Abstract

We present, for the first time to our knowledge, the fabrication and electro-optic (EO) tuning of single-crystalline organic microring resonators. In recent years, optical microring resonators have proven to be highly suitable building blocks for the realization of very large-scale integrated photonic circuits. In particular, microresonators based on organic materials are very promising for ultrafast EO applications, due to the electronic nature of the EO response preserving the modulation performances beyond 100GHz. In contrast to polymer waveguiding structures realized previously, our crystalline thin-film devices feature an excellent long-term stability of the chromophore orientation and superior photochemical stability, and they do not require high-field poling prior to operation. The introduced thin-film fabrication method significantly reduces fabrication complexity of organic crystalline EO waveguides, compared to previously developed techniques. We have fabricated crystalline COANP (2-cyclo-octylamino-5-nitropyridine) microring resonators with resonance contrast up to 10dB, ring waveguide propagation losses of about 10dBcm, a free spectral range of 1.6nm, a finesse of up to 20, and a corresponding Q-factor of about 20,000, measured in the telecom wavelength range around 1.55μm. We have demonstrated resonance wavelength tuning at the rate of 0.13GHzV (1.1pmV).

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325-327 (2005).
    [CrossRef] [PubMed]
  2. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430-436 (2007).
    [CrossRef] [PubMed]
  3. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
    [CrossRef]
  4. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401-1403 (2002).
    [CrossRef] [PubMed]
  5. B. M. A. Rahman, S. Haxha, V. Haxha, and K. T. V. Grattan, “Design optimization of high-speed optical modulators,” Proc. SPIE 6389, 63890X (2006).
    [CrossRef]
  6. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335-3337 (1997).
    [CrossRef]
  7. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119-122 (2000).
    [CrossRef]
  8. B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007).
    [CrossRef]
  9. J.-M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express 16, 4177-4191 (2008).
    [CrossRef] [PubMed]
  10. M. Gad, D. Yevick, and P. E. Jessop, “High-speed polymer/silicon on insulator ring resonator switch,” Opt. Eng. (Bellingham) 47, 094601 (2008).
    [CrossRef]
  11. D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinsek, and P. Günter, “Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials,” J. Chem. Phys. 128, 124713 (2008).
    [CrossRef] [PubMed]
  12. J. H. Wülbern, M. Schmidt, U. Hübner, R. Boucher, W. Volksen, Y. Lu, R. Zentel, and M. Eich, “Polymer based tuneable photonic crystals,” Phys. Status Solidi A 204, 3739-3753 (2007).
    [CrossRef]
  13. D. Rezzonico, M. Jazbinsek, A. Guarino, O.-P. Kwon, and P. Günter, “Electro-optic Charon polymeric microring modulators,” Opt. Express 16, 613-627 (2008).
    [CrossRef] [PubMed]
  14. H. Sun, A. Chen, B. C. Olbricht, J. A. Davies, P. A. Sullivan, Y. Liao, and L. R. Dalton, “Direct electron beam writing of electro-optic polymer microring resonators,” Opt. Express 16, 6592-6599 (2008).
    [CrossRef] [PubMed]
  15. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968-1975 (2002).
    [CrossRef]
  16. M. Balakrishnan, M. Faccini, M. B. J. Diemeer, E. J. Klein, G. Sengo, A. Driessen, W. Verboom, and D. N. Reinhoudt, “Microring resonator based modulator made by direct photodefinition of an electro-optic polymer,” Appl. Phys. Lett. 92, 153310 (2008).
    [CrossRef]
  17. P. Dittrich, R. Bartlome, G. Montemezzani, and P. Günter, “Femtosecond laser ablation of DAST,” Appl. Surf. Sci. 220, 88-95 (2003).
    [CrossRef]
  18. T. Kaino, B. Cai, and K. Takayama, “Fabrication of DAST channel optical waveguides,” Adv. Funct. Mater. 12, 599-603 (2002).
    [CrossRef]
  19. L. Mutter, M. Jazbinsek, M. Zgonik, U. Meier, C. Bosshard, and P. Günter, “Photobleaching and optical properties of organic crystal 4-N, N-dimethylamino-4′-N′-methyl stilbazolium tosylate,” J. Appl. Phys. 94, 1356-1361 (2003).
    [CrossRef]
  20. W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
    [CrossRef]
  21. L. Mutter, M. Jazbinšek, C. Herzog, and P. Günter, “Electro-optic and nonlinear optical properties of ion implanted waveguides in organic crystals,” Opt. Express 16, 731-739 (2008).
    [CrossRef] [PubMed]
  22. L. Mutter, M. Koechlin, M. Jazbinšek, and P. Günter, “Direct electron beam writing of channel waveguides in nonlinear optical organic crystals,” Opt. Express 15, 16828-16838 (2007).
    [CrossRef] [PubMed]
  23. C. Hunziker, S.-J. Kwon, H. Figi, M. Jazbinsek, and P. Günter, “Fabrication and phase modulation in organic single-crystalline configurationally locked, phenolic polyene OH1 waveguides,” Opt. Express 16, 15903-15914 (2008).
    [CrossRef] [PubMed]
  24. H. Figi, M. Jazbinšek, C. Hunziker, M. Koechlin, and P. Günter, “Electro-optic single-crystalline organic waveguides and nanowires grown from the melt,” Opt. Express 16, 11310-11327 (2008).
    [CrossRef] [PubMed]
  25. P. Günter, C. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, and D. Dobrowolski, “2-cyclooctylamino-5-nitropyridine, a new nonlinear optical crystal with orthorhombic symmetry,” Appl. Phys. Lett. 50, 486-488 (1987).
    [CrossRef]
  26. C. Bosshard, K. Sutter, and P. Günter, “Linear- and nonlinear-optical properties of 2-cyclooctylamino-5-nitropyridine,” J. Opt. Soc. Am. B 6, 721-725 (1989).
    [CrossRef]
  27. A. Leyderman, Y. Cui, and B. G. Penn, “Electro-optical effects in thin single-crystalline organic films grown from the melt,” J. Phys. D 31, 2711-2717 (1998).
    [CrossRef]
  28. C. Bosshard, K. Sutter, R. Schlesser, and P. Günter, “Electro-optic effects in molecular crystals,” J. Opt. Soc. Am. B 10, 867-885 (1993).
    [CrossRef]
  29. A. Leyderman, M. Espinosa, T. V. Timofeeva, R. D. Clark, D. O. Frazier, and B. G. Penn, “Growth and characterization of crystalline films of meta-nitroaniline (mNA) and 2-cyclo-octylamino-5-nitropyrydine (COANP),” Proc. SPIE 2809, 144-154 (1996).
    [CrossRef]
  30. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321-322 (2000).
    [CrossRef]
  31. C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, 1995).
  32. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407-410 (2007).
    [CrossRef]
  33. SCHOTT AG, “Dielektrische konstante,” (2009). Available at http://www.schott.com.
  34. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16, 4309-4315 (2008).
    [CrossRef] [PubMed]
  35. H. Figi, L. Mutter, C. Hunziker, M. Jazbinšek, P. Günter, and B. J. Coe, “Extremely large nonresonant second-order nonlinear optical response in crystals of the stilbazolium salt DAPSH,” J. Opt. Soc. Am. B 25, 1786-1793 (2008).
    [CrossRef]

