J.

D. Suter and J. Mlynek, “Laser excitation and detection of magnetic resonance,” Adv. Magn. Opt. Reson. 16, 1-83 (1991).

Moi, L.

Nagel, A.

R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark state,” Appl. Phys. B 68, 1-25 (1999).
[CrossRef]

Pasgalev, A. S.

E. B. Alexandrov, M. V. Balabas, A. S. Pasgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-resonance atomic magnetometers: from gas discharge to laser pumping,” Laser Phys. 6, 244-251 (1996).

Pines, A.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
[CrossRef] [PubMed]

Pustelny, S.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A 73, 053404 (2006).
[CrossRef]

Rochester, S. M.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A 73, 053404 (2006).
[CrossRef]

Sh. Xu, V. V. Yashchuk, M. H. Donaldson, S. M. Rochester, and D. Budker, “Magnetic resonance imaging with an optical atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 103, 12668-12671 (2006).
[CrossRef] [PubMed]

M. T. Graf, D. F. Kimball, S. M. Rochester, K. Kerner, C. Wong, D. Budker, E. B. Alexandrov, M. V. Balabas, and V. V. Yashchuk, “Relaxation of atomic polarization in paraffin-coated cesium vapor cells,” Phys. Rev. A 72, 023401 (2005).
[CrossRef]

D. Budker, V. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153-1201 (2002).
[CrossRef]

Romalis, M. V.

M. V. Romalis and D. Budker, “Optical magnetometry,” Nat. Phys. 3, 227-234 (2007).
[CrossRef]

I. M. Savukov, S. J. Seltzer, and M. V. Romalis, “Detection of NMR signals with a radio-frequency atomic magnetometer,” J. Magn. Reson. 185, 214-220 (2007).
[CrossRef] [PubMed]

I. M. Savukov, S. K. Lee, and M. V. Romalis, “Optical detection of liquid state NMR,” Nature 442, 1021-1024 (2006).
[CrossRef] [PubMed]

I. M. Savukov and M. V. Romalis, “NMR detection with an atomic magnetometer,” Phys. Rev. Lett. 94, 123001 (2005).
[CrossRef] [PubMed]

Savukov, I. M.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
[CrossRef] [PubMed]

I. M. Savukov, S. J. Seltzer, and M. V. Romalis, “Detection of NMR signals with a radio-frequency atomic magnetometer,” J. Magn. Reson. 185, 214-220 (2007).
[CrossRef] [PubMed]

I. M. Savukov, S. K. Lee, and M. V. Romalis, “Optical detection of liquid state NMR,” Nature 442, 1021-1024 (2006).
[CrossRef] [PubMed]

I. M. Savukov and M. V. Romalis, “NMR detection with an atomic magnetometer,” Phys. Rev. Lett. 94, 123001 (2005).
[CrossRef] [PubMed]

Schwindt, P. D. D.

P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76, 126103 (2005).
[CrossRef]

Seltzer, S. J.

I. M. Savukov, S. J. Seltzer, and M. V. Romalis, “Detection of NMR signals with a radio-frequency atomic magnetometer,” J. Magn. Reson. 185, 214-220 (2007).
[CrossRef] [PubMed]

Shah, V.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
[CrossRef] [PubMed]

Stalnaker, J. E.

J. S. Guzman, A. Wojciechowski, J. E. Stalnaker, K. Tsigutkin, V. V. Yashchuk, and D. Budker, “Nonlinear magneto-optical rotation, Zeeman and hyperfine relaxation of potassium atoms in a paraffin-coated cell,” Phys. Rev. A 74, 053415 (2006).
[CrossRef]

Strumia, F.

N. Beverini, P. Violino, and F. Strumia, “Optical pumping of cesium in the presence of heavy noble gases,” Z. Physiother. 265, 189-196 (1973).

Suter, D.

D. Suter and J. Mlynek, “Laser excitation and detection of magnetic resonance,” Adv. Magn. Opt. Reson. 16, 1-83 (1991).

Tsigutkin, K.

J. S. Guzman, A. Wojciechowski, J. E. Stalnaker, K. Tsigutkin, V. V. Yashchuk, and D. Budker, “Nonlinear magneto-optical rotation, Zeeman and hyperfine relaxation of potassium atoms in a paraffin-coated cell,” Phys. Rev. A 74, 053415 (2006).
[CrossRef]

Vanier, J.

J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards, AdamHilger, ed. (Bristol, 1989), Chap. 3, p. 410.

Vershovskii, A. K.

E. B. Alexandrov, M. V. Balabas, A. S. Pasgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-resonance atomic magnetometers: from gas discharge to laser pumping,” Laser Phys. 6, 244-251 (1996).

Violino, P.

N. Beverini, P. Violino, and F. Strumia, “Optical pumping of cesium in the presence of heavy noble gases,” Z. Physiother. 265, 189-196 (1973).

Weis, A.

D. Budker, V. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153-1201 (2002).
[CrossRef]

Wojciechowski, A.

