Abstract

By modifying the design of an existing two-input nanophotonic AND gate, whose operation is based on optical near-field (ONF) interactions among three neighboring quantum dots (QDs), we have improved the gate ON/OFF ratio by up to about 9dB. To do this, we have eliminated the possibility of direct ONF interaction between the input and output dots. Then, by adding another QD, as the second control dot to both existing and the modified two-input architectures, we have proposed two new three-input nanophotonic AND gate schemes—one with direct ONF interaction between its input and output dots, and the other without such interaction. Although, the former gate turns on relatively faster, one of its three possible ON/OFF ratios are shown to be about 7.3dB lower than the latter. The differences in two other possible ON/OFF ratios of the two new gates are insignificant.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, A. R. Dias, and L. M. Woody, “Fully parallel, high speed incoherent optical method for performing discrete Fourier transforms,” Opt. Lett. 2, 1-3 (1978).
    [CrossRef] [PubMed]
  2. P. D. Tougaw and C. S. Lent, “Logical devices implemented using quantum cellular automata,” J. Appl. Phys. 75, 1818-1825 (1994).
    [CrossRef]
  3. P. S. Guilfoyle and D. S. McCallum, “High-speed low-energy digital optical processors,” Opt. Eng. (Bellingham) 35, 436-442 (1996).
    [CrossRef]
  4. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: Design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Quantum Electron. 8, 839-862 (2002).
    [CrossRef]
  5. M. Naruse, T. Miyazaki, T. Kawazoe, S. Sangu, K. Kobayashi, F. Kubota, and M. Ohtsu, “Nanophotonic computing based on optical near-field interactions between quantum dots,” IEICE Trans. Electron. E88-C, 1817-1823 (2005).
    [CrossRef]
  6. S. Sangu, K. Kobayashi, and M. Ohtsu, “Nanophotonic devices and fundamental functional operations,” IEICE Trans. E88-C (2005).
  7. M. Naruse, T. Yatsui, T. Kawazoe, Y. Akao, and M. Ohtsu, “Design and simulation of a nanophotonic traceable memory using localized energy dissipation and hierarchy of optical near-field interactions,” IEEE Trans. Nanotechnol. 7, 14-19 (2008).
    [CrossRef]
  8. M. Ohtsu, “Overview,” in Near-Field Optics: Principles and Applications, X.Zhu and M.Ohtsu, eds. (World Scientific, 2000).
  9. M. Ohtsu and K. Kobayashi, Optical near fields: introduction to classical and quantum theories of electromagnetic phenomena at the nanoscale (Springer-Verlag, 2003).
    [PubMed]
  10. T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88, 067404 (2002).
    [CrossRef] [PubMed]
  11. M.Ohtsu, ed., Progress in Nano-Electro-Optics I (Springer-Verlag, 2003).
  12. M.Ohtsu, ed., Progress in Nano-Electro-Optics II (Springer-Verlag, 2004).
  13. M.Ohtsu, ed., Progress in Nano-Electro-Optics III (Springer-Verlag, 2005).
  14. M.Ohtsu, ed., Progress in Nano-Electro-Optics IV (Springer-Verlag, 2005).
  15. M.Ohtsu, ed., Progress in Nano-Electro-Optics V (Springer-Verlag, 2006).
    [CrossRef]
  16. M.Ohtsu, ed., Progress in Nano-Electro-Optics VI (Springer-Verlag, 2008).
    [CrossRef]
  17. M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics (CRC Press, 2008).
    [CrossRef]
  18. M. Ohtsu and K. Kobayashi, Optical Near Fields (Springer-Verlag, 2004).
  19. M. Naruse, T. Yatsui, W. Nomura, N. Hirose, and M. Ohtsu, “Hierarchy in optical near-fields and its application to memory retrieval,” Opt. Express 13, 9265-9271 (2005).
    [CrossRef] [PubMed]
  20. S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching: An overview,” IEEE Commun. Mag. 38, 84-94 (2000).
    [CrossRef]
  21. T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Demonstration of a nanophotonic switching operation by optical near-field energy transfer,” Appl. Phys. Lett. 82, 2957-2959 (2003).
    [CrossRef]
  22. M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Nanometric summation architecture using optical near-field interaction between quantum dots,” Opt. Lett. 30, 201-203 (2005).
    [CrossRef] [PubMed]
  23. M. Naruse, T. Kawazoe, S. Sangu, K. Kobayashi, and M. Ohtsu, “Optical interactions based on optical far- and near-field interactions for high-density data broadcasting,” Opt. Express 14, 306-313 (2006).
    [CrossRef] [PubMed]
  24. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972-1974 (2001).
    [CrossRef]
  25. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magner, U. Meirav, and M. A. Kastner, “Kondo effect in a single-electron transistor,” Nature 391, 156-159 (1998).
    [CrossRef]
  26. F. Simmel, R. H. Blick, J. P. Kotthaus, W. Wegscheir, and M. Bichler, “Annomalous kondo effect in a QD at nonzero bias,” Phys. Rev. Lett. 83, 804-807 (1999).
    [CrossRef]
  27. L. W. Molenkamp, K. Flensberg, and M. Kemerink, “Scaling of the coulomb energy due to quantum fluctuations in the charge on a QD,” Phys. Rev. Lett. 75, 4282-4285 (1995).
    [CrossRef] [PubMed]
  28. M. Taut, “Solution of the Schrodinger equation for QD lattices with coulomb interaction between dots,” Phys. Rev. B 62, 8126-8136 (2000).
    [CrossRef]
  29. G. Burkard, G. Seelig, and D. Loss, “Spin interaction and switching in vertically tunnel coupled QDs,” Phys. Rev. B 62, 2581-2592 (2000).
    [CrossRef]
  30. F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Kampman, and A. C. Gossard, “Single-electron charging in double and triple QDs with tunable coupling,” Phys. Rev. Lett. 75, 705-708 (1995).
    [CrossRef] [PubMed]
  31. N. Sakakura and Y. Masumoto, “Persistent spectral-hole-burning spectroscopy of CuCl quantum cubes,” Phys. Rev. B 56, 4051-4055 (1997).
    [CrossRef]