2008 (11)

M. Gad, D. Yevick, and P. E. Jessop, “High-speed polymer/silicon on insulator ring resonator switch,” Opt. Eng. (Bellingham) 47, 094601 (2008).
[CrossRef]

D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinsek, and P. Günter, “Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials,” J. Chem. Phys. 128, 124713 (2008).
[CrossRef] [PubMed]

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, E. J. Klein, G. Sengo, A. Driessen, W. Verboom, and D. N. Reinhoudt, “Microring resonator based modulator made by direct photodefinition of an electro-optic polymer,” Appl. Phys. Lett. 92, 153310 (2008).
[CrossRef]

D. Rezzonico, M. Jazbinsek, A. Guarino, O.-P. Kwon, and P. Günter, “Electro-optic Charon polymeric microring modulators,” Opt. Express 16, 613-627 (2008).
[CrossRef] [PubMed]

L. Mutter, M. Jazbinšek, C. Herzog, and P. Günter, “Electro-optic and nonlinear optical properties of ion implanted waveguides in organic crystals,” Opt. Express 16, 731-739 (2008).
[CrossRef] [PubMed]

J.-M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express 16, 4177-4191 (2008).
[CrossRef] [PubMed]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16, 4309-4315 (2008).
[CrossRef] [PubMed]

H. Sun, A. Chen, B. C. Olbricht, J. A. Davies, P. A. Sullivan, Y. Liao, and L. R. Dalton, “Direct electron beam writing of electro-optic polymer microring resonators,” Opt. Express 16, 6592-6599 (2008).
[CrossRef] [PubMed]

H. Figi, M. Jazbinšek, C. Hunziker, M. Koechlin, and P. Günter, “Electro-optic single-crystalline organic waveguides and nanowires grown from the melt,” Opt. Express 16, 11310-11327 (2008).
[CrossRef] [PubMed]

C. Hunziker, S.-J. Kwon, H. Figi, M. Jazbinsek, and P. Günter, “Fabrication and phase modulation in organic single-crystalline configurationally locked, phenolic polyene OH1 waveguides,” Opt. Express 16, 15903-15914 (2008).
[CrossRef] [PubMed]

H. Figi, L. Mutter, C. Hunziker, M. Jazbinšek, P. Günter, and B. J. Coe, “Extremely large nonresonant second-order nonlinear optical response in crystals of the stilbazolium salt DAPSH,” J. Opt. Soc. Am. B 25, 1786-1793 (2008).
[CrossRef]

2007 (6)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407-410 (2007).
[CrossRef]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430-436 (2007).
[CrossRef] [PubMed]

L. Mutter, M. Koechlin, M. Jazbinšek, and P. Günter, “Direct electron beam writing of channel waveguides in nonlinear optical organic crystals,” Opt. Express 15, 16828-16838 (2007).
[CrossRef] [PubMed]

J. H. Wülbern, M. Schmidt, U. Hübner, R. Boucher, W. Volksen, Y. Lu, R. Zentel, and M. Eich, “Polymer based tuneable photonic crystals,” Phys. Status Solidi A 204, 3739-3753 (2007).
[CrossRef]

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007).
[CrossRef]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
[CrossRef]

2006 (1)

B. M. A. Rahman, S. Haxha, V. Haxha, and K. T. V. Grattan, “Design optimization of high-speed optical modulators,” Proc. SPIE 6389, 63890X (2006).
[CrossRef]

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

2004 (1)

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

2003 (2)

L. Mutter, M. Jazbinsek, M. Zgonik, U. Meier, C. Bosshard, and P. Günter, “Photobleaching and optical properties of organic crystal 4-N, N-dimethylamino-4′-N′-methyl stilbazolium tosylate,” J. Appl. Phys. 94, 1356-1361 (2003).
[CrossRef]