J. S. Guzman, A. Wojciechowski, J. E. Stalnaker, K. Tsigutkin, V. V. Yashchuk, and D. Budker, “Nonlinear magneto-optical rotation, Zeeman and hyperfine relaxation of potassium atoms in a paraffin-coated cell,” Phys. Rev. A 74, 053415 (2006).
[CrossRef]

Wong, C.

M. T. Graf, D. F. Kimball, S. M. Rochester, K. Kerner, C. Wong, D. Budker, E. B. Alexandrov, M. V. Balabas, and V. V. Yashchuk, “Relaxation of atomic polarization in paraffin-coated cesium vapor cells,” Phys. Rev. A 72, 023401 (2005).
[CrossRef]

Wynands, R.

R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark state,” Appl. Phys. B 68, 1-25 (1999).
[CrossRef]

Xu, S.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
[CrossRef] [PubMed]

Xu, Sh.

Sh. Xu, V. V. Yashchuk, M. H. Donaldson, S. M. Rochester, and D. Budker, “Magnetic resonance imaging with an optical atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 103, 12668-12671 (2006).
[CrossRef] [PubMed]

Yakobson, N. N.

E. B. Alexandrov, M. V. Balabas, A. S. Pasgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-resonance atomic magnetometers: from gas discharge to laser pumping,” Laser Phys. 6, 244-251 (1996).

Yashchuk, V. V.

Sh. Xu, V. V. Yashchuk, M. H. Donaldson, S. M. Rochester, and D. Budker, “Magnetic resonance imaging with an optical atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 103, 12668-12671 (2006).
[CrossRef] [PubMed]

J. S. Guzman, A. Wojciechowski, J. E. Stalnaker, K. Tsigutkin, V. V. Yashchuk, and D. Budker, “Nonlinear magneto-optical rotation, Zeeman and hyperfine relaxation of potassium atoms in a paraffin-coated cell,” Phys. Rev. A 74, 053415 (2006).
[CrossRef]

M. T. Graf, D. F. Kimball, S. M. Rochester, K. Kerner, C. Wong, D. Budker, E. B. Alexandrov, M. V. Balabas, and V. V. Yashchuk, “Relaxation of atomic polarization in paraffin-coated cesium vapor cells,” Phys. Rev. A 72, 023401 (2005).
[CrossRef]

D. Budker, V. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153-1201 (2002).
[CrossRef]

Zachorowski, J.

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A 73, 053404 (2006).
[CrossRef]

Adv. Magn. Opt. Reson.

D. Suter and J. Mlynek, “Laser excitation and detection of magnetic resonance,” Adv. Magn. Opt. Reson. 16, 1-83 (1991).

Appl. Opt.

Appl. Phys. B

R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark state,” Appl. Phys. B 68, 1-25 (1999).
[CrossRef]

C. Andreeva, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, T. Karaulanov, C. Marinelli, E. Mariotti, and L. Moi, “Two-color coherent population trapping in a single Cs hyperfine transition, with application in magnetometry,” Appl. Phys. B 76, 667-675 (2003).
[CrossRef]

J. Magn. Reson.

I. M. Savukov, S. J. Seltzer, and M. V. Romalis, “Detection of NMR signals with a radio-frequency atomic magnetometer,” J. Magn. Reson. 185, 214-220 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

Laser Phys.

E. B. Alexandrov, M. V. Balabas, A. S. Pasgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-resonance atomic magnetometers: from gas discharge to laser pumping,” Laser Phys. 6, 244-251 (1996).

Nat. Phys.

M. V. Romalis and D. Budker, “Optical magnetometry,” Nat. Phys. 3, 227-234 (2007).
[CrossRef]

Nature

I. M. Savukov, S. K. Lee, and M. V. Romalis, “Optical detection of liquid state NMR,” Nature 442, 1021-1024 (2006).
[CrossRef] [PubMed]

Phys. Lett.

J. Dupont-Roc, S. Haroche, and C. Cohen-Tannoudji, “Detection of very weak magnetic fields (10−9 gauss) by Rb87 zero-field level crossing resonances,” Phys. Lett. 28A, 638-639 (1969).
[CrossRef]

Phys. Rev.

H. G. Dehmelt, “Modulation of a light beam by precessing atoms,” Phys. Rev. 105, 1924-1925 (1957).
[CrossRef]

W. Bell and A. L. Bloom, “Optical detection of magnetic resonance in alkali metal vapor,” Phys. Rev. 107, 1559-1565 (1957).
[CrossRef]

Phys. Rev. A

V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, “Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range,” Phys. Rev. A 73, 053404 (2006).
[CrossRef]

M. T. Graf, D. F. Kimball, S. M. Rochester, K. Kerner, C. Wong, D. Budker, E. B. Alexandrov, M. V. Balabas, and V. V. Yashchuk, “Relaxation of atomic polarization in paraffin-coated cesium vapor cells,” Phys. Rev. A 72, 023401 (2005).
[CrossRef]

J. S. Guzman, A. Wojciechowski, J. E. Stalnaker, K. Tsigutkin, V. V. Yashchuk, and D. Budker, “Nonlinear magneto-optical rotation, Zeeman and hyperfine relaxation of potassium atoms in a paraffin-coated cell,” Phys. Rev. A 74, 053415 (2006).
[CrossRef]

Phys. Rev. Lett.

