Abstract

We propose a photon-arrival detector (PAD), which detects the arrival of a signal photon and simultaneously projects the signal input state to a single-photon state, with an atom-cavity system. In this proposal, use of a V-type system as the intracavity atom is discussed for implementing the PAD since V-type systems have been widely studied in the field of solid state, enabling us to miniaturize and integrate that implementation. The performance of the proposed PAD is evaluated for a specific method of the detection process. The proposed PAD is capable of repeating the procedure for detecting the arrival of input photons and it has improved the detection probability so that it has a higher quantum efficiency than those of conventional photodetectors.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennet, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
    [CrossRef]
  2. L.-M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
    [CrossRef] [PubMed]
  3. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
    [CrossRef] [PubMed]
  4. P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
    [CrossRef] [PubMed]
  5. A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
    [CrossRef] [PubMed]
  6. Y. Wu, X. Li, L. M. Duan, D. G. Steel, and D. Gammon, “Density matrix tomography through sequential coherent optical rotations of an exciton qubit in a single quantum dot,” Phys. Rev. Lett. 96, 087402 (2006).
    [CrossRef] [PubMed]
  7. H. Kosaka, Y. Mitsumori, Y. Rikitake, and H. Imamura, “Polarization transfer from photon to electron spin in g factor engineered quantum wells,” Appl. Phys. Lett. 90, 113511 (2007).
    [CrossRef]
  8. H. Kosaka, H. Shigyou, Y. Mitsumori, Y. Rikitake, H. Imamura, T. Kutsuwa, K. Arai, and K. Edamatsu, “Coherent transfer of light polarization to electron spins in a semiconductor,” Phys. Rev. Lett. 100, 096602 (2008).
    [CrossRef] [PubMed]
  9. M. Tadic and F. M. Peeters, “Exciton states and oscillator strength in two vertically coupled InP/InGaP quantum discs,” J. Phys. Condens. Matter 16, 8633-8652 (2004).
    [CrossRef]
  10. H. Kosaka, D. S. Rao, H. D. Robinson, P. Bandaru, K. Makita, and E. Yablonovitch, “Single photoelectron trapping, storage, and detection in a field effect transistor,” Phys. Rev. B 67, 045104 (2003).
    [CrossRef]
  11. K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Efficiencies for the single-mode operation of a quantum optical nonlinear shift gate,” Phys. Rev. A 70, 013810 (2004).
    [CrossRef]
  12. K. Kojima and A. Tomita, “Quantum-nondemolition measurement of photon arrival using an atom-cavity system,” Phys. Rev. A 75, 032320 (2007).
    [CrossRef]
  13. K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “A study on the shape of two-photon wavefunctions after the nonlinear interaction with a one-dimensional atom,” arXiv.org quant-ph/0404119.
  14. T. Nakaoka, E. C. Clark, H. J. Krenner, M. Sabathil, M. Bichler, Y. Arakawa, G. Abstreiter, and J. J. Finley, “Direct observation of acoustic phonon mediated relaxation between coupled exciton states in a single quantum dot molecule,” Phys. Rev. B 74, 121305 (2006).
    [CrossRef]
  15. G. Fasol, “Absence of low temperature saturation of electron-electron scattering in a single mode quantum wire,” Appl. Phys. Lett. 61, 831-834 (1992).
    [CrossRef]
  16. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997).
  17. S. Reitzenstein, A. Löffler, C. Hofmann, A. Kubanek, M. Kamp, J. P. Reithmaier, A. Forchel, V. D. Kulakovskii, L. V. Keldysh, I. V. Ponomarev, and T. L. Reinecke, “Coherent photonic coupling of semiconductor quantum dots,” Opt. Lett. 31, 1738-1740 (2006).
    [CrossRef] [PubMed]
  18. M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
    [CrossRef]
  19. C. J. Hood and H. J. Kimble, “Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in an optical cavity,” Phys. Rev. A 64, 033804 (2001).
    [CrossRef]

2008 (1)

H. Kosaka, H. Shigyou, Y. Mitsumori, Y. Rikitake, H. Imamura, T. Kutsuwa, K. Arai, and K. Edamatsu, “Coherent transfer of light polarization to electron spins in a semiconductor,” Phys. Rev. Lett. 100, 096602 (2008).
[CrossRef] [PubMed]

2007 (3)

H. Kosaka, Y. Mitsumori, Y. Rikitake, and H. Imamura, “Polarization transfer from photon to electron spin in g factor engineered quantum wells,” Appl. Phys. Lett. 90, 113511 (2007).
[CrossRef]