P. Dittrich, R. Bartlome, G. Montemezzani, and P. Günter, “Femtosecond laser ablation of DAST,” Appl. Surf. Sci. 220, 88-95 (2003).
[CrossRef]

2002 (3)

T. Kaino, B. Cai, and K. Takayama, “Fabrication of DAST channel optical waveguides,” Adv. Funct. Mater. 12, 599-603 (2002).
[CrossRef]

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968-1975 (2002).
[CrossRef]

2000 (2)

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119-122 (2000).
[CrossRef]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321-322 (2000).
[CrossRef]

1998 (1)

A. Leyderman, Y. Cui, and B. G. Penn, “Electro-optical effects in thin single-crystalline organic films grown from the melt,” J. Phys. D 31, 2711-2717 (1998).
[CrossRef]

1997 (1)

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335-3337 (1997).
[CrossRef]

1996 (1)

A. Leyderman, M. Espinosa, T. V. Timofeeva, R. D. Clark, D. O. Frazier, and B. G. Penn, “Growth and characterization of crystalline films of meta-nitroaniline (mNA) and 2-cyclo-octylamino-5-nitropyrydine (COANP),” Proc. SPIE 2809, 144-154 (1996).
[CrossRef]

1993 (1)

1989 (1)

1987 (1)

P. Günter, C. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, and D. Dobrowolski, “2-cyclooctylamino-5-nitropyridine, a new nonlinear optical crystal with orthorhombic symmetry,” Appl. Phys. Lett. 50, 486-488 (1987).
[CrossRef]

Andreani, L. C.

Arend, H.

P. Günter, C. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, and D. Dobrowolski, “2-cyclooctylamino-5-nitropyridine, a new nonlinear optical crystal with orthorhombic symmetry,” Appl. Phys. Lett. 50, 486-488 (1987).
[CrossRef]

Balakrishnan, M.

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, E. J. Klein, G. Sengo, A. Driessen, W. Verboom, and D. N. Reinhoudt, “Microring resonator based modulator made by direct photodefinition of an electro-optic polymer,” Appl. Phys. Lett. 92, 153310 (2008).
[CrossRef]

Bartlome, R.

P. Dittrich, R. Bartlome, G. Montemezzani, and P. Günter, “Femtosecond laser ablation of DAST,” Appl. Surf. Sci. 220, 88-95 (2003).
[CrossRef]

Basak, J.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
[CrossRef]

Beausoleil, R. G.

Bechtel, J. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119-122 (2000).
[CrossRef]

Bortnik, B.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007).
[CrossRef]

Bosshard, C.

L. Mutter, M. Jazbinsek, M. Zgonik, U. Meier, C. Bosshard, and P. Günter, “Photobleaching and optical properties of organic crystal 4-N, N-dimethylamino-4′-N′-methyl stilbazolium tosylate,” J. Appl. Phys. 94, 1356-1361 (2003).
[CrossRef]

C. Bosshard, K. Sutter, R. Schlesser, and P. Günter, “Electro-optic effects in molecular crystals,” J. Opt. Soc. Am. B 10, 867-885 (1993).
[CrossRef]

C. Bosshard, K. Sutter, and P. Günter, “Linear- and nonlinear-optical properties of 2-cyclooctylamino-5-nitropyridine,” J. Opt. Soc. Am. B 6, 721-725 (1989).
[CrossRef]

P. Günter, C. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, and D. Dobrowolski, “2-cyclooctylamino-5-nitropyridine, a new nonlinear optical crystal with orthorhombic symmetry,” Appl. Phys. Lett. 50, 486-488 (1987).
[CrossRef]

C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, 1995).

Boucher, R.

J. H. Wülbern, M. Schmidt, U. Hübner, R. Boucher, W. Volksen, Y. Lu, R. Zentel, and M. Eich, “Polymer based tuneable photonic crystals,” Phys. Status Solidi A 204, 3739-3753 (2007).
[CrossRef]

Brosi, J.-M.

Cai, B.

T. Kaino, B. Cai, and K. Takayama, “Fabrication of DAST channel optical waveguides,” Adv. Funct. Mater. 12, 599-603 (2002).
[CrossRef]

Calawa, D. R.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Chapuis, G.

P. Günter, C. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, and D. Dobrowolski, “2-cyclooctylamino-5-nitropyridine, a new nonlinear optical crystal with orthorhombic symmetry,” Appl. Phys. Lett. 50, 486-488 (1987).
[CrossRef]

Chen, A.

H. Sun, A. Chen, B. C. Olbricht, J. A. Davies, P. A. Sullivan, Y. Liao, and L. R. Dalton, “Direct electron beam writing of electro-optic polymer microring resonators,” Opt. Express 16, 6592-6599 (2008).
[CrossRef] [PubMed]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335-3337 (1997).
[CrossRef]

Chen, D.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335-3337 (1997).
[CrossRef]

Chetrit, Y.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
[CrossRef]

Clark, R. D.

A. Leyderman, M. Espinosa, T. V. Timofeeva, R. D. Clark, D. O. Frazier, and B. G. Penn, “Growth and characterization of crystalline films of meta-nitroaniline (mNA) and 2-cyclo-octylamino-5-nitropyrydine (COANP),” Proc. SPIE 2809, 144-154 (1996).
[CrossRef]

Coe, B. J.

Cohen, R.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
[CrossRef]

Cui, Y.

A. Leyderman, Y. Cui, and B. G. Penn, “Electro-optical effects in thin single-crystalline organic films grown from the melt,” J. Phys. D 31, 2711-2717 (1998).
[CrossRef]

Dalton, L. R.