C. Cohen-Tannoudji, J. Dupont-Roc, S. Haroche, and F. Laloe, “Detection of the static magnetic field produced by the oriented nuclei of optically pumped 3He gas,” Phys. Rev. Lett. 22, 758-760 (1969).
[CrossRef]

I. M. Savukov and M. V. Romalis, “NMR detection with an atomic magnetometer,” Phys. Rev. Lett. 94, 123001 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

Sh. Xu, V. V. Yashchuk, M. H. Donaldson, S. M. Rochester, and D. Budker, “Magnetic resonance imaging with an optical atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 103, 12668-12671 (2006).
[CrossRef] [PubMed]

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105, 2286-2290 (2008).
[CrossRef] [PubMed]

Rev. Mod. Phys.

D. Budker, V. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153-1201 (2002).
[CrossRef]

Rev. Sci. Instrum.

J. M. Higbie, E. Corsini, and D. Budker, “Robust, high-speed, all-optical atomic magnetometer,” Rev. Sci. Instrum. 77, 113106 (2006).
[CrossRef]

P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76, 126103 (2005).
[CrossRef]

Z. Physiother.

N. Beverini, P. Violino, and F. Strumia, “Optical pumping of cesium in the presence of heavy noble gases,” Z. Physiother. 265, 189-196 (1973).

Other

We use OSD15-5T (Centronic) photodiodes with a sensitivity of 0.45 A/W and 5 nA dark current. Each photo current is amplified using an OP484 chip (Analog devices), which contains four low-noise operational amplifiers (OAs). One OA is configured as a transimpedance amplifier with a feedback impedance made by a 68 kΩ resistor in parallel with a 47 pF capacitor. Another OA is used as a dc voltage amplifier while the two remaining OAs are used as cascaded bandpass amplifiers (each one has an ac coupled input and an RC parallel in its feedback with cutoff frequencies set at 10 and 40 kHz, respectively).

J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards, AdamHilger, ed. (Bristol, 1989), Chap. 3, p. 410.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the experimental setup. PMOF, polarization maintaining optical fiber; PBS, polarizing beam splitter; IBS, intensity beam splitter; M, mirror; CL, collimating lens; λ 4 , quarter-wave plate.

Fig. 2
Fig. 2

Instantaneous optical frequency of the pump laser with respect to the absorption profile of the Cs D 2 line. The distortion of the square wave that modulates the pump laser frequency is inferred by direct measurement of the driving current.

Fig. 3
Fig. 3

Signal of one channel at the output of the instrumentation amplifier. The upper plot shows the signal versus time (trace a) and the residual (signal minus its fundamental tone at ν L ) amplified by a factor of 10 (trace b). In the lower plot the power spectrum of the signal (trace c) shows a 60 dB contrast of the peak at ν L with respect to the background noise. Trace d shows details of the noise contributions. This is the power spectrum of an average of 128 traces, registered with no probe beam. Reduction of the white noise, due to averaging, makes it possible to distinguish peaks at the pump frequency and at its harmonics. It is worth noting that the harmonics at ν L is almost 50 dB below the peak at the fundamental tone of trace c.

Fig. 4
Fig. 4

Resonance in the rotation-angle amplitude registered at the output of the lock-in amplifier. The output of the instrumentation amplifier is fed into the lock-in input, whose reference signal is extracted from a pulse generator that modulates the pump laser frequency. The resonance linewidth is consistent with the quality factor inferred from the exponential decay of the amplitude after a single pump pulse (in the inset).

Fig. 5
Fig. 5

Noise pattern in the open-loop self-oscillating differential arrangement, with no pump laser, and the electronic noise.

Fig. 6
Fig. 6

Front and top views of the arrangement of the dual sensor and of the water bulb. The gray cylinders represent the Cs cells. Bulk water magnetization is measured when the bulb (dotted cube) is placed above the cell. The dashed cube represents the position of the bulb for detection of free induction decay.

Fig. 7
Fig. 7

Magnetic field variation in the z direction due to water magnetization. The signal shown is the result of an average of 387 pulses.

Fig. 8
Fig. 8

Magnetic field due to water flowing in the detection region (circles) and following a π pulse (squares). These data are recorded with a time constant of 10 ms and a 24 dB /oct output filter. The π pulse is applied using x direction compensating coils.

Fig. 9
Fig. 9

Power spectrum of the magnetic field demodulated with the atomic Larmor frequency. The peak at 163 Hz corresponds to the FID following the π 2 pulse applied with the x pair of compensating coils. The signal is acquired at 30 kS s and is an average of 43 pulses.

Metrics