Abstract

We investigated interference effect between two whispering gallery modes in a system of ultrahigh-Q silica microspheres in which the resonance frequencies of spheres were precisely controlled through thermal tuning. A symmetric transmission peak of coupled—resonator—induced transparency reshaped into a sharp asymmetric spectrum similar to Fano effect in atomic system as the resonance frequency of the second sphere was detuned. The resonance modes showed frequency shifts as a function of the coupling strength between the two spheres, indicating that two whispering gallery modes were configurationally mixed. The observations were compared with calculations and discussed using double-spiral structures in the phase space in the transmitted field.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839-846 (2003).
    [CrossRef] [PubMed]
  2. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
    [CrossRef]
  3. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621-623 (2002).
    [CrossRef] [PubMed]
  4. L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28, 592-594 (2003).
    [CrossRef] [PubMed]
  5. S. F. Preble, Q. Xu, and M. Lipson, “Changing the color of light in a silicon resonator,” Nat. Photonics 1, 293-296 (2007).
    [CrossRef]
  6. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
    [CrossRef] [PubMed]
  7. K. A. Fuller, “Optical resonances and two-sphere systems,” Appl. Opt. 30, 4716-4731 (1991).
    [CrossRef] [PubMed]
  8. S. Arnold, A. Ghaemi, P. Hendrie, and K. A. Fuller, “Morphological resonances detected from a cluster of two microspheres,” Opt. Lett. 19, 156-158 (1994).
    [CrossRef] [PubMed]
  9. T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-binding photonic molecule modes of resonant bispheres,” Phys. Rev. Lett. 82, 4623-4626 (1999).
    [CrossRef]
  10. Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Photonic molecule lasing,” Opt. Lett. 28, 2437-2439 (2003).
    [CrossRef] [PubMed]
  11. B. M. Möller, U. Woggon, M. V. Artemyev, and R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70, 115323 (2004).
    [CrossRef]
  12. J. Scheuer and A. Yariv, “Sagnac effect in roupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96, 053901 (2006).
    [CrossRef] [PubMed]
  13. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
    [CrossRef] [PubMed]
  14. Q. Xu, P. Ding, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406-410 (2007).
    [CrossRef]
  15. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
    [CrossRef]
  16. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
    [CrossRef]
  17. M. Hossein-Zadeh and K. J. Vahala, “Importance of intrinsic-Q in microring-based optical filters and dispersion-compensation devices,” IEEE Photon. Technol. Lett. 19, 1045-1047 (2008).
    [CrossRef]
  18. M. A. Popovic, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, E. P. Ippen, F. X. Kartner, and H. I. Smith, “Multistage high-order microring-resonator add-drop filters,” Opt. Lett. 31, 2571-2573 (2006).
    [CrossRef] [PubMed]
  19. G. Lenz and C. K. Madsen, “General optical all-pass filter structures for dispersion control in WDM systems,” J. Lightwave Technol. 17, 1248-1254 (1999).
    [CrossRef]
  20. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
    [CrossRef]
  21. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36-42 (1997).
    [CrossRef]
  22. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-492 (2001).
    [CrossRef] [PubMed]
  23. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
    [CrossRef] [PubMed]
  24. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
    [CrossRef] [PubMed]
  25. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
    [CrossRef]
  26. A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
    [CrossRef]
  27. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
    [CrossRef] [PubMed]
  28. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
    [CrossRef] [PubMed]
  29. D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R. W. Boyd, Q-Han Park, Hongrok Chang, and D. J. Jackson, “Coupled-resonator-induced transparency in a fiber system,” Opt. Commun. 264, 163-168 (2006).
    [CrossRef]
  30. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866-1878 (1961).
    [CrossRef]
  31. K. Totsuka and M. Tomita, “Slow and fast light in a microsphere-optical fiber system,” J. Opt. Soc. Am. B 23, 2194-2199 (2006).
    [CrossRef]
  32. K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, “Tuning of the Fano effect through a quantum dot in an Aharonov-Bohm interferometer,” Phys. Rev. Lett. 88, 256806-256809 (2002).
    [CrossRef] [PubMed]
  33. D. D. Smith and H. Chang, “Coherence phenomena in coupled optical resonators,” J. Mod. Opt. 51, 2503-2513 (2004).
  34. H. Chang and D. D. Smith, “Gain-assisted superluminal propagation in coupled optical resonators,” J. Opt. Soc. Am. B 22, 2237-2241 (2005).
    [CrossRef]
  35. U. Fano, “On the theory of imperfect diffraction gratings,” J. Opt. Soc. Am. 31, 213-222 (1941).
    [CrossRef]
  36. A. Chiba, H. Fujiwara, J.-I. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86, 261106-261108 (2005).
    [CrossRef]
  37. R. K. Adair, C. K. Bockelman, and R. E. Peterson, “Experimental corroboration of the theory of neutron resonance scattering,” Phys. Rev. 76, 308-311 (1949).
    [CrossRef]
  38. V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, “Tunneling into a single magnetic atom: spectroscopic evidence of the kondo resonance,” Science 280, 567-569 (1998).
    [CrossRef] [PubMed]
  39. J. Li, W.-D. Schneider, and R. Berndt, “Kondo scattering observed at a single magnetic impurity,” Phys. Rev. Lett. 80, 2893-2896 (1998).
    [CrossRef]
  40. J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589-591 (1997).
    [CrossRef]
  41. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908-910 (2002).
    [CrossRef]
  42. C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-1529 (2003).
    [CrossRef]