K. Kojima and A. Tomita, “Quantum-nondemolition measurement of photon arrival using an atom-cavity system,” Phys. Rev. A 75, 032320 (2007).
[CrossRef]

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

2006 (4)

S. Reitzenstein, A. Löffler, C. Hofmann, A. Kubanek, M. Kamp, J. P. Reithmaier, A. Forchel, V. D. Kulakovskii, L. V. Keldysh, I. V. Ponomarev, and T. L. Reinecke, “Coherent photonic coupling of semiconductor quantum dots,” Opt. Lett. 31, 1738-1740 (2006).
[CrossRef] [PubMed]

T. Nakaoka, E. C. Clark, H. J. Krenner, M. Sabathil, M. Bichler, Y. Arakawa, G. Abstreiter, and J. J. Finley, “Direct observation of acoustic phonon mediated relaxation between coupled exciton states in a single quantum dot molecule,” Phys. Rev. B 74, 121305 (2006).
[CrossRef]

Y. Wu, X. Li, L. M. Duan, D. G. Steel, and D. Gammon, “Density matrix tomography through sequential coherent optical rotations of an exciton qubit in a single quantum dot,” Phys. Rev. Lett. 96, 087402 (2006).
[CrossRef] [PubMed]

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef] [PubMed]

2004 (3)

L.-M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef] [PubMed]

M. Tadic and F. M. Peeters, “Exciton states and oscillator strength in two vertically coupled InP/InGaP quantum discs,” J. Phys. Condens. Matter 16, 8633-8652 (2004).
[CrossRef]

K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Efficiencies for the single-mode operation of a quantum optical nonlinear shift gate,” Phys. Rev. A 70, 013810 (2004).
[CrossRef]

2003 (1)

H. Kosaka, D. S. Rao, H. D. Robinson, P. Bandaru, K. Makita, and E. Yablonovitch, “Single photoelectron trapping, storage, and detection in a field effect transistor,” Phys. Rev. B 67, 045104 (2003).
[CrossRef]

2002 (1)

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

2001 (1)

C. J. Hood and H. J. Kimble, “Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in an optical cavity,” Phys. Rev. A 64, 033804 (2001).
[CrossRef]

1997 (1)

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997).

1995 (1)

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[CrossRef] [PubMed]

1993 (1)

C. H. Bennet, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef]

1992 (1)

G. Fasol, “Absence of low temperature saturation of electron-electron scattering in a single mode quantum wire,” Appl. Phys. Lett. 61, 831-834 (1992).
[CrossRef]

Abstreiter, G.

T. Nakaoka, E. C. Clark, H. J. Krenner, M. Sabathil, M. Bichler, Y. Arakawa, G. Abstreiter, and J. J. Finley, “Direct observation of acoustic phonon mediated relaxation between coupled exciton states in a single quantum dot molecule,” Phys. Rev. B 74, 121305 (2006).
[CrossRef]

Arai, K.

H. Kosaka, H. Shigyou, Y. Mitsumori, Y. Rikitake, H. Imamura, T. Kutsuwa, K. Arai, and K. Edamatsu, “Coherent transfer of light polarization to electron spins in a semiconductor,” Phys. Rev. Lett. 100, 096602 (2008).
[CrossRef] [PubMed]

Arakawa, Y.

T. Nakaoka, E. C. Clark, H. J. Krenner, M. Sabathil, M. Bichler, Y. Arakawa, G. Abstreiter, and J. J. Finley, “Direct observation of acoustic phonon mediated relaxation between coupled exciton states in a single quantum dot molecule,” Phys. Rev. B 74, 121305 (2006).
[CrossRef]

Bandaru, P.

H. Kosaka, D. S. Rao, H. D. Robinson, P. Bandaru, K. Makita, and E. Yablonovitch, “Single photoelectron trapping, storage, and detection in a field effect transistor,” Phys. Rev. B 67, 045104 (2003).
[CrossRef]

Bennet, C. H.

C. H. Bennet, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef]

Bichler, M.

T. Nakaoka, E. C. Clark, H. J. Krenner, M. Sabathil, M. Bichler, Y. Arakawa, G. Abstreiter, and J. J. Finley, “Direct observation of acoustic phonon mediated relaxation between coupled exciton states in a single quantum dot molecule,” Phys. Rev. B 74, 121305 (2006).
[CrossRef]

Brassard, G.

C. H. Bennet, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef]

Clark, E. C.

T. Nakaoka, E. C. Clark, H. J. Krenner, M. Sabathil, M. Bichler, Y. Arakawa, G. Abstreiter, and J. J. Finley, “Direct observation of acoustic phonon mediated relaxation between coupled exciton states in a single quantum dot molecule,” Phys. Rev. B 74, 121305 (2006).
[CrossRef]

Crepeau, C.