2008 (1)

M. Naruse, T. Yatsui, T. Kawazoe, Y. Akao, and M. Ohtsu, “Design and simulation of a nanophotonic traceable memory using localized energy dissipation and hierarchy of optical near-field interactions,” IEEE Trans. Nanotechnol. 7, 14-19 (2008).
[CrossRef]

2006 (1)

2005 (4)

M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Nanometric summation architecture using optical near-field interaction between quantum dots,” Opt. Lett. 30, 201-203 (2005).
[CrossRef] [PubMed]

M. Naruse, T. Yatsui, W. Nomura, N. Hirose, and M. Ohtsu, “Hierarchy in optical near-fields and its application to memory retrieval,” Opt. Express 13, 9265-9271 (2005).
[CrossRef] [PubMed]

M. Naruse, T. Miyazaki, T. Kawazoe, S. Sangu, K. Kobayashi, F. Kubota, and M. Ohtsu, “Nanophotonic computing based on optical near-field interactions between quantum dots,” IEICE Trans. Electron. E88-C, 1817-1823 (2005).
[CrossRef]

S. Sangu, K. Kobayashi, and M. Ohtsu, “Nanophotonic devices and fundamental functional operations,” IEICE Trans. E88-C (2005).

2003 (1)

T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Demonstration of a nanophotonic switching operation by optical near-field energy transfer,” Appl. Phys. Lett. 82, 2957-2959 (2003).
[CrossRef]

2002 (2)

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88, 067404 (2002).
[CrossRef] [PubMed]

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: Design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Quantum Electron. 8, 839-862 (2002).
[CrossRef]

2001 (1)

2000 (3)

M. Taut, “Solution of the Schrodinger equation for QD lattices with coulomb interaction between dots,” Phys. Rev. B 62, 8126-8136 (2000).
[CrossRef]

G. Burkard, G. Seelig, and D. Loss, “Spin interaction and switching in vertically tunnel coupled QDs,” Phys. Rev. B 62, 2581-2592 (2000).
[CrossRef]

S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching: An overview,” IEEE Commun. Mag. 38, 84-94 (2000).
[CrossRef]

1999 (1)

F. Simmel, R. H. Blick, J. P. Kotthaus, W. Wegscheir, and M. Bichler, “Annomalous kondo effect in a QD at nonzero bias,” Phys. Rev. Lett. 83, 804-807 (1999).
[CrossRef]