H. Sun, A. Chen, B. C. Olbricht, J. A. Davies, P. A. Sullivan, Y. Liao, and L. R. Dalton, “Direct electron beam writing of electro-optic polymer microring resonators,” Opt. Express 16, 6592-6599 (2008).
[CrossRef] [PubMed]

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968-1975 (2002).
[CrossRef]

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119-122 (2000).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335-3337 (1997).
[CrossRef]

Davies, J. A.

Degl'Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407-410 (2007).
[CrossRef]

Deneault, S. J.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Diemeer, M. B. J.

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, E. J. Klein, G. Sengo, A. Driessen, W. Verboom, and D. N. Reinhoudt, “Microring resonator based modulator made by direct photodefinition of an electro-optic polymer,” Appl. Phys. Lett. 92, 153310 (2008).
[CrossRef]

Dittrich, P.

P. Dittrich, R. Bartlome, G. Montemezzani, and P. Günter, “Femtosecond laser ablation of DAST,” Appl. Surf. Sci. 220, 88-95 (2003).
[CrossRef]

Dobrowolski, D.

P. Günter, C. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, and D. Dobrowolski, “2-cyclooctylamino-5-nitropyridine, a new nonlinear optical crystal with orthorhombic symmetry,” Appl. Phys. Lett. 50, 486-488 (1987).
[CrossRef]

Driessen, A.

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, E. J. Klein, G. Sengo, A. Driessen, W. Verboom, and D. N. Reinhoudt, “Microring resonator based modulator made by direct photodefinition of an electro-optic polymer,” Appl. Phys. Lett. 92, 153310 (2008).
[CrossRef]

Eich, M.

J. H. Wülbern, M. Schmidt, U. Hübner, R. Boucher, W. Volksen, Y. Lu, R. Zentel, and M. Eich, “Polymer based tuneable photonic crystals,” Phys. Status Solidi A 204, 3739-3753 (2007).
[CrossRef]

Erben, C.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Espinosa, M.

A. Leyderman, M. Espinosa, T. V. Timofeeva, R. D. Clark, D. O. Frazier, and B. G. Penn, “Growth and characterization of crystalline films of meta-nitroaniline (mNA) and 2-cyclo-octylamino-5-nitropyrydine (COANP),” Proc. SPIE 2809, 144-154 (1996).
[CrossRef]

Faccini, M.

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, E. J. Klein, G. Sengo, A. Driessen, W. Verboom, and D. N. Reinhoudt, “Microring resonator based modulator made by direct photodefinition of an electro-optic polymer,” Appl. Phys. Lett. 92, 153310 (2008).
[CrossRef]

Fattal, D.

Fetterman, H. R.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335-3337 (1997).
[CrossRef]

Figi, H.

Flörsheimer, M.

C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, 1995).

Frazier, D. O.

A. Leyderman, M. Espinosa, T. V. Timofeeva, R. D. Clark, D. O. Frazier, and B. G. Penn, “Growth and characterization of crystalline films of meta-nitroaniline (mNA) and 2-cyclo-octylamino-5-nitropyrydine (COANP),” Proc. SPIE 2809, 144-154 (1996).
[CrossRef]

Freude, W.

Gad, M.

M. Gad, D. Yevick, and P. E. Jessop, “High-speed polymer/silicon on insulator ring resonator switch,” Opt. Eng. (Bellingham) 47, 094601 (2008).
[CrossRef]

Geis, W.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Gill, D. M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Gopalan, P.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Grattan, K. T. V.

B. M. A. Rahman, S. Haxha, V. Haxha, and K. T. V. Grattan, “Design optimization of high-speed optical modulators,” Proc. SPIE 6389, 63890X (2006).
[CrossRef]

Guarino, A.

D. Rezzonico, M. Jazbinsek, A. Guarino, O.-P. Kwon, and P. Günter, “Electro-optic Charon polymeric microring modulators,” Opt. Express 16, 613-627 (2008).
[CrossRef] [PubMed]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407-410 (2007).
[CrossRef]

Günter, P.

C. Hunziker, S.-J. Kwon, H. Figi, M. Jazbinsek, and P. Günter, “Fabrication and phase modulation in organic single-crystalline configurationally locked, phenolic polyene OH1 waveguides,” Opt. Express 16, 15903-15914 (2008).
[CrossRef] [PubMed]

L. Mutter, M. Jazbinšek, C. Herzog, and P. Günter, “Electro-optic and nonlinear optical properties of ion implanted waveguides in organic crystals,” Opt. Express 16, 731-739 (2008).
[CrossRef] [PubMed]

D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinsek, and P. Günter, “Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials,” J. Chem. Phys. 128, 124713 (2008).
[CrossRef] [PubMed]

D. Rezzonico, M. Jazbinsek, A. Guarino, O.-P. Kwon, and P. Günter, “Electro-optic Charon polymeric microring modulators,” Opt. Express 16, 613-627 (2008).
[CrossRef] [PubMed]

H. Figi, M. Jazbinšek, C. Hunziker, M. Koechlin, and P. Günter, “Electro-optic single-crystalline organic waveguides and nanowires grown from the melt,” Opt. Express 16, 11310-11327 (2008).
[CrossRef] [PubMed]

H. Figi, L. Mutter, C. Hunziker, M. Jazbinšek, P. Günter, and B. J. Coe, “Extremely large nonresonant second-order nonlinear optical response in crystals of the stilbazolium salt DAPSH,” J. Opt. Soc. Am. B 25, 1786-1793 (2008).
[CrossRef]