C. H. Bennet, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef]

Duan, L. M.

Y. Wu, X. Li, L. M. Duan, D. G. Steel, and D. Gammon, “Density matrix tomography through sequential coherent optical rotations of an exciton qubit in a single quantum dot,” Phys. Rev. Lett. 96, 087402 (2006).
[CrossRef] [PubMed]

Duan, L.-M.

L.-M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef] [PubMed]

Edamatsu, K.

H. Kosaka, H. Shigyou, Y. Mitsumori, Y. Rikitake, H. Imamura, T. Kutsuwa, K. Arai, and K. Edamatsu, “Coherent transfer of light polarization to electron spins in a semiconductor,” Phys. Rev. Lett. 100, 096602 (2008).
[CrossRef] [PubMed]

Fasol, G.

G. Fasol, “Absence of low temperature saturation of electron-electron scattering in a single mode quantum wire,” Appl. Phys. Lett. 61, 831-834 (1992).
[CrossRef]

Finley, J. J.

T. Nakaoka, E. C. Clark, H. J. Krenner, M. Sabathil, M. Bichler, Y. Arakawa, G. Abstreiter, and J. J. Finley, “Direct observation of acoustic phonon mediated relaxation between coupled exciton states in a single quantum dot molecule,” Phys. Rev. B 74, 121305 (2006).
[CrossRef]

Forchel, A.

Gammon, D.

Y. Wu, X. Li, L. M. Duan, D. G. Steel, and D. Gammon, “Density matrix tomography through sequential coherent optical rotations of an exciton qubit in a single quantum dot,” Phys. Rev. Lett. 96, 087402 (2006).
[CrossRef] [PubMed]

Hennrich, M.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

Hofmann, C.

Hofmann, H. F.

K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Efficiencies for the single-mode operation of a quantum optical nonlinear shift gate,” Phys. Rev. A 70, 013810 (2004).
[CrossRef]

K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “A study on the shape of two-photon wavefunctions after the nonlinear interaction with a one-dimensional atom,” arXiv.org quant-ph/0404119.

Hood, C. J.

C. J. Hood and H. J. Kimble, “Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in an optical cavity,” Phys. Rev. A 64, 033804 (2001).
[CrossRef]

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[CrossRef] [PubMed]

Ikeda, N.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

Imamura, H.

H. Kosaka, H. Shigyou, Y. Mitsumori, Y. Rikitake, H. Imamura, T. Kutsuwa, K. Arai, and K. Edamatsu, “Coherent transfer of light polarization to electron spins in a semiconductor,” Phys. Rev. Lett. 100, 096602 (2008).
[CrossRef] [PubMed]

H. Kosaka, Y. Mitsumori, Y. Rikitake, and H. Imamura, “Polarization transfer from photon to electron spin in g factor engineered quantum wells,” Appl. Phys. Lett. 90, 113511 (2007).
[CrossRef]

Jozsa, R.

C. H. Bennet, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef]

Kamp, M.

Keldysh, L. V.

Kimble, H. J.

L.-M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef] [PubMed]

C. J. Hood and H. J. Kimble, “Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in an optical cavity,” Phys. Rev. A 64, 033804 (2001).
[CrossRef]

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[CrossRef] [PubMed]

Kojima, K.

K. Kojima and A. Tomita, “Quantum-nondemolition measurement of photon arrival using an atom-cavity system,” Phys. Rev. A 75, 032320 (2007).
[CrossRef]

K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Efficiencies for the single-mode operation of a quantum optical nonlinear shift gate,” Phys. Rev. A 70, 013810 (2004).
[CrossRef]

K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “A study on the shape of two-photon wavefunctions after the nonlinear interaction with a one-dimensional atom,” arXiv.org quant-ph/0404119.

Kono, S.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

Kosaka, H.

H. Kosaka, H. Shigyou, Y. Mitsumori, Y. Rikitake, H. Imamura, T. Kutsuwa, K. Arai, and K. Edamatsu, “Coherent transfer of light polarization to electron spins in a semiconductor,” Phys. Rev. Lett. 100, 096602 (2008).
[CrossRef] [PubMed]

H. Kosaka, Y. Mitsumori, Y. Rikitake, and H. Imamura, “Polarization transfer from photon to electron spin in g factor engineered quantum wells,” Appl. Phys. Lett. 90, 113511 (2007).
[CrossRef]

H. Kosaka, D. S. Rao, H. D. Robinson, P. Bandaru, K. Makita, and E. Yablonovitch, “Single photoelectron trapping, storage, and detection in a field effect transistor,” Phys. Rev. B 67, 045104 (2003).
[CrossRef]

Krenner, H. J.