1998 (1)

D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magner, U. Meirav, and M. A. Kastner, “Kondo effect in a single-electron transistor,” Nature 391, 156-159 (1998).
[CrossRef]

1997 (1)

N. Sakakura and Y. Masumoto, “Persistent spectral-hole-burning spectroscopy of CuCl quantum cubes,” Phys. Rev. B 56, 4051-4055 (1997).
[CrossRef]

1996 (1)

P. S. Guilfoyle and D. S. McCallum, “High-speed low-energy digital optical processors,” Opt. Eng. (Bellingham) 35, 436-442 (1996).
[CrossRef]

1995 (2)

L. W. Molenkamp, K. Flensberg, and M. Kemerink, “Scaling of the coulomb energy due to quantum fluctuations in the charge on a QD,” Phys. Rev. Lett. 75, 4282-4285 (1995).
[CrossRef] [PubMed]

F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Kampman, and A. C. Gossard, “Single-electron charging in double and triple QDs with tunable coupling,” Phys. Rev. Lett. 75, 705-708 (1995).
[CrossRef] [PubMed]

1994 (1)

P. D. Tougaw and C. S. Lent, “Logical devices implemented using quantum cellular automata,” J. Appl. Phys. 75, 1818-1825 (1994).
[CrossRef]

1978 (1)

Abusch-Magner, D.

D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magner, U. Meirav, and M. A. Kastner, “Kondo effect in a single-electron transistor,” Nature 391, 156-159 (1998).
[CrossRef]

Akao, Y.

M. Naruse, T. Yatsui, T. Kawazoe, Y. Akao, and M. Ohtsu, “Design and simulation of a nanophotonic traceable memory using localized energy dissipation and hierarchy of optical near-field interactions,” IEEE Trans. Nanotechnol. 7, 14-19 (2008).
[CrossRef]

Berry, M. J.

F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Kampman, and A. C. Gossard, “Single-electron charging in double and triple QDs with tunable coupling,” Phys. Rev. Lett. 75, 705-708 (1995).
[CrossRef] [PubMed]

Bichler, M.

F. Simmel, R. H. Blick, J. P. Kotthaus, W. Wegscheir, and M. Bichler, “Annomalous kondo effect in a QD at nonzero bias,” Phys. Rev. Lett. 83, 804-807 (1999).
[CrossRef]

Blick, R. H.

F. Simmel, R. H. Blick, J. P. Kotthaus, W. Wegscheir, and M. Bichler, “Annomalous kondo effect in a QD at nonzero bias,” Phys. Rev. Lett. 83, 804-807 (1999).
[CrossRef]

Burkard, G.

G. Burkard, G. Seelig, and D. Loss, “Spin interaction and switching in vertically tunnel coupled QDs,” Phys. Rev. B 62, 2581-2592 (2000).
[CrossRef]

Dias, A. R.

Dixit, S.

S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching: An overview,” IEEE Commun. Mag. 38, 84-94 (2000).
[CrossRef]

Ebbesen, T. W.

Flensberg, K.

L. W. Molenkamp, K. Flensberg, and M. Kemerink, “Scaling of the coulomb energy due to quantum fluctuations in the charge on a QD,” Phys. Rev. Lett. 75, 4282-4285 (1995).
[CrossRef] [PubMed]

Goldhaber-Gordon, D.

D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magner, U. Meirav, and M. A. Kastner, “Kondo effect in a single-electron transistor,” Nature 391, 156-159 (1998).
[CrossRef]

Goodman, J. W.

Gossard, A. C.

F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Kampman, and A. C. Gossard, “Single-electron charging in double and triple QDs with tunable coupling,” Phys. Rev. Lett. 75, 705-708 (1995).
[CrossRef] [PubMed]

Guilfoyle, P. S.

P. S. Guilfoyle and D. S. McCallum, “High-speed low-energy digital optical processors,” Opt. Eng. (Bellingham) 35, 436-442 (1996).
[CrossRef]

Hirose, N.

Kampman, K. L.

F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Kampman, and A. C. Gossard, “Single-electron charging in double and triple QDs with tunable coupling,” Phys. Rev. Lett. 75, 705-708 (1995).
[CrossRef] [PubMed]

Kastner, M. A.