L. Mutter, M. Koechlin, M. Jazbinšek, and P. Günter, “Direct electron beam writing of channel waveguides in nonlinear optical organic crystals,” Opt. Express 15, 16828-16838 (2007).
[CrossRef] [PubMed]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407-410 (2007).
[CrossRef]

L. Mutter, M. Jazbinsek, M. Zgonik, U. Meier, C. Bosshard, and P. Günter, “Photobleaching and optical properties of organic crystal 4-N, N-dimethylamino-4′-N′-methyl stilbazolium tosylate,” J. Appl. Phys. 94, 1356-1361 (2003).
[CrossRef]

P. Dittrich, R. Bartlome, G. Montemezzani, and P. Günter, “Femtosecond laser ablation of DAST,” Appl. Surf. Sci. 220, 88-95 (2003).
[CrossRef]

C. Bosshard, K. Sutter, R. Schlesser, and P. Günter, “Electro-optic effects in molecular crystals,” J. Opt. Soc. Am. B 10, 867-885 (1993).
[CrossRef]

C. Bosshard, K. Sutter, and P. Günter, “Linear- and nonlinear-optical properties of 2-cyclooctylamino-5-nitropyridine,” J. Opt. Soc. Am. B 6, 721-725 (1989).
[CrossRef]

P. Günter, C. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, and D. Dobrowolski, “2-cyclooctylamino-5-nitropyridine, a new nonlinear optical crystal with orthorhombic symmetry,” Appl. Phys. Lett. 50, 486-488 (1987).
[CrossRef]

C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, 1995).

Haxha, S.

B. M. A. Rahman, S. Haxha, V. Haxha, and K. T. V. Grattan, “Design optimization of high-speed optical modulators,” Proc. SPIE 6389, 63890X (2006).
[CrossRef]

Haxha, V.

B. M. A. Rahman, S. Haxha, V. Haxha, and K. T. V. Grattan, “Design optimization of high-speed optical modulators,” Proc. SPIE 6389, 63890X (2006).
[CrossRef]

Heber, J. D.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Herzog, C.

Hübner, U.

J. H. Wülbern, M. Schmidt, U. Hübner, R. Boucher, W. Volksen, Y. Lu, R. Zentel, and M. Eich, “Polymer based tuneable photonic crystals,” Phys. Status Solidi A 204, 3739-3753 (2007).
[CrossRef]

Hulliger, J.

C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, 1995).

Hung, Y.-C.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007).
[CrossRef]

Hunziker, C.

Izhaky, N.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
[CrossRef]

Jazbinsek, M.

D. Rezzonico, M. Jazbinsek, A. Guarino, O.-P. Kwon, and P. Günter, “Electro-optic Charon polymeric microring modulators,” Opt. Express 16, 613-627 (2008).
[CrossRef] [PubMed]

C. Hunziker, S.-J. Kwon, H. Figi, M. Jazbinsek, and P. Günter, “Fabrication and phase modulation in organic single-crystalline configurationally locked, phenolic polyene OH1 waveguides,” Opt. Express 16, 15903-15914 (2008).
[CrossRef] [PubMed]

D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinsek, and P. Günter, “Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials,” J. Chem. Phys. 128, 124713 (2008).
[CrossRef] [PubMed]

L. Mutter, M. Jazbinsek, M. Zgonik, U. Meier, C. Bosshard, and P. Günter, “Photobleaching and optical properties of organic crystal 4-N, N-dimethylamino-4′-N′-methyl stilbazolium tosylate,” J. Appl. Phys. 94, 1356-1361 (2003).
[CrossRef]

Jazbinšek, M.

Jen, A. K.-Y.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007).
[CrossRef]

Jessop, P. E.

M. Gad, D. Yevick, and P. E. Jessop, “High-speed polymer/silicon on insulator ring resonator switch,” Opt. Eng. (Bellingham) 47, 094601 (2008).
[CrossRef]

Kaatz, P.

C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, 1995).

Kaino, T.

T. Kaino, B. Cai, and K. Takayama, “Fabrication of DAST channel optical waveguides,” Adv. Funct. Mater. 12, 599-603 (2002).
[CrossRef]

Katz, H. E.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Klein, E. J.

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, E. J. Klein, G. Sengo, A. Driessen, W. Verboom, and D. N. Reinhoudt, “Microring resonator based modulator made by direct photodefinition of an electro-optic polymer,” Appl. Phys. Lett. 92, 153310 (2008).
[CrossRef]

Koechlin, M.

Koos, C.

Krohn, K. E.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Kwon, O.-P.

D. Rezzonico, M. Jazbinsek, A. Guarino, O.-P. Kwon, and P. Günter, “Electro-optic Charon polymeric microring modulators,” Opt. Express 16, 613-627 (2008).
[CrossRef] [PubMed]

D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinsek, and P. Günter, “Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials,” J. Chem. Phys. 128, 124713 (2008).
[CrossRef] [PubMed]

Kwon, S.-J.

D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinsek, and P. Günter, “Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials,” J. Chem. Phys. 128, 124713 (2008).
[CrossRef] [PubMed]

C. Hunziker, S.-J. Kwon, H. Figi, M. Jazbinsek, and P. Günter, “Fabrication and phase modulation in organic single-crystalline configurationally locked, phenolic polyene OH1 waveguides,” Opt. Express 16, 15903-15914 (2008).
[CrossRef] [PubMed]

Lee, M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Leuthold, J.

Leyderman, A.