T. Nakaoka, E. C. Clark, H. J. Krenner, M. Sabathil, M. Bichler, Y. Arakawa, G. Abstreiter, and J. J. Finley, “Direct observation of acoustic phonon mediated relaxation between coupled exciton states in a single quantum dot molecule,” Phys. Rev. B 74, 121305 (2006).
[CrossRef]

Kubanek, A.

Kuhn, A.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

Kulakovskii, V. D.

Kutsuwa, T.

H. Kosaka, H. Shigyou, Y. Mitsumori, Y. Rikitake, H. Imamura, T. Kutsuwa, K. Arai, and K. Edamatsu, “Coherent transfer of light polarization to electron spins in a semiconductor,” Phys. Rev. Lett. 100, 096602 (2008).
[CrossRef] [PubMed]

Ladd, T. D.

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef] [PubMed]

Lange, W.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[CrossRef] [PubMed]

Li, X.

Y. Wu, X. Li, L. M. Duan, D. G. Steel, and D. Gammon, “Density matrix tomography through sequential coherent optical rotations of an exciton qubit in a single quantum dot,” Phys. Rev. Lett. 96, 087402 (2006).
[CrossRef] [PubMed]

Löffler, A.

Mabuchi, H.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[CrossRef] [PubMed]

Makita, K.

H. Kosaka, D. S. Rao, H. D. Robinson, P. Bandaru, K. Makita, and E. Yablonovitch, “Single photoelectron trapping, storage, and detection in a field effect transistor,” Phys. Rev. B 67, 045104 (2003).
[CrossRef]

Mitsumori, Y.

H. Kosaka, H. Shigyou, Y. Mitsumori, Y. Rikitake, H. Imamura, T. Kutsuwa, K. Arai, and K. Edamatsu, “Coherent transfer of light polarization to electron spins in a semiconductor,” Phys. Rev. Lett. 100, 096602 (2008).
[CrossRef] [PubMed]

H. Kosaka, Y. Mitsumori, Y. Rikitake, and H. Imamura, “Polarization transfer from photon to electron spin in g factor engineered quantum wells,” Appl. Phys. Lett. 90, 113511 (2007).
[CrossRef]

Munro, W. J.

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef] [PubMed]

Nakaoka, T.

T. Nakaoka, E. C. Clark, H. J. Krenner, M. Sabathil, M. Bichler, Y. Arakawa, G. Abstreiter, and J. J. Finley, “Direct observation of acoustic phonon mediated relaxation between coupled exciton states in a single quantum dot molecule,” Phys. Rev. B 74, 121305 (2006).
[CrossRef]

Nemoto, K.

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef] [PubMed]

Ohkouchi, S.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

Peeters, F. M.

M. Tadic and F. M. Peeters, “Exciton states and oscillator strength in two vertically coupled InP/InGaP quantum discs,” J. Phys. Condens. Matter 16, 8633-8652 (2004).
[CrossRef]

Peres, A.

C. H. Bennet, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef]

Ponomarev, I. V.

Rao, D. S.

H. Kosaka, D. S. Rao, H. D. Robinson, P. Bandaru, K. Makita, and E. Yablonovitch, “Single photoelectron trapping, storage, and detection in a field effect transistor,” Phys. Rev. B 67, 045104 (2003).
[CrossRef]

Reinecke, T. L.

Reithmaier, J. P.

Reitzenstein, S.

Rempe, G.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

Rikitake, Y.

H. Kosaka, H. Shigyou, Y. Mitsumori, Y. Rikitake, H. Imamura, T. Kutsuwa, K. Arai, and K. Edamatsu, “Coherent transfer of light polarization to electron spins in a semiconductor,” Phys. Rev. Lett. 100, 096602 (2008).
[CrossRef] [PubMed]

H. Kosaka, Y. Mitsumori, Y. Rikitake, and H. Imamura, “Polarization transfer from photon to electron spin in g factor engineered quantum wells,” Appl. Phys. Lett. 90, 113511 (2007).
[CrossRef]

Robinson, H. D.

H. Kosaka, D. S. Rao, H. D. Robinson, P. Bandaru, K. Makita, and E. Yablonovitch, “Single photoelectron trapping, storage, and detection in a field effect transistor,” Phys. Rev. B 67, 045104 (2003).
[CrossRef]

Sabathil, M.