D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magner, U. Meirav, and M. A. Kastner, “Kondo effect in a single-electron transistor,” Nature 391, 156-159 (1998).
[CrossRef]

Kawazoe, T.

M. Naruse, T. Yatsui, T. Kawazoe, Y. Akao, and M. Ohtsu, “Design and simulation of a nanophotonic traceable memory using localized energy dissipation and hierarchy of optical near-field interactions,” IEEE Trans. Nanotechnol. 7, 14-19 (2008).
[CrossRef]

M. Naruse, T. Kawazoe, S. Sangu, K. Kobayashi, and M. Ohtsu, “Optical interactions based on optical far- and near-field interactions for high-density data broadcasting,” Opt. Express 14, 306-313 (2006).
[CrossRef] [PubMed]

M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Nanometric summation architecture using optical near-field interaction between quantum dots,” Opt. Lett. 30, 201-203 (2005).
[CrossRef] [PubMed]

M. Naruse, T. Miyazaki, T. Kawazoe, S. Sangu, K. Kobayashi, F. Kubota, and M. Ohtsu, “Nanophotonic computing based on optical near-field interactions between quantum dots,” IEICE Trans. Electron. E88-C, 1817-1823 (2005).
[CrossRef]

T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Demonstration of a nanophotonic switching operation by optical near-field energy transfer,” Appl. Phys. Lett. 82, 2957-2959 (2003).
[CrossRef]

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88, 067404 (2002).
[CrossRef] [PubMed]

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: Design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Quantum Electron. 8, 839-862 (2002).
[CrossRef]

M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics (CRC Press, 2008).
[CrossRef]

Kemerink, M.

L. W. Molenkamp, K. Flensberg, and M. Kemerink, “Scaling of the coulomb energy due to quantum fluctuations in the charge on a QD,” Phys. Rev. Lett. 75, 4282-4285 (1995).
[CrossRef] [PubMed]

Kobayashi, K.

M. Naruse, T. Kawazoe, S. Sangu, K. Kobayashi, and M. Ohtsu, “Optical interactions based on optical far- and near-field interactions for high-density data broadcasting,” Opt. Express 14, 306-313 (2006).
[CrossRef] [PubMed]

M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Nanometric summation architecture using optical near-field interaction between quantum dots,” Opt. Lett. 30, 201-203 (2005).
[CrossRef] [PubMed]

M. Naruse, T. Miyazaki, T. Kawazoe, S. Sangu, K. Kobayashi, F. Kubota, and M. Ohtsu, “Nanophotonic computing based on optical near-field interactions between quantum dots,” IEICE Trans. Electron. E88-C, 1817-1823 (2005).
[CrossRef]

S. Sangu, K. Kobayashi, and M. Ohtsu, “Nanophotonic devices and fundamental functional operations,” IEICE Trans. E88-C (2005).

T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Demonstration of a nanophotonic switching operation by optical near-field energy transfer,” Appl. Phys. Lett. 82, 2957-2959 (2003).
[CrossRef]

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88, 067404 (2002).
[CrossRef] [PubMed]

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: Design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Quantum Electron. 8, 839-862 (2002).
[CrossRef]

M. Ohtsu and K. Kobayashi, Optical near fields: introduction to classical and quantum theories of electromagnetic phenomena at the nanoscale (Springer-Verlag, 2003).
[PubMed]

M. Ohtsu and K. Kobayashi, Optical Near Fields (Springer-Verlag, 2004).

M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics (CRC Press, 2008).
[CrossRef]

Kotthaus, J. P.

F. Simmel, R. H. Blick, J. P. Kotthaus, W. Wegscheir, and M. Bichler, “Annomalous kondo effect in a QD at nonzero bias,” Phys. Rev. Lett. 83, 804-807 (1999).
[CrossRef]

Kubota, F.

M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Nanometric summation architecture using optical near-field interaction between quantum dots,” Opt. Lett. 30, 201-203 (2005).
[CrossRef] [PubMed]

M. Naruse, T. Miyazaki, T. Kawazoe, S. Sangu, K. Kobayashi, F. Kubota, and M. Ohtsu, “Nanophotonic computing based on optical near-field interactions between quantum dots,” IEICE Trans. Electron. E88-C, 1817-1823 (2005).
[CrossRef]

Lent, C. S.

