Abstract

An innovative fluorescence lifetime technique, called transient fluorescence spectroscopy, has been developed and applied toward the determination of the fluorescence lifetimes (a value near 1ms) of terbium doped dipicolinic acid (DPA-Tb). This different lifetime measurement technique uses a high-pulse-repetition-frequency (8kHz) pulsed UV laser excitation source and a slow modulated chopper (50to1000Hz) to produce the modulated emission intensity from the DPA-Tb, and compares these to a theoretical transient solution of the population rate equations for the DPA-Tb energy levels. Curve fitting of the transient solution of the modulated emission intensity to that obtained experimentally yielded a value for the fluorescence lifetime.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. E. Alcamo, Fundamentals of Microbiology (Addison-Wesley, 1984).
  2. D. V. Lim, Microbiology (WCB/McGraw-Hill, 1998).
    [PubMed]
  3. W. Gould and A. Hurst, The Bacterial Spore (Academic, 1969).
  4. A. Ponce, Live/Dead Bacterial Spore Assay Using DPA-Triggered Tb Luminescence, NASA Tech Brief No. NPO-30444 (NASA, 2003), Vol. 27.
  5. D. L. Rosen, “Bacterial spore detection and quantification methods,” U.S. patent 5,876,960 (March 2, 1999).
  6. D. L. Rosen, C. Sharpless, and L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082-1085 (1997).
    [CrossRef]
  7. P. M. Pellegrino, N. F. Fell, Jr., and J. B. Gillespie, “Enhanced spore detection using dipicolinate extraction techniques,” Anal. Chim. Acta 455, 167-177 (2002).
    [CrossRef]
  8. F. S. Richardson, “Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems,” Chem. Rev. (Washington, D.C.) 82, 541-552 (1982).
    [CrossRef]
  9. A. A. Hindle and E. A. H. Hall, “Dipicolinic acid (DPA) assay revisited and appraised for spore detection,” Analyst (Cambridge, U.K.) 124, 1599-1604 (1999).
    [CrossRef]
  10. P. Pellegrino, N. F. Fell, Jr., D. L. Rosen, and J. B. Gillespie, “Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials,” Anal. Chem. 70, 1755-1760 (1998).
    [CrossRef] [PubMed]
  11. P. Jonsson, F. Kullander, M. Nordstrand, T. Tjärnhage, P. Wästerby, and M. Lindgren, “Development of fluorescence-based point detector for biological sensing,” in Proceedings of Optically Based Biological and Chemical Sensing for Defence, J.C.Carrano and A.Zukauskas, eds., Proc. SPIE 5617, 60-74 (2004).
    [CrossRef]
  12. M. L. Cable, J. P. Kirby, K. Sorasaenee, H. B. Gray, and A. Ponce, “Bacterial spore detection by [Tb3+ (macrocycle)(dipicolinate)] luminescence,” J. Am. Chem. Soc. 129, 1474-1475 (2007).
    [CrossRef] [PubMed]
  13. D. L. Rosen, “Airborne bacterial endospores detected by use of an impinger containing aqueous terbium chloride,” Appl. Opt. 45, 3152-3157 (2006).
    [CrossRef] [PubMed]
  14. A. Makoui and D. K. Killinger, “Fluorescence lifetime and intensity of terbium doped dipicolinic acid in water, HCl, and sodium acetate buffer solutions,” Appl. Opt. 48, 111-118 (2009).
    [CrossRef]
  15. A. M. Chekalyk, V. V. Fadeev, G. M. Georgiev, and Zh. S. Nickolov, “Application of laser induced saturation of molecular fluorescence for lifetime measurements,” Opt. Commun. 38, 177-181 (1981).
    [CrossRef]
  16. V. I. Yuzhakov, K. G. Yevsyukhina, and S. V. Patsayeva, “Laser induced saturation of fluorescence for complex organic molecules,” in Proceedings of ALT'97 International Conference on Laser Surface Processing, V.I.Pustovoy, ed., Proc. SPIE 3404, 388-396 (1998).
    [CrossRef]
  17. I. Gregor, D. Patra, and J. Enderlein, “Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation,” ChemPhysChem 6, 164-170 (2005).
    [CrossRef] [PubMed]
  18. J. Daily, “Saturation effects in laser induced fluorescence spectroscopy,” Appl. Opt. 16, 568-571 (1977).
    [CrossRef] [PubMed]
  19. A. Makoui, “Transient fluorescence spectroscopy and laser induced fluorescence lifetimes of terbium doped dipicolinic acid,” Ph.D. dissertation (University of South Florida, 2007).
  20. P. Lima, O. L. Malta, and S. Alves, Junior, “Estudo espectroscópico de complexos de Eu3+, Tb3+ e Gd3+ com ligantes derivados de Ácidos dicarboxílicos,” Quim. Nova 28, 805-808 (2005).
    [CrossRef]
  21. M. Latva, H. Takalo, V. Mukkala, C. Matachescu, J. C. Rodriquez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and the lanthanide(III) luminescence quantum yield,” J. Lumin. 75, 149-169 (1997).
    [CrossRef]
  22. Physics Auxiliary Publication Service, JCPSA-90-3443-63. J. Chem. Phys. , April 1, 1989, Vol. 90, No. 7, p. 3443. W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, American Institute of Physics (Physics Microform Reference: 8904A 0719).
    [CrossRef]
  23. D. L. Rosen and S. Niles, “Chelation number of terbium dipicolinate: effects on photoluminescence lifetime and intensity,” Appl. Spectrosc. 55, 208-216 (2001).
    [CrossRef]
  24. G. F. Kirkbright and M. Sargent, Atomic Absorption and Fluorescence Spectroscopy (Academic, 1974).