T. Nakaoka, E. C. Clark, H. J. Krenner, M. Sabathil, M. Bichler, Y. Arakawa, G. Abstreiter, and J. J. Finley, “Direct observation of acoustic phonon mediated relaxation between coupled exciton states in a single quantum dot molecule,” Phys. Rev. B 74, 121305 (2006).
[CrossRef]

Sanaka, K.

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef] [PubMed]

Sasaki, K.

K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Efficiencies for the single-mode operation of a quantum optical nonlinear shift gate,” Phys. Rev. A 70, 013810 (2004).
[CrossRef]

K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “A study on the shape of two-photon wavefunctions after the nonlinear interaction with a one-dimensional atom,” arXiv.org quant-ph/0404119.

Shigyou, H.

H. Kosaka, H. Shigyou, Y. Mitsumori, Y. Rikitake, H. Imamura, T. Kutsuwa, K. Arai, and K. Edamatsu, “Coherent transfer of light polarization to electron spins in a semiconductor,” Phys. Rev. Lett. 100, 096602 (2008).
[CrossRef] [PubMed]

Shirane, M.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

Steel, D. G.

Y. Wu, X. Li, L. M. Duan, D. G. Steel, and D. Gammon, “Density matrix tomography through sequential coherent optical rotations of an exciton qubit in a single quantum dot,” Phys. Rev. Lett. 96, 087402 (2006).
[CrossRef] [PubMed]

Sugimoto, Y.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

Tadic, M.

M. Tadic and F. M. Peeters, “Exciton states and oscillator strength in two vertically coupled InP/InGaP quantum discs,” J. Phys. Condens. Matter 16, 8633-8652 (2004).
[CrossRef]

Takeuchi, S.

K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Efficiencies for the single-mode operation of a quantum optical nonlinear shift gate,” Phys. Rev. A 70, 013810 (2004).
[CrossRef]

K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “A study on the shape of two-photon wavefunctions after the nonlinear interaction with a one-dimensional atom,” arXiv.org quant-ph/0404119.

Tomita, A.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

K. Kojima and A. Tomita, “Quantum-nondemolition measurement of photon arrival using an atom-cavity system,” Phys. Rev. A 75, 032320 (2007).
[CrossRef]

Turchette, Q. A.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[CrossRef] [PubMed]

Ushida, J.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

van Loock, P.

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef] [PubMed]

Wootters, W. K.

C. H. Bennet, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef]

Wu, Y.

Y. Wu, X. Li, L. M. Duan, D. G. Steel, and D. Gammon, “Density matrix tomography through sequential coherent optical rotations of an exciton qubit in a single quantum dot,” Phys. Rev. Lett. 96, 087402 (2006).
[CrossRef] [PubMed]

Yablonovitch, E.

H. Kosaka, D. S. Rao, H. D. Robinson, P. Bandaru, K. Makita, and E. Yablonovitch, “Single photoelectron trapping, storage, and detection in a field effect transistor,” Phys. Rev. B 67, 045104 (2003).
[CrossRef]

Yamaguchi, F.

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef] [PubMed]

Yamamoto, Y.

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef] [PubMed]

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997).

Appl. Phys. Lett. (2)

H. Kosaka, Y. Mitsumori, Y. Rikitake, and H. Imamura, “Polarization transfer from photon to electron spin in g factor engineered quantum wells,” Appl. Phys. Lett. 90, 113511 (2007).
[CrossRef]

G. Fasol, “Absence of low temperature saturation of electron-electron scattering in a single mode quantum wire,” Appl. Phys. Lett. 61, 831-834 (1992).
[CrossRef]

J. Appl. Phys. (1)

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

J. Phys. Condens. Matter (1)

M. Tadic and F. M. Peeters, “Exciton states and oscillator strength in two vertically coupled InP/InGaP quantum discs,” J. Phys. Condens. Matter 16, 8633-8652 (2004).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (3)

C. J. Hood and H. J. Kimble, “Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in an optical cavity,” Phys. Rev. A 64, 033804 (2001).
[CrossRef]

K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Efficiencies for the single-mode operation of a quantum optical nonlinear shift gate,” Phys. Rev. A 70, 013810 (2004).
[CrossRef]

K. Kojima and A. Tomita, “Quantum-nondemolition measurement of photon arrival using an atom-cavity system,” Phys. Rev. A 75, 032320 (2007).
[CrossRef]

Phys. Rev. B (2)

T. Nakaoka, E. C. Clark, H. J. Krenner, M. Sabathil, M. Bichler, Y. Arakawa, G. Abstreiter, and J. J. Finley, “Direct observation of acoustic phonon mediated relaxation between coupled exciton states in a single quantum dot molecule,” Phys. Rev. B 74, 121305 (2006).
[CrossRef]