A. Leyderman, Y. Cui, and B. G. Penn, “Electro-optical effects in thin single-crystalline organic films grown from the melt,” J. Phys. D 31, 2711-2717 (1998).
[CrossRef]

A. Leyderman, M. Espinosa, T. V. Timofeeva, R. D. Clark, D. O. Frazier, and B. G. Penn, “Growth and characterization of crystalline films of meta-nitroaniline (mNA) and 2-cyclo-octylamino-5-nitropyrydine (COANP),” Proc. SPIE 2809, 144-154 (1996).
[CrossRef]

Liao, L.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
[CrossRef]

Liao, Y.

Lipson, M.

Liu, A.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
[CrossRef]

Lu, Y.

J. H. Wülbern, M. Schmidt, U. Hübner, R. Boucher, W. Volksen, Y. Lu, R. Zentel, and M. Eich, “Polymer based tuneable photonic crystals,” Phys. Status Solidi A 204, 3739-3753 (2007).
[CrossRef]

Luo, J.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007).
[CrossRef]

Lyszczarz, T. M.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Manipatruni, S.

Marchant, M. F.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

McGee, D. J.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Meier, U.

L. Mutter, M. Jazbinsek, M. Zgonik, U. Meier, C. Bosshard, and P. Günter, “Photobleaching and optical properties of organic crystal 4-N, N-dimethylamino-4′-N′-methyl stilbazolium tosylate,” J. Appl. Phys. 94, 1356-1361 (2003).
[CrossRef]

Montemezzani, G.

P. Dittrich, R. Bartlome, G. Montemezzani, and P. Günter, “Femtosecond laser ablation of DAST,” Appl. Surf. Sci. 220, 88-95 (2003).
[CrossRef]

Mowers, W.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Mutter, L.

Nguyen, H.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
[CrossRef]

Olbricht, B. C.

Paniccia, M.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
[CrossRef]

Penn, B. G.

A. Leyderman, Y. Cui, and B. G. Penn, “Electro-optical effects in thin single-crystalline organic films grown from the melt,” J. Phys. D 31, 2711-2717 (1998).
[CrossRef]

A. Leyderman, M. Espinosa, T. V. Timofeeva, R. D. Clark, D. O. Frazier, and B. G. Penn, “Growth and characterization of crystalline films of meta-nitroaniline (mNA) and 2-cyclo-octylamino-5-nitropyrydine (COANP),” Proc. SPIE 2809, 144-154 (1996).
[CrossRef]

Poberaj, G.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407-410 (2007).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Prêtre, P.

C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, 1995).

Rabiei, P.

Rahman, B. M. A.

B. M. A. Rahman, S. Haxha, V. Haxha, and K. T. V. Grattan, “Design optimization of high-speed optical modulators,” Proc. SPIE 6389, 63890X (2006).
[CrossRef]

Reinhoudt, D. N.

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, E. J. Klein, G. Sengo, A. Driessen, W. Verboom, and D. N. Reinhoudt, “Microring resonator based modulator made by direct photodefinition of an electro-optic polymer,” Appl. Phys. Lett. 92, 153310 (2008).
[CrossRef]

Rezzonico, D.

D. Rezzonico, M. Jazbinsek, A. Guarino, O.-P. Kwon, and P. Günter, “Electro-optic Charon polymeric microring modulators,” Opt. Express 16, 613-627 (2008).
[CrossRef] [PubMed]

D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinsek, and P. Günter, “Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials,” J. Chem. Phys. 128, 124713 (2008).
[CrossRef] [PubMed]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407-410 (2007).
[CrossRef]

Robinson, B. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119-122 (2000).
[CrossRef]

Rubin, D.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
[CrossRef]

Schlesser, R.

Schmidt, B.

Schmidt, M.

J. H. Wülbern, M. Schmidt, U. Hübner, R. Boucher, W. Volksen, Y. Lu, R. Zentel, and M. Eich, “Polymer based tuneable photonic crystals,” Phys. Status Solidi A 204, 3739-3753 (2007).
[CrossRef]

Sengo, G.

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, E. J. Klein, G. Sengo, A. Driessen, W. Verboom, and D. N. Reinhoudt, “Microring resonator based modulator made by direct photodefinition of an electro-optic polymer,” Appl. Phys. Lett. 92, 153310 (2008).
[CrossRef]

Seo, B.-J.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007).
[CrossRef]

Shakya, J.

Shi, Y.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119-122 (2000).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335-3337 (1997).
[CrossRef]

Sinta, R.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Spector, S. J.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Steier, W. H.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007).
[CrossRef]

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968-1975 (2002).
[CrossRef]

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119-122 (2000).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335-3337 (1997).
[CrossRef]

Sullivan, P. A.

Sun, H.

Sutter, K.

C. Bosshard, K. Sutter, R. Schlesser, and P. Günter, “Electro-optic effects in molecular crystals,” J. Opt. Soc. Am. B 10, 867-885 (1993).
[CrossRef]

C. Bosshard, K. Sutter, and P. Günter, “Linear- and nonlinear-optical properties of 2-cyclooctylamino-5-nitropyridine,” J. Opt. Soc. Am. B 6, 721-725 (1989).
[CrossRef]

P. Günter, C. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, and D. Dobrowolski, “2-cyclooctylamino-5-nitropyridine, a new nonlinear optical crystal with orthorhombic symmetry,” Appl. Phys. Lett. 50, 486-488 (1987).
[CrossRef]

C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, 1995).

Takayama, K.

T. Kaino, B. Cai, and K. Takayama, “Fabrication of DAST channel optical waveguides,” Adv. Funct. Mater. 12, 599-603 (2002).
[CrossRef]

Tazawa, H.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007).
[CrossRef]

Timofeeva, T. V.