2009 (1)

A. Makoui and D. K. Killinger, “Fluorescence lifetime and intensity of terbium doped dipicolinic acid in water, HCl, and sodium acetate buffer solutions,” Appl. Opt. 48, 111-118 (2009).
[CrossRef]

2007 (2)

A. Makoui, “Transient fluorescence spectroscopy and laser induced fluorescence lifetimes of terbium doped dipicolinic acid,” Ph.D. dissertation (University of South Florida, 2007).

M. L. Cable, J. P. Kirby, K. Sorasaenee, H. B. Gray, and A. Ponce, “Bacterial spore detection by [Tb3+ (macrocycle)(dipicolinate)] luminescence,” J. Am. Chem. Soc. 129, 1474-1475 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (2)

I. Gregor, D. Patra, and J. Enderlein, “Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation,” ChemPhysChem 6, 164-170 (2005).
[CrossRef] [PubMed]

P. Lima, O. L. Malta, and S. Alves, Junior, “Estudo espectroscópico de complexos de Eu3+, Tb3+ e Gd3+ com ligantes derivados de Ácidos dicarboxílicos,” Quim. Nova 28, 805-808 (2005).
[CrossRef]

2004 (1)

P. Jonsson, F. Kullander, M. Nordstrand, T. Tjärnhage, P. Wästerby, and M. Lindgren, “Development of fluorescence-based point detector for biological sensing,” in Proceedings of Optically Based Biological and Chemical Sensing for Defence, J.C.Carrano and A.Zukauskas, eds., Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

2003 (1)

A. Ponce, Live/Dead Bacterial Spore Assay Using DPA-Triggered Tb Luminescence, NASA Tech Brief No. NPO-30444 (NASA, 2003), Vol. 27.