H. Kosaka, D. S. Rao, H. D. Robinson, P. Bandaru, K. Makita, and E. Yablonovitch, “Single photoelectron trapping, storage, and detection in a field effect transistor,” Phys. Rev. B 67, 045104 (2003).
[CrossRef]

Phys. Rev. Lett. (7)

H. Kosaka, H. Shigyou, Y. Mitsumori, Y. Rikitake, H. Imamura, T. Kutsuwa, K. Arai, and K. Edamatsu, “Coherent transfer of light polarization to electron spins in a semiconductor,” Phys. Rev. Lett. 100, 096602 (2008).
[CrossRef] [PubMed]

C. H. Bennet, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef]

L.-M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef] [PubMed]

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[CrossRef] [PubMed]

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef] [PubMed]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

Y. Wu, X. Li, L. M. Duan, D. G. Steel, and D. Gammon, “Density matrix tomography through sequential coherent optical rotations of an exciton qubit in a single quantum dot,” Phys. Rev. Lett. 96, 087402 (2006).
[CrossRef] [PubMed]

Other (2)

K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “A study on the shape of two-photon wavefunctions after the nonlinear interaction with a one-dimensional atom,” arXiv.org quant-ph/0404119.

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the setup to implement CPF between an atom and a photon. With a PBS, the X-polarized component of the single-photon signal pulse is reflected by the cavity while the Y-polarized component is reflected by the mirror M. The optical paths from the PBS to the cavity and to the mirror M are assumed to be equal. X and Y are any two mutually orthogonal axes.

Fig. 2
Fig. 2

Schematic representation of PAD.

Fig. 3
Fig. 3

PADs cascaded by circulators ( C ) .

Fig. 4
Fig. 4

Schematic representation of cavity geometry.

Fig. 5
Fig. 5

Projection probabilities (a) P h ( t ) for weak coherent pulse inputs of duration 5 Γ 2 and average input photon numbers of n ¯ in = 0.03 (solid curve), 0.3 (dashed curve), and 3 (dotted curve) starting from the ground state g and (b) for strong coherent pulse inputs of duration 5 Γ 2 and average input photon numbers of n ¯ in = 10 2 (solid curve), 10 3 (dashed curve), and 10 4 (dotted curve).

Fig. 6
Fig. 6

Fidelity F int ξ 2 ( d ) for an input pulse duration of L = 4 κ , 40 κ and 400 κ .

Fig. 7
Fig. 7

Fidelity F int g ( d ) for the input pulse duration L = 4 κ , 40 κ , and 400 κ . (a) Ratio g 1 κ = 0.1 , ( b ) = 1 , and ( c ) = 10 .

Fig. 8
Fig. 8

Success probabilities and average detection numbers for n = 5 (solid curve), 10 (dashed curve), and 25 (dotted curve) attempts for P 0 = P 1 = 1 2 , P 11 PAD = 0.0974 + 4.5 10 4 = 9.785 10 2 , and P 01 PAD = 5.88 10 3 10 1 + 10 5 + 4.5 10 4 = 10.48 10 4 . Dependence of (a) P PAD and (b) N ¯ Det 1 on linear transmittance P T .

Equations (61)

Equations on this page are rendered with MathJax. Learn more.