A. Leyderman, M. Espinosa, T. V. Timofeeva, R. D. Clark, D. O. Frazier, and B. G. Penn, “Growth and characterization of crystalline films of meta-nitroaniline (mNA) and 2-cyclo-octylamino-5-nitropyrydine (COANP),” Proc. SPIE 2809, 144-154 (1996).
[CrossRef]

Twieg, R. J.

P. Günter, C. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, and D. Dobrowolski, “2-cyclooctylamino-5-nitropyridine, a new nonlinear optical crystal with orthorhombic symmetry,” Appl. Phys. Lett. 50, 486-488 (1987).
[CrossRef]

Verboom, W.

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, E. J. Klein, G. Sengo, A. Driessen, W. Verboom, and D. N. Reinhoudt, “Microring resonator based modulator made by direct photodefinition of an electro-optic polymer,” Appl. Phys. Lett. 92, 153310 (2008).
[CrossRef]

Volksen, W.

J. H. Wülbern, M. Schmidt, U. Hübner, R. Boucher, W. Volksen, Y. Lu, R. Zentel, and M. Eich, “Polymer based tuneable photonic crystals,” Phys. Status Solidi A 204, 3739-3753 (2007).
[CrossRef]

Waldow, M.

Wang, W.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335-3337 (1997).
[CrossRef]

Wülbern, J. H.

J. H. Wülbern, M. Schmidt, U. Hübner, R. Boucher, W. Volksen, Y. Lu, R. Zentel, and M. Eich, “Polymer based tuneable photonic crystals,” Phys. Status Solidi A 204, 3739-3753 (2007).
[CrossRef]

Xu, Q.

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321-322 (2000).
[CrossRef]

Yevick, D.

M. Gad, D. Yevick, and P. E. Jessop, “High-speed polymer/silicon on insulator ring resonator switch,” Opt. Eng. (Bellingham) 47, 094601 (2008).
[CrossRef]

Zentel, R.

J. H. Wülbern, M. Schmidt, U. Hübner, R. Boucher, W. Volksen, Y. Lu, R. Zentel, and M. Eich, “Polymer based tuneable photonic crystals,” Phys. Status Solidi A 204, 3739-3753 (2007).
[CrossRef]

Zgonik, M.

L. Mutter, M. Jazbinsek, M. Zgonik, U. Meier, C. Bosshard, and P. Günter, “Photobleaching and optical properties of organic crystal 4-N, N-dimethylamino-4′-N′-methyl stilbazolium tosylate,” J. Appl. Phys. 94, 1356-1361 (2003).
[CrossRef]

Zhang, C.

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968-1975 (2002).
[CrossRef]

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119-122 (2000).
[CrossRef]

Zhang, H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119-122 (2000).
[CrossRef]

Adv. Funct. Mater. (1)

T. Kaino, B. Cai, and K. Takayama, “Fabrication of DAST channel optical waveguides,” Adv. Funct. Mater. 12, 599-603 (2002).
[CrossRef]

Appl. Phys. Lett. (4)

P. Günter, C. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, and D. Dobrowolski, “2-cyclooctylamino-5-nitropyridine, a new nonlinear optical crystal with orthorhombic symmetry,” Appl. Phys. Lett. 50, 486-488 (1987).
[CrossRef]

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335-3337 (1997).
[CrossRef]

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, E. J. Klein, G. Sengo, A. Driessen, W. Verboom, and D. N. Reinhoudt, “Microring resonator based modulator made by direct photodefinition of an electro-optic polymer,” Appl. Phys. Lett. 92, 153310 (2008).
[CrossRef]

Appl. Surf. Sci. (1)

P. Dittrich, R. Bartlome, G. Montemezzani, and P. Günter, “Femtosecond laser ablation of DAST,” Appl. Surf. Sci. 220, 88-95 (2003).
[CrossRef]

Electron. Lett. (2)

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
[CrossRef]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321-322 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007).
[CrossRef]

J. Appl. Phys. (1)

L. Mutter, M. Jazbinsek, M. Zgonik, U. Meier, C. Bosshard, and P. Günter, “Photobleaching and optical properties of organic crystal 4-N, N-dimethylamino-4′-N′-methyl stilbazolium tosylate,” J. Appl. Phys. 94, 1356-1361 (2003).
[CrossRef]

J. Chem. Phys. (1)

D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinsek, and P. Günter, “Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials,” J. Chem. Phys. 128, 124713 (2008).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (3)

J. Phys. D (1)

A. Leyderman, Y. Cui, and B. G. Penn, “Electro-optical effects in thin single-crystalline organic films grown from the melt,” J. Phys. D 31, 2711-2717 (1998).
[CrossRef]

Nat. Photonics (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407-410 (2007).
[CrossRef]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Opt. Eng. (Bellingham) (1)

M. Gad, D. Yevick, and P. E. Jessop, “High-speed polymer/silicon on insulator ring resonator switch,” Opt. Eng. (Bellingham) 47, 094601 (2008).
[CrossRef]

Opt. Express (9)

D. Rezzonico, M. Jazbinsek, A. Guarino, O.-P. Kwon, and P. Günter, “Electro-optic Charon polymeric microring modulators,” Opt. Express 16, 613-627 (2008).
[CrossRef] [PubMed]

H. Sun, A. Chen, B. C. Olbricht, J. A. Davies, P. A. Sullivan, Y. Liao, and L. R. Dalton, “Direct electron beam writing of electro-optic polymer microring resonators,” Opt. Express 16, 6592-6599 (2008).
[CrossRef] [PubMed]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430-436 (2007).
[CrossRef] [PubMed]