2002 (1)

P. M. Pellegrino, N. F. Fell, Jr., and J. B. Gillespie, “Enhanced spore detection using dipicolinate extraction techniques,” Anal. Chim. Acta 455, 167-177 (2002).
[CrossRef]

2001 (1)

1999 (2)

A. A. Hindle and E. A. H. Hall, “Dipicolinic acid (DPA) assay revisited and appraised for spore detection,” Analyst (Cambridge, U.K.) 124, 1599-1604 (1999).
[CrossRef]

D. L. Rosen, “Bacterial spore detection and quantification methods,” U.S. patent 5,876,960 (March 2, 1999).

1998 (3)

D. V. Lim, Microbiology (WCB/McGraw-Hill, 1998).
[PubMed]

P. Pellegrino, N. F. Fell, Jr., D. L. Rosen, and J. B. Gillespie, “Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials,” Anal. Chem. 70, 1755-1760 (1998).
[CrossRef] [PubMed]

V. I. Yuzhakov, K. G. Yevsyukhina, and S. V. Patsayeva, “Laser induced saturation of fluorescence for complex organic molecules,” in Proceedings of ALT'97 International Conference on Laser Surface Processing, V.I.Pustovoy, ed., Proc. SPIE 3404, 388-396 (1998).
[CrossRef]

1997 (2)

D. L. Rosen, C. Sharpless, and L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082-1085 (1997).
[CrossRef]

M. Latva, H. Takalo, V. Mukkala, C. Matachescu, J. C. Rodriquez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and the lanthanide(III) luminescence quantum yield,” J. Lumin. 75, 149-169 (1997).
[CrossRef]

1989 (1)

Physics Auxiliary Publication Service, JCPSA-90-3443-63. J. Chem. Phys. , April 1, 1989, Vol. 90, No. 7, p. 3443. W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, American Institute of Physics (Physics Microform Reference: 8904A 0719).
[CrossRef]

1984 (1)

I. E. Alcamo, Fundamentals of Microbiology (Addison-Wesley, 1984).

1982 (1)

F. S. Richardson, “Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems,” Chem. Rev. (Washington, D.C.) 82, 541-552 (1982).
[CrossRef]

1981 (1)

A. M. Chekalyk, V. V. Fadeev, G. M. Georgiev, and Zh. S. Nickolov, “Application of laser induced saturation of molecular fluorescence for lifetime measurements,” Opt. Commun. 38, 177-181 (1981).
[CrossRef]

1977 (1)

1974 (1)

G. F. Kirkbright and M. Sargent, Atomic Absorption and Fluorescence Spectroscopy (Academic, 1974).

1969 (1)

W. Gould and A. Hurst, The Bacterial Spore (Academic, 1969).

Alcamo, I. E.

I. E. Alcamo, Fundamentals of Microbiology (Addison-Wesley, 1984).

Alves, S.

P. Lima, O. L. Malta, and S. Alves, Junior, “Estudo espectroscópico de complexos de Eu3+, Tb3+ e Gd3+ com ligantes derivados de Ácidos dicarboxílicos,” Quim. Nova 28, 805-808 (2005).
[CrossRef]

Cable, M. L.

M. L. Cable, J. P. Kirby, K. Sorasaenee, H. B. Gray, and A. Ponce, “Bacterial spore detection by [Tb3+ (macrocycle)(dipicolinate)] luminescence,” J. Am. Chem. Soc. 129, 1474-1475 (2007).
[CrossRef] [PubMed]

Carnall, W. T.

Physics Auxiliary Publication Service, JCPSA-90-3443-63. J. Chem. Phys. , April 1, 1989, Vol. 90, No. 7, p. 3443. W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, American Institute of Physics (Physics Microform Reference: 8904A 0719).
[CrossRef]

Chekalyk, A. M.

A. M. Chekalyk, V. V. Fadeev, G. M. Georgiev, and Zh. S. Nickolov, “Application of laser induced saturation of molecular fluorescence for lifetime measurements,” Opt. Commun. 38, 177-181 (1981).
[CrossRef]

Daily, J.

Enderlein, J.

I. Gregor, D. Patra, and J. Enderlein, “Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation,” ChemPhysChem 6, 164-170 (2005).
[CrossRef] [PubMed]

Fadeev, V. V.