H ̂ = j = 1 , 2 ( H ̂ F c ( j ) + H ̂ int F c ( j ) + H ̂ intac ( j ) ) ,
H ̂ F c ( j ) = d k c k b ̂ F c j ( k ) b ̂ F c j ( k ) ,
H ̂ int F c ( j ) = d k i c κ π ( b ̂ F c j ( k ) a ̂ j a ̂ j b ̂ F c j ( k ) ) ,
H ̂ intac ( j ) = g j ( a ̂ j σ ̂ ( j ) + σ ̂ ( j ) a ̂ j ) ,
b ̂ F c 2 ( k ; t ) = e i c k ( t t i ) b ̂ F c 2 ( k ; t i ) + c κ π t i t d t e i c k ( t t ) a ̂ 2 ( t ) ,
d d t a ̂ 2 ( t ) = i g 2 σ ̂ ( 2 ) ( t ) c κ π d k b ̂ F c 2 ( k ; t ) ,
= i g 2 σ ̂ ( 2 ) ( t ) κ a ̂ 2 ( t ) 2 κ c b ̂ F c 2 ( c ( t t i ) ; t i ) .
a ̂ 2 ( t ) = i g 2 t i t d t e κ ( t t ) σ ̂ ( 2 ) ( t ) + e κ ( t t i ) a ̂ 2 ( t i ) 2 κ c t i t d t e κ ( t t ) b ̂ F c 2 ( c ( t t i ) ; t i ) .
a ̂ 2 ( t ) i g 2 κ σ ̂ ( 2 ) ( t ) + e κ ( t t i ) a ̂ 2 ( t i ) 2 κ c t i t d t e κ ( t t ) b ̂ F c 2 ( c ( t t i ) ; t i ) .
d d t σ ̂ ( 2 ) ( t ) = i g 2 σ ̂ 3 ( 2 ) ( t ) a ̂ 2 ( t ) γ 2 σ ̂ ( 2 ) ( t ) ,
d d t σ ̂ 3 ( 2 ) ( t ) = 2 i g 2 ( a ̂ 2 ( t ) σ ̂ ( 2 ) ( t ) σ ̂ ( 2 ) ( t ) a ̂ 2 ( t ) ) γ 2 ( σ ̂ 3 ( 2 ) ( t ) + I ) ,
Ψ ( t i ) = α F c 2 Vac a 2 g , where α = D ̂ ( α ) Vac ,
D ̂ ( α ) exp [ d r α ( r ; t i ) b ̂ F c 2 ( r ; t i ) α * ( r ; t i ) b ̂ F c 2 ( r ; t i ) ] .
d d t σ ̂ ( 2 ) ( t ) ( g 2 2 κ + γ 2 ) σ ̂ ( 2 ) ( t ) + i g 2 2 κ σ ̂ 3 ( 2 ) ( t ) t i t d t e κ ( t t ) ϵ in ( t ) ,
d d t σ ̂ 3 ( 2 ) ( t ) 2 ( g 2 2 κ + γ 2 ) ( σ ̂ 3 ( 2 ) ( t ) + 1 ) + 2 i g 2 2 κ × t i t d t e κ ( t t ) ( ϵ in * ( t ) σ ̂ ( 2 ) ( t ) σ ̂ ( 2 ) ( t ) * ϵ in ( t ) ) ,
ϵ in ( t ) = { 0 for t t i e i ϕ ϵ for t i t t f 0 for t f t } .
σ ̂ ( 2 ) ( t ) = { σ ̂ ( 2 ) ( t ) for t t i v ( t , ϕ ) + s for t i t t f σ ̂ ( 2 ) ( t f ) e ( Γ 2 + γ 2 ) ( t t f ) for t f < t } ,
v ( t , ϕ ) = 1 8 2 β 2 n ¯ in ( ( 1 Υ ) e λ + t ( f + + I + ( ϕ ) ) + ( 1 + Υ ) e λ t ( f + I ( ϕ ) ) )
s = 1 8 2 β 2 n ¯ in ( ( 1 Υ ) f + + ( 1 + Υ ) f ) ,
λ ± = γ 2 + Γ 2 2 ( 3 ± Υ ) , f ± = ± 16 n ¯ in Υ ( 3 ± Υ ) ,
I ± ( ϕ ) = ± 1 Υ ( 1 ± Υ 2 ( σ ̂ 3 ( 2 ) ( t i ) + 1 ) 4 2 β 2 n ¯ in e i ϕ σ ̂ ( 2 ) ( t i ) ) ,
σ ̂ 3 ( 2 ) ( t ) = { σ ̂ 3 ( 2 ) ( t ) for t t i v 3 ( t , ϕ ) + s 3 for t i t t f ( σ ̂ 3 ( 2 ) ( t f ) + 1 ) e 2 ( Γ 2 + γ 2 ) ( t t f ) 1 for t f < t } ,
v 3 ( t , ϕ ) = e λ + ( t t i ) ( I + ( ϕ ) + f + ) + e λ ( t t i ) ( I ( ϕ ) + f )
s 3 = ( f + + f + 1 ) ,
P 1 ( t ) = σ ̂ ( 2 ) ( t ) + σ ̂ ( 2 ) ( t ) * ,
P 2 ( t ) = i ( σ ̂ ( 2 ) ( t ) σ ̂ ( 2 ) ( t ) * ) ,
P 3 ( t ) = σ ̂ 3 ( 2 ) ( t ) .