2008

M. Hossein-Zadeh and K. J. Vahala, “Importance of intrinsic-Q in microring-based optical filters and dispersion-compensation devices,” IEEE Photon. Technol. Lett. 19, 1045-1047 (2008).
[CrossRef]

2007

Q. Xu, P. Ding, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406-410 (2007).
[CrossRef]

S. F. Preble, Q. Xu, and M. Lipson, “Changing the color of light in a silicon resonator,” Nat. Photonics 1, 293-296 (2007).
[CrossRef]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef] [PubMed]

2006

D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R. W. Boyd, Q-Han Park, Hongrok Chang, and D. J. Jackson, “Coupled-resonator-induced transparency in a fiber system,” Opt. Commun. 264, 163-168 (2006).
[CrossRef]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

J. Scheuer and A. Yariv, “Sagnac effect in roupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96, 053901 (2006).
[CrossRef] [PubMed]

M. A. Popovic, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, E. P. Ippen, F. X. Kartner, and H. I. Smith, “Multistage high-order microring-resonator add-drop filters,” Opt. Lett. 31, 2571-2573 (2006).
[CrossRef] [PubMed]

K. Totsuka and M. Tomita, “Slow and fast light in a microsphere-optical fiber system,” J. Opt. Soc. Am. B 23, 2194-2199 (2006).
[CrossRef]

2005

H. Chang and D. D. Smith, “Gain-assisted superluminal propagation in coupled optical resonators,” J. Opt. Soc. Am. B 22, 2237-2241 (2005).
[CrossRef]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[CrossRef] [PubMed]

A. Chiba, H. Fujiwara, J.-I. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86, 261106-261108 (2005).
[CrossRef]

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[CrossRef]

2004

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

D. D. Smith and H. Chang, “Coherence phenomena in coupled optical resonators,” J. Mod. Opt. 51, 2503-2513 (2004).

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

B. M. Möller, U. Woggon, M. V. Artemyev, and R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70, 115323 (2004).
[CrossRef]

2003

K. J. Vahala, “Optical microcavities,” Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28, 592-594 (2003).
[CrossRef] [PubMed]

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Photonic molecule lasing,” Opt. Lett. 28, 2437-2439 (2003).
[CrossRef] [PubMed]

2002

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908-910 (2002).
[CrossRef]

K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, “Tuning of the Fano effect through a quantum dot in an Aharonov-Bohm interferometer,” Phys. Rev. Lett. 88, 256806-256809 (2002).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621-623 (2002).
[CrossRef] [PubMed]

2001

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-492 (2001).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

1999

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-binding photonic molecule modes of resonant bispheres,” Phys. Rev. Lett. 82, 4623-4626 (1999).
[CrossRef]

G. Lenz and C. K. Madsen, “General optical all-pass filter structures for dispersion control in WDM systems,” J. Lightwave Technol. 17, 1248-1254 (1999).
[CrossRef]

1998

V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, “Tunneling into a single magnetic atom: spectroscopic evidence of the kondo resonance,” Science 280, 567-569 (1998).
[CrossRef] [PubMed]

J. Li, W.-D. Schneider, and R. Berndt, “Kondo scattering observed at a single magnetic impurity,” Phys. Rev. Lett. 80, 2893-2896 (1998).
[CrossRef]

1997

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589-591 (1997).
[CrossRef]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36-42 (1997).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

1994

1991

1961

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

1949

R. K. Adair, C. K. Bockelman, and R. E. Peterson, “Experimental corroboration of the theory of neutron resonance scattering,” Phys. Rev. 76, 308-311 (1949).
[CrossRef]

1941

Absil, P. P.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

Adair, R. K.