P. D. Tougaw and C. S. Lent, “Logical devices implemented using quantum cellular automata,” J. Appl. Phys. 75, 1818-1825 (1994).
[CrossRef]

Lezec, H. J.

Lim, J.

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88, 067404 (2002).
[CrossRef] [PubMed]

Linke, R. A.

Loss, D.

G. Burkard, G. Seelig, and D. Loss, “Spin interaction and switching in vertically tunnel coupled QDs,” Phys. Rev. B 62, 2581-2592 (2000).
[CrossRef]

Mahalu, D.

D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magner, U. Meirav, and M. A. Kastner, “Kondo effect in a single-electron transistor,” Nature 391, 156-159 (1998).
[CrossRef]

Mar, D. J.

F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Kampman, and A. C. Gossard, “Single-electron charging in double and triple QDs with tunable coupling,” Phys. Rev. Lett. 75, 705-708 (1995).
[CrossRef] [PubMed]

Masumoto, Y.

N. Sakakura and Y. Masumoto, “Persistent spectral-hole-burning spectroscopy of CuCl quantum cubes,” Phys. Rev. B 56, 4051-4055 (1997).
[CrossRef]

McCallum, D. S.

P. S. Guilfoyle and D. S. McCallum, “High-speed low-energy digital optical processors,” Opt. Eng. (Bellingham) 35, 436-442 (1996).
[CrossRef]

Meirav, U.

D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magner, U. Meirav, and M. A. Kastner, “Kondo effect in a single-electron transistor,” Nature 391, 156-159 (1998).
[CrossRef]

Miyazaki, T.

M. Naruse, T. Miyazaki, T. Kawazoe, S. Sangu, K. Kobayashi, F. Kubota, and M. Ohtsu, “Nanophotonic computing based on optical near-field interactions between quantum dots,” IEICE Trans. Electron. E88-C, 1817-1823 (2005).
[CrossRef]

M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Nanometric summation architecture using optical near-field interaction between quantum dots,” Opt. Lett. 30, 201-203 (2005).
[CrossRef] [PubMed]

Molenkamp, L. W.

L. W. Molenkamp, K. Flensberg, and M. Kemerink, “Scaling of the coulomb energy due to quantum fluctuations in the charge on a QD,” Phys. Rev. Lett. 75, 4282-4285 (1995).
[CrossRef] [PubMed]

Mukherjee, B.

S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching: An overview,” IEEE Commun. Mag. 38, 84-94 (2000).
[CrossRef]

Narita, Y.

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88, 067404 (2002).
[CrossRef] [PubMed]

Naruse, M.

M. Naruse, T. Yatsui, T. Kawazoe, Y. Akao, and M. Ohtsu, “Design and simulation of a nanophotonic traceable memory using localized energy dissipation and hierarchy of optical near-field interactions,” IEEE Trans. Nanotechnol. 7, 14-19 (2008).
[CrossRef]

M. Naruse, T. Kawazoe, S. Sangu, K. Kobayashi, and M. Ohtsu, “Optical interactions based on optical far- and near-field interactions for high-density data broadcasting,” Opt. Express 14, 306-313 (2006).
[CrossRef] [PubMed]

M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Nanometric summation architecture using optical near-field interaction between quantum dots,” Opt. Lett. 30, 201-203 (2005).
[CrossRef] [PubMed]

M. Naruse, T. Yatsui, W. Nomura, N. Hirose, and M. Ohtsu, “Hierarchy in optical near-fields and its application to memory retrieval,” Opt. Express 13, 9265-9271 (2005).
[CrossRef] [PubMed]

M. Naruse, T. Miyazaki, T. Kawazoe, S. Sangu, K. Kobayashi, F. Kubota, and M. Ohtsu, “Nanophotonic computing based on optical near-field interactions between quantum dots,” IEICE Trans. Electron. E88-C, 1817-1823 (2005).
[CrossRef]

M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics (CRC Press, 2008).
[CrossRef]

Nomura, W.

Ohtsu, M.