ρ atom ( t ) = P h ( t ) Φ h Φ h + P h ( t ) Φ h Φ h + P 3 ( t ) 2 ( Φ h Φ h + Φ h Φ h ) .
Ψ in ψ in ( c g g + c ξ 2 ξ 2 ) ,
ψ in d r ψ in ( r ) r ,
Ψ out ideal ψ in ( c ξ 2 ξ 2 c g g ) ,
Ψ out = ( c g ψ out g g + c ξ 2 ψ out ξ 2 ξ 2 ) .
F ( d ) Ψ out ideal Ψ out = c ξ 2 2 F int ξ 2 ( d ) + c g 2 F int g ( d ) ,
F int ξ 2 ( d ) = ψ in ψ out ξ 2 , F int g ( d ) = ψ in ψ out g .
Ψ ( t ) = Φ ( E 1 ; t ) E 1 + Λ ( C 1 ; t ) C 1 + d k 1 ψ ( k 1 ; t ) k 1 .
H ̂ 1 ph = c k ̂ 1 + i c κ π d k 1 ( k 1 C 1 C 1 k 1 ) + g 1 ( C 1 E 1 + E 1 C 1 ) ,
k ̂ 1 = d k 1 k 1 k 1 .
d d t Φ ( E 1 ; t ) = i g Λ ( C 1 ; t ) ,
d d t Λ ( C 1 ; t ) = i g Φ ( ξ 1 ; t ) c κ π d k 1 ψ ( k 1 ; t ) ,
d d t ψ ( k 1 ; t ) = i k 1 c ψ ( k 1 ; t ) + c κ π Λ ( C 1 ; t ) .
ψ ( k 1 ; t ) = e i k 1 c ( t t i ) ψ ( k 1 ; t i ) + c κ π t i t d t e i k 1 c ( t t ) Λ ( C 1 ; t ) ,
ψ ( r 1 ; t ) { 1 2 π d k 1 e i k 1 r 1 ψ ( k 1 ; t ) for r 1 < 0 1 2 π d k 1 e i k 1 r 1 ψ ( k 1 ; t ) for r 1 > 0 } .
ψ ( r 1 ; t ) = { ψ ( r 1 c ( t t i ) ; t i ) for r 1 < 0 ψ ( r 1 c ( t t i ) ; t i ) for c ( t t i ) < r 1 ψ ( r 1 c ( t t i ) ; t i ) 2 κ c Λ ( C 1 ; t r 1 c ) for 0 < r 1 < c ( t t i ) . }
d d t ( Φ ( E 1 ; t ) Λ ( C 1 ; t ) ) = ( 0 i g i g κ ) ( Φ ( E 1 ; t ) Λ ( C 1 ; t ) ) 2 c κ ( 0 ψ ( c ( t t i ) ; t i ) ) ,
Λ ( C 1 ; t ) = h ( t ) Ω + h + ( t ) Ω + Ω + Ω ,
h ± ( t ) = 2 c κ t i t d t e Ω ± ( t t ) ψ ( c ( t t ) ; t i ) ,
Ω ± = ( κ ± κ 2 4 g 1 2 ) 2 for g 1 κ 2 .
ψ ( r 1 ; t ) = r 1 Ψ ( t ) = d r 1 u 1 ph ( r 1 , r 1 ; t t i ) ψ 1 ( r 1 ; t i ) .
ψ out ( r ) = d r u 1 ph ( r , r ) × ψ in ( r ) ,
u 1 ph ( r ; r ) = u ref ( r ; r ) + u ac ( r ; r )
u ref ( r ; r ) = δ ( r r ) ,
u ac ( r ; r ) = { 2 κ c e Ω c ( r r ) Ω + e Ω + c ( r r ) Ω + Ω + Ω for r < r , 0 for r > r . }
F int g ( d ) = d r ψ in ( r + d ) ψ out ( r ) for g 1 > 0 ,
F int ξ 2 ( d ) = d r ψ in ( r + d ) ψ out ( r ) for g 1 = 0 .
Tr 1 ph [ exp [ ( i ) H ̂ ( 1 ) t ] ρ 1 ph ρ atom ( t ) exp [ ( i ) H ̂ ( 1 ) t ] ] ,
P 11 PAD = P ( i ) ( t r + δ t int ) P ( ii ) ξ 2 ( t r + τ ) P eff + P noise ( τ ) ,
P 01 PAD = ( 1 P h ( t r + δ t int ) ) P ( ii ) ξ 2 ( t r + τ ) P eff + P dark + P noise ( τ ) ,
N ¯ Det 1 = P 1 N ¯ 1 Det 1 + P 0 N ¯ 0 Det 1 ,
N ¯ 1 Det 1 = P 11 PAD k = 1 n ( P T ) k 1 + P 01 PAD ( n k = 1 n ( P T ) k 1 ) ,
N ¯ 0 Det 1 = n P 01 PAD ,
P PAD P 1 ( P 11 PAD k = 1 n ( P T ) k 1 ) N ¯ Det 1 ,

Metrics