R. K. Adair, C. K. Bockelman, and R. E. Peterson, “Experimental corroboration of the theory of neutron resonance scattering,” Phys. Rev. 76, 308-311 (1949).
[CrossRef]

Aikawa, H.

K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, “Tuning of the Fano effect through a quantum dot in an Aharonov-Bohm interferometer,” Phys. Rev. Lett. 88, 256806-256809 (2002).
[CrossRef] [PubMed]

Arnold, S.

Artemyev, M. V.

B. M. Möller, U. Woggon, M. V. Artemyev, and R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70, 115323 (2004).
[CrossRef]

Barwicz, T.

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-492 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Berndt, R.

J. Li, W.-D. Schneider, and R. Berndt, “Kondo scattering observed at a single magnetic impurity,” Phys. Rev. Lett. 80, 2893-2896 (1998).
[CrossRef]

Bockelman, C. K.

R. K. Adair, C. K. Bockelman, and R. E. Peterson, “Experimental corroboration of the theory of neutron resonance scattering,” Phys. Rev. 76, 308-311 (1949).
[CrossRef]

Boyd, R. W.

D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R. W. Boyd, Q-Han Park, Hongrok Chang, and D. J. Jackson, “Coupled-resonator-induced transparency in a fiber system,” Opt. Commun. 264, 163-168 (2006).
[CrossRef]

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Capasso, F.

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589-591 (1997).
[CrossRef]

Carmon, T.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

Chang, H.

H. Chang and D. D. Smith, “Gain-assisted superluminal propagation in coupled optical resonators,” J. Opt. Soc. Am. B 22, 2237-2241 (2005).
[CrossRef]

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

D. D. Smith and H. Chang, “Coherence phenomena in coupled optical resonators,” J. Mod. Opt. 51, 2503-2513 (2004).

Chang, Hongrok

D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R. W. Boyd, Q-Han Park, Hongrok Chang, and D. J. Jackson, “Coupled-resonator-induced transparency in a fiber system,” Opt. Commun. 264, 163-168 (2006).
[CrossRef]

Chao, C.-Y.

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

Chen, W.

V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, “Tunneling into a single magnetic atom: spectroscopic evidence of the kondo resonance,” Science 280, 567-569 (1998).
[CrossRef] [PubMed]

Chiba, A.

A. Chiba, H. Fujiwara, J.-I. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86, 261106-261108 (2005).
[CrossRef]

Chu, S. T.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Crommie, M. F.

V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, “Tunneling into a single magnetic atom: spectroscopic evidence of the kondo resonance,” Science 280, 567-569 (1998).
[CrossRef] [PubMed]

Ding, P.

Q. Xu, P. Ding, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406-410 (2007).
[CrossRef]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-492 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Faist, J.

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589-591 (1997).
[CrossRef]

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908-910 (2002).
[CrossRef]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

U. Fano, “On the theory of imperfect diffraction gratings,” J. Opt. Soc. Am. 31, 213-222 (1941).
[CrossRef]

Farca, G.

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[CrossRef]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Fraval, E.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[CrossRef] [PubMed]

Fujiwara, H.

A. Chiba, H. Fujiwara, J.-I. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86, 261106-261108 (2005).
[CrossRef]

Fuller, K. A.

Gehring, G.

D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R. W. Boyd, Q-Han Park, Hongrok Chang, and D. J. Jackson, “Coupled-resonator-induced transparency in a fiber system,” Opt. Commun. 264, 163-168 (2006).
[CrossRef]

Ghaemi, A.

Gill, D.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

Goh, K. W.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Guo, L. J.

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

Hara, Y.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36-42 (1997).
[CrossRef]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-492 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Hendrie, P.

Hossein-Zadeh, M.

M. Hossein-Zadeh and K. J. Vahala, “Importance of intrinsic-Q in microring-based optical filters and dispersion-compensation devices,” IEEE Photon. Technol. Lett. 19, 1045-1047 (2008).
[CrossRef]

Hotta, J.-I.