J.-M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express 16, 4177-4191 (2008).
[CrossRef] [PubMed]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16, 4309-4315 (2008).
[CrossRef] [PubMed]

L. Mutter, M. Jazbinšek, C. Herzog, and P. Günter, “Electro-optic and nonlinear optical properties of ion implanted waveguides in organic crystals,” Opt. Express 16, 731-739 (2008).
[CrossRef] [PubMed]

L. Mutter, M. Koechlin, M. Jazbinšek, and P. Günter, “Direct electron beam writing of channel waveguides in nonlinear optical organic crystals,” Opt. Express 15, 16828-16838 (2007).
[CrossRef] [PubMed]

C. Hunziker, S.-J. Kwon, H. Figi, M. Jazbinsek, and P. Günter, “Fabrication and phase modulation in organic single-crystalline configurationally locked, phenolic polyene OH1 waveguides,” Opt. Express 16, 15903-15914 (2008).
[CrossRef] [PubMed]

H. Figi, M. Jazbinšek, C. Hunziker, M. Koechlin, and P. Günter, “Electro-optic single-crystalline organic waveguides and nanowires grown from the melt,” Opt. Express 16, 11310-11327 (2008).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

J. H. Wülbern, M. Schmidt, U. Hübner, R. Boucher, W. Volksen, Y. Lu, R. Zentel, and M. Eich, “Polymer based tuneable photonic crystals,” Phys. Status Solidi A 204, 3739-3753 (2007).
[CrossRef]

Proc. SPIE (2)

B. M. A. Rahman, S. Haxha, V. Haxha, and K. T. V. Grattan, “Design optimization of high-speed optical modulators,” Proc. SPIE 6389, 63890X (2006).
[CrossRef]

A. Leyderman, M. Espinosa, T. V. Timofeeva, R. D. Clark, D. O. Frazier, and B. G. Penn, “Growth and characterization of crystalline films of meta-nitroaniline (mNA) and 2-cyclo-octylamino-5-nitropyrydine (COANP),” Proc. SPIE 2809, 144-154 (1996).
[CrossRef]

Science (2)

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119-122 (2000).
[CrossRef]

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Other (2)

C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, 1995).

SCHOTT AG, “Dielektrische konstante,” (2009). Available at http://www.schott.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Processing steps for the fabrication of inorganic substrates for microring resonators. (a) 50 nm chromium was deposited and structured to form the electrodes, which contoured the ring-waveguide structure patterned by RIE. (b) The deposited silicon defines the regions where the cover wafer is anodically bonded to the substrate and additionally acts as a spacer for the inner structure. (c) A cover borosilicate glass shorter than the waveguide length was bonded to the structure to delimit the volume in the vertical direction. A microscope image of the final device with the grown crystal in the waveguide channel is shown in Fig. 2.

Fig. 2
Fig. 2

Top-view transmission microscope image of a COANP racetrack resonator structure placed between crossed polarizers. The microresonator was accessible for the melt of COANP through a roughly 140 nm thick channel defined by the silicon/chromium spacer. The orientation of the crystal polar axis in the ring structure is determined by the orientation of the corresponding single-crystalline domain of the 140 nm thick nanosheet and is parallel to the port waveguide as indicated with dashed arrows. The corresponding cross-sectional view of a coupling region is shown in Fig. 3.

Fig. 3
Fig. 3

Cross-sectional-view scanning electron micrograph of the coupling region of a racetrack resonator. A trapezoidal-shaped borosilicate gap with an average width of roughly 0.5 μ m separates the two crystalline COANP waveguides. The imperfections seen in the end-facet of the waveguides are most likely caused by the electron-beam irradiation.

Fig. 4
Fig. 4

Transmission spectrum of a racetrack resonator with a straight section S RT = 150 μ m and a semicircle radius R = 150 μ m . The measured normalized transmitted light at the through port for TE modes using a tunable source in the λ = 1.546 1.552 μ m region is shown. The free spectral range is 1.17 nm , and the finesse is 6.2. The modulation depth is approximately 10 dB .

Fig. 5
Fig. 5

EO modulation seen at a repetition rate of 1.24 kHz by tuning the wavelength to the point of maximum slope of the through port TE response (shown in the inset) of a circular microring ( R = 150 μ m ) . The applied triangular modulation voltage to the electrodes is depicted as dashed curve and the modulated output intensity as solid curve.

Fig. 6
Fig. 6

Resonance spectrum of a TE mode at a wavelength around 1.57 μ m (solid curve) of a racetrack resonator; the dashed and dotted curves are the corresponding electro-optically shifted curves by applying a voltage V = 100 V and V = 200 V to the device electrodes, respectively. The shift indicated by vertical dashed-dotted lines corresponds to a tunability of about 0.13 GHz V ( 1.1 pm V ) .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T = 1 ( 1 ξ 2 ) ( 1 τ 2 ) ( 1 ξ τ ) 2 + 4 ξ τ sin 2 ( ϕ 2 ) .
Δ ϕ = π 2 π 2 4 π R λ Δ n ( θ ) d θ
= 4 π R E 0 λ 0 π 2 ( r 23 + 2 r 42 ) sin 2 θ + r 33 cos 2 θ ( sin 2 θ n 2 2 + cos 2 θ n 3 2 ) 3 2 cos θ d θ ,
d eff = 2 ε COANP ( 5 μ m ε BS + 3 μ m ε COANP + 5 μ m ε BS ) ,
n ¯ = 1 2 π 0 2 π ( sin 2 θ n 2 2 + cos 2 θ n 3 2 ) 1 2 d θ 1.65 ,

Metrics