M. Naruse, T. Yatsui, T. Kawazoe, Y. Akao, and M. Ohtsu, “Design and simulation of a nanophotonic traceable memory using localized energy dissipation and hierarchy of optical near-field interactions,” IEEE Trans. Nanotechnol. 7, 14-19 (2008).
[CrossRef]

M. Naruse, T. Kawazoe, S. Sangu, K. Kobayashi, and M. Ohtsu, “Optical interactions based on optical far- and near-field interactions for high-density data broadcasting,” Opt. Express 14, 306-313 (2006).
[CrossRef] [PubMed]

M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Nanometric summation architecture using optical near-field interaction between quantum dots,” Opt. Lett. 30, 201-203 (2005).
[CrossRef] [PubMed]

M. Naruse, T. Yatsui, W. Nomura, N. Hirose, and M. Ohtsu, “Hierarchy in optical near-fields and its application to memory retrieval,” Opt. Express 13, 9265-9271 (2005).
[CrossRef] [PubMed]

S. Sangu, K. Kobayashi, and M. Ohtsu, “Nanophotonic devices and fundamental functional operations,” IEICE Trans. E88-C (2005).

M. Naruse, T. Miyazaki, T. Kawazoe, S. Sangu, K. Kobayashi, F. Kubota, and M. Ohtsu, “Nanophotonic computing based on optical near-field interactions between quantum dots,” IEICE Trans. Electron. E88-C, 1817-1823 (2005).
[CrossRef]

T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Demonstration of a nanophotonic switching operation by optical near-field energy transfer,” Appl. Phys. Lett. 82, 2957-2959 (2003).
[CrossRef]

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: Design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Quantum Electron. 8, 839-862 (2002).
[CrossRef]

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88, 067404 (2002).
[CrossRef] [PubMed]

M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics (CRC Press, 2008).
[CrossRef]

M. Ohtsu, “Overview,” in Near-Field Optics: Principles and Applications, X.Zhu and M.Ohtsu, eds. (World Scientific, 2000).

M. Ohtsu and K. Kobayashi, Optical near fields: introduction to classical and quantum theories of electromagnetic phenomena at the nanoscale (Springer-Verlag, 2003).
[PubMed]

M. Ohtsu and K. Kobayashi, Optical Near Fields (Springer-Verlag, 2004).

Pellerin, K. M.

Sakakura, N.

N. Sakakura and Y. Masumoto, “Persistent spectral-hole-burning spectroscopy of CuCl quantum cubes,” Phys. Rev. B 56, 4051-4055 (1997).
[CrossRef]

Sangu, S.

M. Naruse, T. Kawazoe, S. Sangu, K. Kobayashi, and M. Ohtsu, “Optical interactions based on optical far- and near-field interactions for high-density data broadcasting,” Opt. Express 14, 306-313 (2006).
[CrossRef] [PubMed]

M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Nanometric summation architecture using optical near-field interaction between quantum dots,” Opt. Lett. 30, 201-203 (2005).
[CrossRef] [PubMed]

M. Naruse, T. Miyazaki, T. Kawazoe, S. Sangu, K. Kobayashi, F. Kubota, and M. Ohtsu, “Nanophotonic computing based on optical near-field interactions between quantum dots,” IEICE Trans. Electron. E88-C, 1817-1823 (2005).
[CrossRef]

S. Sangu, K. Kobayashi, and M. Ohtsu, “Nanophotonic devices and fundamental functional operations,” IEICE Trans. E88-C (2005).

T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Demonstration of a nanophotonic switching operation by optical near-field energy transfer,” Appl. Phys. Lett. 82, 2957-2959 (2003).
[CrossRef]

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: Design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Quantum Electron. 8, 839-862 (2002).
[CrossRef]

Seelig, G.

G. Burkard, G. Seelig, and D. Loss, “Spin interaction and switching in vertically tunnel coupled QDs,” Phys. Rev. B 62, 2581-2592 (2000).
[CrossRef]

Shtrikman, H.

D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magner, U. Meirav, and M. A. Kastner, “Kondo effect in a single-electron transistor,” Nature 391, 156-159 (1998).
[CrossRef]

Simmel, F.

F. Simmel, R. H. Blick, J. P. Kotthaus, W. Wegscheir, and M. Bichler, “Annomalous kondo effect in a QD at nonzero bias,” Phys. Rev. Lett. 83, 804-807 (1999).
[CrossRef]

Taut, M.

M. Taut, “Solution of the Schrodinger equation for QD lattices with coulomb interaction between dots,” Phys. Rev. B 62, 8126-8136 (2000).
[CrossRef]

Thio, T.