A. Chiba, H. Fujiwara, J.-I. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86, 261106-261108 (2005).
[CrossRef]

Hryniewicz, J. V.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

Ippen, E. P.

Iye, Y.

K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, “Tuning of the Fano effect through a quantum dot in an Aharonov-Bohm interferometer,” Phys. Rev. Lett. 88, 256806-256809 (2002).
[CrossRef] [PubMed]

Jackson, D. J.

D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R. W. Boyd, Q-Han Park, Hongrok Chang, and D. J. Jackson, “Coupled-resonator-induced transparency in a fiber system,” Opt. Commun. 264, 163-168 (2006).
[CrossRef]

Jamneala, T.

V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, “Tunneling into a single magnetic atom: spectroscopic evidence of the kondo resonance,” Science 280, 567-569 (1998).
[CrossRef] [PubMed]

Jimba, Y.

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-binding photonic molecule modes of resonant bispheres,” Phys. Rev. Lett. 82, 4623-4626 (1999).
[CrossRef]

Johnson, F. G.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

Kartner, F. X.

Katsumoto, S.

K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, “Tuning of the Fano effect through a quantum dot in an Aharonov-Bohm interferometer,” Phys. Rev. Lett. 88, 256806-256809 (2002).
[CrossRef] [PubMed]

Kimble, H. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

King, O.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621-623 (2002).
[CrossRef] [PubMed]

Kobayashi, K.

K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, “Tuning of the Fano effect through a quantum dot in an Aharonov-Bohm interferometer,” Phys. Rev. Lett. 88, 256806-256809 (2002).
[CrossRef] [PubMed]

Kobayashi, N.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef] [PubMed]

Kuwata-Gonokami, M.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Photonic molecule lasing,” Opt. Lett. 28, 2437-2439 (2003).
[CrossRef] [PubMed]

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-binding photonic molecule modes of resonant bispheres,” Phys. Rev. Lett. 82, 4623-4626 (1999).
[CrossRef]

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Lenz, G.

Lepeshkin, N. N.

D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R. W. Boyd, Q-Han Park, Hongrok Chang, and D. J. Jackson, “Coupled-resonator-induced transparency in a fiber system,” Opt. Commun. 264, 163-168 (2006).
[CrossRef]

Li, J.

J. Li, W.-D. Schneider, and R. Berndt, “Kondo scattering observed at a single magnetic impurity,” Phys. Rev. Lett. 80, 2893-2896 (1998).
[CrossRef]

Lipson, M.

S. F. Preble, Q. Xu, and M. Lipson, “Changing the color of light in a silicon resonator,” Nat. Photonics 1, 293-296 (2007).
[CrossRef]

Q. Xu, P. Ding, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406-410 (2007).
[CrossRef]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Little, B. E.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-492 (2001).
[CrossRef] [PubMed]

Longdell, J. J.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[CrossRef] [PubMed]

Lukin, M. D.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Madhavan, V.

V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, “Tunneling into a single magnetic atom: spectroscopic evidence of the kondo resonance,” Science 280, 567-569 (1998).
[CrossRef] [PubMed]

Madsen, C. K.

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Manson, N. B.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[CrossRef] [PubMed]

Miyazaki, H.

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-binding photonic molecule modes of resonant bispheres,” Phys. Rev. Lett. 82, 4623-4626 (1999).
[CrossRef]

Möller, B. M.

B. M. Möller, U. Woggon, M. V. Artemyev, and R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70, 115323 (2004).
[CrossRef]

Mukaiyama, T.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Photonic molecule lasing,” Opt. Lett. 28, 2437-2439 (2003).
[CrossRef] [PubMed]

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-binding photonic molecule modes of resonant bispheres,” Phys. Rev. Lett. 82, 4623-4626 (1999).
[CrossRef]

Naweed, A.

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[CrossRef]

Park, Q-Han

D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R. W. Boyd, Q-Han Park, Hongrok Chang, and D. J. Jackson, “Coupled-resonator-induced transparency in a fiber system,” Opt. Commun. 264, 163-168 (2006).
[CrossRef]

Peterson, R. E.

R. K. Adair, C. K. Bockelman, and R. E. Peterson, “Experimental corroboration of the theory of neutron resonance scattering,” Phys. Rev. 76, 308-311 (1949).
[CrossRef]

Pfeiffer, L. N.

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589-591 (1997).
[CrossRef]

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Popovic, M. A.

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Preble, S. F.

S. F. Preble, Q. Xu, and M. Lipson, “Changing the color of light in a silicon resonator,” Nat. Photonics 1, 293-296 (2007).
[CrossRef]

Rakich, P. T.

Rokhsari, H.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

Rosenberger, A. T.

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[CrossRef]

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Sasaki, K.

A. Chiba, H. Fujiwara, J.-I. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86, 261106-261108 (2005).
[CrossRef]

Scheuer, J.

J. Scheuer and A. Yariv, “Sagnac effect in roupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96, 053901 (2006).
[CrossRef] [PubMed]

Schneider, W.-D.

J. Li, W.-D. Schneider, and R. Berndt, “Kondo scattering observed at a single magnetic impurity,” Phys. Rev. Lett. 80, 2893-2896 (1998).
[CrossRef]

Schweinsberg, A.

D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R. W. Boyd, Q-Han Park, Hongrok Chang, and D. J. Jackson, “Coupled-resonator-induced transparency in a fiber system,” Opt. Commun. 264, 163-168 (2006).
[CrossRef]

Seiferth, F.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

Sellars, M. J.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[CrossRef] [PubMed]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Shopova, S. I.

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[CrossRef]

Sirtori, C.

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589-591 (1997).
[CrossRef]

Smith, D. D.

D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R. W. Boyd, Q-Han Park, Hongrok Chang, and D. J. Jackson, “Coupled-resonator-induced transparency in a fiber system,” Opt. Commun. 264, 163-168 (2006).
[CrossRef]

H. Chang and D. D. Smith, “Gain-assisted superluminal propagation in coupled optical resonators,” J. Opt. Soc. Am. B 22, 2237-2241 (2005).
[CrossRef]

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

D. D. Smith and H. Chang, “Coherence phenomena in coupled optical resonators,” J. Mod. Opt. 51, 2503-2513 (2004).

Smith, H. I.

Socci, L.

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621-623 (2002).
[CrossRef] [PubMed]

Suh, W.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

Takeda, K.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Photonic molecule lasing,” Opt. Lett. 28, 2437-2439 (2003).
[CrossRef] [PubMed]

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-binding photonic molecule modes of resonant bispheres,” Phys. Rev. Lett. 82, 4623-4626 (1999).
[CrossRef]

Takeuchi, S.

A. Chiba, H. Fujiwara, J.-I. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86, 261106-261108 (2005).
[CrossRef]

Tomita, M.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef] [PubMed]

K. Totsuka and M. Tomita, “Slow and fast light in a microsphere-optical fiber system,” J. Opt. Soc. Am. B 23, 2194-2199 (2006).
[CrossRef]

Totsuka, K.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef] [PubMed]

K. Totsuka and M. Tomita, “Slow and fast light in a microsphere-optical fiber system,” J. Opt. Soc. Am. B 23, 2194-2199 (2006).
[CrossRef]

Trakalo, M.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

Vahala, K. J.

M. Hossein-Zadeh and K. J. Vahala, “Importance of intrinsic-Q in microring-based optical filters and dispersion-compensation devices,” IEEE Photon. Technol. Lett. 19, 1045-1047 (2008).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28, 592-594 (2003).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621-623 (2002).
[CrossRef] [PubMed]

Van, V.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

Walsworth, R. L.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Wang, Z.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

Wannemacher, R.

B. M. Möller, U. Woggon, M. V. Artemyev, and R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70, 115323 (2004).
[CrossRef]

Watts, M. R.

West, K. W.

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589-591 (1997).
[CrossRef]

Wilcut, E.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Wingreen, N. S.

V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, “Tunneling into a single magnetic atom: spectroscopic evidence of the kondo resonance,” Science 280, 567-569 (1998).
[CrossRef] [PubMed]

Woggon, U.

B. M. Möller, U. Woggon, M. V. Artemyev, and R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70, 115323 (2004).
[CrossRef]

Xu, Q.

S. F. Preble, Q. Xu, and M. Lipson, “Changing the color of light in a silicon resonator,” Nat. Photonics 1, 293-296 (2007).
[CrossRef]

Q. Xu, P. Ding, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406-410 (2007).
[CrossRef]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Yang, L.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28, 592-594 (2003).
[CrossRef] [PubMed]

Yanik, M. F.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

Yariv, A.