Tougaw, P. D.

P. D. Tougaw and C. S. Lent, “Logical devices implemented using quantum cellular automata,” J. Appl. Phys. 75, 1818-1825 (1994).
[CrossRef]

Waugh, F. R.

F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Kampman, and A. C. Gossard, “Single-electron charging in double and triple QDs with tunable coupling,” Phys. Rev. Lett. 75, 705-708 (1995).
[CrossRef] [PubMed]

Wegscheir, W.

F. Simmel, R. H. Blick, J. P. Kotthaus, W. Wegscheir, and M. Bichler, “Annomalous kondo effect in a QD at nonzero bias,” Phys. Rev. Lett. 83, 804-807 (1999).
[CrossRef]

Westervelt, R. M.

F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Kampman, and A. C. Gossard, “Single-electron charging in double and triple QDs with tunable coupling,” Phys. Rev. Lett. 75, 705-708 (1995).
[CrossRef] [PubMed]

Woody, L. M.

Yao, S.

S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching: An overview,” IEEE Commun. Mag. 38, 84-94 (2000).
[CrossRef]

Yatsui, T.

M. Naruse, T. Yatsui, T. Kawazoe, Y. Akao, and M. Ohtsu, “Design and simulation of a nanophotonic traceable memory using localized energy dissipation and hierarchy of optical near-field interactions,” IEEE Trans. Nanotechnol. 7, 14-19 (2008).
[CrossRef]

M. Naruse, T. Yatsui, W. Nomura, N. Hirose, and M. Ohtsu, “Hierarchy in optical near-fields and its application to memory retrieval,” Opt. Express 13, 9265-9271 (2005).
[CrossRef] [PubMed]

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: Design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Quantum Electron. 8, 839-862 (2002).
[CrossRef]

M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics (CRC Press, 2008).
[CrossRef]

Appl. Phys. Lett. (1)

T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Demonstration of a nanophotonic switching operation by optical near-field energy transfer,” Appl. Phys. Lett. 82, 2957-2959 (2003).
[CrossRef]

IEEE Commun. Mag. (1)

S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching: An overview,” IEEE Commun. Mag. 38, 84-94 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: Design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Quantum Electron. 8, 839-862 (2002).
[CrossRef]

IEEE Trans. Nanotechnol. (1)

M. Naruse, T. Yatsui, T. Kawazoe, Y. Akao, and M. Ohtsu, “Design and simulation of a nanophotonic traceable memory using localized energy dissipation and hierarchy of optical near-field interactions,” IEEE Trans. Nanotechnol. 7, 14-19 (2008).
[CrossRef]

IEICE Trans. (1)

S. Sangu, K. Kobayashi, and M. Ohtsu, “Nanophotonic devices and fundamental functional operations,” IEICE Trans. E88-C (2005).

IEICE Trans. Electron. (1)

M. Naruse, T. Miyazaki, T. Kawazoe, S. Sangu, K. Kobayashi, F. Kubota, and M. Ohtsu, “Nanophotonic computing based on optical near-field interactions between quantum dots,” IEICE Trans. Electron. E88-C, 1817-1823 (2005).
[CrossRef]

J. Appl. Phys. (1)

P. D. Tougaw and C. S. Lent, “Logical devices implemented using quantum cellular automata,” J. Appl. Phys. 75, 1818-1825 (1994).
[CrossRef]

Nature (1)

D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magner, U. Meirav, and M. A. Kastner, “Kondo effect in a single-electron transistor,” Nature 391, 156-159 (1998).
[CrossRef]

Opt. Eng. (Bellingham) (1)

P. S. Guilfoyle and D. S. McCallum, “High-speed low-energy digital optical processors,” Opt. Eng. (Bellingham) 35, 436-442 (1996).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (3)

M. Taut, “Solution of the Schrodinger equation for QD lattices with coulomb interaction between dots,” Phys. Rev. B 62, 8126-8136 (2000).
[CrossRef]

G. Burkard, G. Seelig, and D. Loss, “Spin interaction and switching in vertically tunnel coupled QDs,” Phys. Rev. B 62, 2581-2592 (2000).
[CrossRef]