J. Scheuer and A. Yariv, “Sagnac effect in roupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96, 053901 (2006).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908-910 (2002).
[CrossRef]

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

A. Chiba, H. Fujiwara, J.-I. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86, 261106-261108 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

M. Hossein-Zadeh and K. J. Vahala, “Importance of intrinsic-Q in microring-based optical filters and dispersion-compensation devices,” IEEE Photon. Technol. Lett. 19, 1045-1047 (2008).
[CrossRef]

J. Lightwave Technol.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

G. Lenz and C. K. Madsen, “General optical all-pass filter structures for dispersion control in WDM systems,” J. Lightwave Technol. 17, 1248-1254 (1999).
[CrossRef]

J. Mod. Opt.

D. D. Smith and H. Chang, “Coherence phenomena in coupled optical resonators,” J. Mod. Opt. 51, 2503-2513 (2004).

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Nat. Photonics

S. F. Preble, Q. Xu, and M. Lipson, “Changing the color of light in a silicon resonator,” Nat. Photonics 1, 293-296 (2007).
[CrossRef]

Nat. Phys.

Q. Xu, P. Ding, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406-410 (2007).
[CrossRef]

Nature

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621-623 (2002).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589-591 (1997).
[CrossRef]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-492 (2001).
[CrossRef] [PubMed]

Opt. Commun.

D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R. W. Boyd, Q-Han Park, Hongrok Chang, and D. J. Jackson, “Coupled-resonator-induced transparency in a fiber system,” Opt. Commun. 264, 163-168 (2006).
[CrossRef]

Opt. Lett.

Phys. Rev.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

R. K. Adair, C. K. Bockelman, and R. E. Peterson, “Experimental corroboration of the theory of neutron resonance scattering,” Phys. Rev. 76, 308-311 (1949).
[CrossRef]

Phys. Rev. A

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[CrossRef]

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Phys. Rev. B

B. M. Möller, U. Woggon, M. V. Artemyev, and R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70, 115323 (2004).
[CrossRef]

Phys. Rev. Lett.

J. Scheuer and A. Yariv, “Sagnac effect in roupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96, 053901 (2006).
[CrossRef] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-binding photonic molecule modes of resonant bispheres,” Phys. Rev. Lett. 82, 4623-4626 (1999).
[CrossRef]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef] [PubMed]

K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, “Tuning of the Fano effect through a quantum dot in an Aharonov-Bohm interferometer,” Phys. Rev. Lett. 88, 256806-256809 (2002).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[CrossRef] [PubMed]

J. Li, W.-D. Schneider, and R. Berndt, “Kondo scattering observed at a single magnetic impurity,” Phys. Rev. Lett. 80, 2893-2896 (1998).
[CrossRef]

Phys. Today

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36-42 (1997).
[CrossRef]

Science

V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, “Tunneling into a single magnetic atom: spectroscopic evidence of the kondo resonance,” Science 280, 567-569 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic illustration of the coupled microsphere system with a fiber taper. S 1 and S 2 are the first and second spheres, respectively. (b) Schematic illustration of the Fano effect in atomic transition. The curve is calculated based on an equation: F ( ϵ ) = ( q + ϵ ) 2 ( 1 + ϵ ) 2 (Eq. (21) in [30]) with an asymmetric parameter, q = 2.5 ; ϵ is detuning parameter.

Fig. 2
Fig. 2

Solid curves and dashed curves are experimental and theoretical spectra in the coupled microsphere resonators under the following conditions: (b) ν 1 ν 2 , (c) ν 1 < ν 2 , Δ ν 12 ν 2 ν 1 < δ ν 1 , and (d) ν 1 < ν 2 , Δ ν 12 > δ ν 1 . Arrows indicate the resonance frequency of the second sphere, ν 2 . The detuning parameter is (b) Δ ν 12 = 0 MHz , (c) Δ ν 12 = 49 MHz , and (d) Δ ν 12 = 204 MHz . Other parameters used in the calculations are x 1 = 0.999,432 , x 2 = 0.999,973 , and y 1 = 0.999,651 in all figures. The coupling parameter between two spheres is y 2 = 1 in 2(a), while y 2 = 0.999,999,960 in 2(b)–2(d). The gray dashed line in 2(c) is the transmission dip by the naked first sphere as a reference. (a) is the spectrum observed without S 2 .

Fig. 3
Fig. 3

Left column: Solid curves represent experimental spectra of the coupled microsphere resonators. From (b) to (e), the coupling strength between the two spheres increased. The vertical dashed lines indicate the incident resonance frequency of WG3. The right-hand column shows calculated curves. Parameter values are as follows: y 2 ( 3 ) is (b) 0.999,999,985, (c) 0.999,999,981, (d) 0.999,999,875, (e) 0.999,999,690 while x 1 = 0.999,482 , y 1 = 0.999,711 , x 2 ( 3 ) = 0.999,973 , and Δ ν 13 = 248 MHz in all figures. (a) is the spectrum observed without S 2 .

Fig. 4
Fig. 4

The experimental results shown in Fig. 2 are summarized in 4(a). Solid circles mark the amplitude of the induced spectral structures by WG2, δ T ind , as a function of the detuning frequency Δ ν 12 . In 4(b), open squares delineate the induced frequency shift δ ν ind , open circles mark the full width at half-maximum of the spectral width of the induced peak by WG3, δ ν 3 , while solid circles represent δ T ind as a function of the coupling parameter, y 2 ( 3 ) , respectively.

Fig. 5
Fig. 5

Figures 5a, 5b, 5c, 5d represent the double-spiral trajectories of the transmitted electric field in the coupled microsphere resonators under the condition Δ ν 12 = 0 . In 5(a) and 5(b), trajectories represent the CRIT. Parameter values are as follows: (a) y 2 = 0.9999 , (b) y 2 = 0.9994 , x 1 = 0.95 , y 1 = 0.98 , and x 2 = 0.998 for both. In 5(c), trajectory represents coupled-resonator-induced absorption; x 1 = 0.98 , y 1 = 0.95 , and x 2 = 0.998 , y 2 = 0.99997 . Another possible pattern is shown in 5(d). Parameters used were x 1 = 0.98 , y 1 = 0.95 and x 2 = 0.998 , y 2 = 0.9995 . The horizontal axis in the inset figures is in units of radians where the free spectral range of the sphere is taken to be 2 π rad.

Fig. 6
Fig. 6

The double-spiral structures in the main frame represent trajectories of the transmitted electric field through the coupled microsphere resonators under the condition Δ ν 12 0 . In 6(a)–(d), the loss and coupling parameters used are x 1 = 0.95 , y 1 = 0.98 and x 2 = 0.998 , y 2 = 0.9999 , as with Fig. 5a. The detuning parameters increase from 6(a) to 6(d): (a) Δ ν 12 = 0.03 rad , (b) Δ ν 12 = 0.06 rad , (c) Δ ν 12 = 0.1 rad , (d) Δ ν 12 = 0.2 rad .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

{ A = ( 1 γ 1 ) 1 2 [ A 0 cos ( κ 1 ) i B 0 sin ( κ 1 ) ] B = ( 1 γ 1 ) 1 2 [ i A 0 sin ( κ 1 ) + B 0 cos ( κ 1 ) ] B 2 = ( 1 γ 2 ) 1 2 [ B 1 cos ( κ 2 ) i C 0 sin ( κ 2 ) ] C = ( 1 γ 2 ) 1 2 [ i B 1 sin ( κ 2 ) + C 0 cos ( κ 2 ) ] } ,
A ¯ ( ν ) A ( ν ) A 0 ( ν ) = ( 1 γ 1 ) 1 2 [ y 1 x 1 S 2 ( ν ) exp ( i φ 1 ) 1 x 1 y 1 S 2 ( ν ) exp ( i φ 1 ) ] = T ( ν ) exp ( i θ ( ν ) ) ,
S 2 ( ν ) = ( 1 γ 2 ) 1 2 [ y 2 x 2 exp ( i ( φ 2 Δ φ 12 ) ) 1 x 2 y 2 exp ( i ( φ 2 Δ φ 12 ) ) ] .
S i ( ν ) = ( 1 γ 2 ( i ) ) 1 2 [ y 2 ( i ) x 2 ( i ) exp ( i ( φ 2 ( i ) Δ φ 1 ( i ) ) ) 1 x 2 ( i ) y 2 ( i ) exp ( i ( φ 2 ( i ) Δ φ 1 ( i ) ) ) ]
i = 3 , 4 .

Metrics