N. Sakakura and Y. Masumoto, “Persistent spectral-hole-burning spectroscopy of CuCl quantum cubes,” Phys. Rev. B 56, 4051-4055 (1997).
[CrossRef]

Phys. Rev. Lett. (4)

F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Kampman, and A. C. Gossard, “Single-electron charging in double and triple QDs with tunable coupling,” Phys. Rev. Lett. 75, 705-708 (1995).
[CrossRef] [PubMed]

F. Simmel, R. H. Blick, J. P. Kotthaus, W. Wegscheir, and M. Bichler, “Annomalous kondo effect in a QD at nonzero bias,” Phys. Rev. Lett. 83, 804-807 (1999).
[CrossRef]

L. W. Molenkamp, K. Flensberg, and M. Kemerink, “Scaling of the coulomb energy due to quantum fluctuations in the charge on a QD,” Phys. Rev. Lett. 75, 4282-4285 (1995).
[CrossRef] [PubMed]

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88, 067404 (2002).
[CrossRef] [PubMed]

Other (10)

M.Ohtsu, ed., Progress in Nano-Electro-Optics I (Springer-Verlag, 2003).

M.Ohtsu, ed., Progress in Nano-Electro-Optics II (Springer-Verlag, 2004).

M.Ohtsu, ed., Progress in Nano-Electro-Optics III (Springer-Verlag, 2005).

M.Ohtsu, ed., Progress in Nano-Electro-Optics IV (Springer-Verlag, 2005).

M.Ohtsu, ed., Progress in Nano-Electro-Optics V (Springer-Verlag, 2006).
[CrossRef]

M.Ohtsu, ed., Progress in Nano-Electro-Optics VI (Springer-Verlag, 2008).
[CrossRef]

M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics (CRC Press, 2008).
[CrossRef]

M. Ohtsu and K. Kobayashi, Optical Near Fields (Springer-Verlag, 2004).

M. Ohtsu, “Overview,” in Near-Field Optics: Principles and Applications, X.Zhu and M.Ohtsu, eds. (World Scientific, 2000).

M. Ohtsu and K. Kobayashi, Optical near fields: introduction to classical and quantum theories of electromagnetic phenomena at the nanoscale (Springer-Verlag, 2003).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the two-input nanophotonic AND gate proposed by [18].

Fig. 2
Fig. 2

Schematic diagram of the proposed two-input nanophotonic AND gate.

Fig. 3
Fig. 3

Schematic diagram of two proposed three-input nanophotonic AND gates: (a) based on the two-input AND gate of Fig. 1. (b) based on the two-input AND gate of Fig. 2.

Fig. 4
Fig. 4

(a) Time evolution of the occupation probability for level (1,1,1) of QD-O for two-input nanophotonic AND gates of Fig. 1, and Fig. 2. (b) Comparison of the instantaneous ON/OFF ratios calculated from part (a).

Fig. 5
Fig. 5

Time evolution of the occupation probability for level (1,1,1) of QD-O for three-input nanophotonic AND gate corresponding to scheme illustrated in (a) Fig. 3a, and (b) Fig. 3b.

Fig. 6
Fig. 6

Comparison of the instantaneous ON/OFF ratios calculated from Fig. 5 for (a) OFF A state designated by A. (b) OFF B and OFF C states designated by B and C, respectively

Tables (1)

Tables Icon

Table 1 Characteristic Parameters for Two- and Three-Input Nanophotonic AND Gates of Figs. 13

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E ( n x , n y , n z ) = E B + 2 π 2 2 M a 2 ( n x 2 + n y 2 + n z 2 ) ,
E ( n x , n y , n z ) = E B + 2 π 2 2 M ( n x 2 a x 2 + n y 2 a y 2 + n z 2 a z 2 ) ,
OFF A OFF B OFF C ON IN 1 1 1 1 1 IN 2 0 1 0 1 IN 3 0 0 1 1
d P n j ( t ) d t = [ 1 τ n + ( U n i j ) 2 ] P n j ( t ) + ( U n j k ) 2 P n k ( t ) + P n + 1 τ n + 1 ,
U n i j = Y 1 exp ( m eff ( n ) r i j ) m eff ( n ) r i j ,
ON OFF Ratio ( dB ) = 10 log ( P out ( t ) ON P out ( t ) OFF ) .

Metrics