A. M. Chekalyk, V. V. Fadeev, G. M. Georgiev, and Zh. S. Nickolov, “Application of laser induced saturation of molecular fluorescence for lifetime measurements,” Opt. Commun. 38, 177-181 (1981).
[CrossRef]

Fell, N. F.

P. M. Pellegrino, N. F. Fell, Jr., and J. B. Gillespie, “Enhanced spore detection using dipicolinate extraction techniques,” Anal. Chim. Acta 455, 167-177 (2002).
[CrossRef]

P. Pellegrino, N. F. Fell, Jr., D. L. Rosen, and J. B. Gillespie, “Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials,” Anal. Chem. 70, 1755-1760 (1998).
[CrossRef] [PubMed]

Georgiev, G. M.

A. M. Chekalyk, V. V. Fadeev, G. M. Georgiev, and Zh. S. Nickolov, “Application of laser induced saturation of molecular fluorescence for lifetime measurements,” Opt. Commun. 38, 177-181 (1981).
[CrossRef]

Gillespie, J. B.

P. M. Pellegrino, N. F. Fell, Jr., and J. B. Gillespie, “Enhanced spore detection using dipicolinate extraction techniques,” Anal. Chim. Acta 455, 167-177 (2002).
[CrossRef]

P. Pellegrino, N. F. Fell, Jr., D. L. Rosen, and J. B. Gillespie, “Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials,” Anal. Chem. 70, 1755-1760 (1998).
[CrossRef] [PubMed]

Goodman, G. L.

Physics Auxiliary Publication Service, JCPSA-90-3443-63. J. Chem. Phys. , April 1, 1989, Vol. 90, No. 7, p. 3443. W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, American Institute of Physics (Physics Microform Reference: 8904A 0719).
[CrossRef]

Gould, W.

W. Gould and A. Hurst, The Bacterial Spore (Academic, 1969).

Gray, H. B.

M. L. Cable, J. P. Kirby, K. Sorasaenee, H. B. Gray, and A. Ponce, “Bacterial spore detection by [Tb3+ (macrocycle)(dipicolinate)] luminescence,” J. Am. Chem. Soc. 129, 1474-1475 (2007).
[CrossRef] [PubMed]

Gregor, I.

I. Gregor, D. Patra, and J. Enderlein, “Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation,” ChemPhysChem 6, 164-170 (2005).
[CrossRef] [PubMed]

Hall, E. A. H.

A. A. Hindle and E. A. H. Hall, “Dipicolinic acid (DPA) assay revisited and appraised for spore detection,” Analyst (Cambridge, U.K.) 124, 1599-1604 (1999).
[CrossRef]

Hindle, A. A.

A. A. Hindle and E. A. H. Hall, “Dipicolinic acid (DPA) assay revisited and appraised for spore detection,” Analyst (Cambridge, U.K.) 124, 1599-1604 (1999).
[CrossRef]

Hurst, A.

W. Gould and A. Hurst, The Bacterial Spore (Academic, 1969).

Jonsson, P.

P. Jonsson, F. Kullander, M. Nordstrand, T. Tjärnhage, P. Wästerby, and M. Lindgren, “Development of fluorescence-based point detector for biological sensing,” in Proceedings of Optically Based Biological and Chemical Sensing for Defence, J.C.Carrano and A.Zukauskas, eds., Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

Kankare, J.

M. Latva, H. Takalo, V. Mukkala, C. Matachescu, J. C. Rodriquez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and the lanthanide(III) luminescence quantum yield,” J. Lumin. 75, 149-169 (1997).
[CrossRef]

Killinger, D. K.

A. Makoui and D. K. Killinger, “Fluorescence lifetime and intensity of terbium doped dipicolinic acid in water, HCl, and sodium acetate buffer solutions,” Appl. Opt. 48, 111-118 (2009).
[CrossRef]

Kirby, J. P.

M. L. Cable, J. P. Kirby, K. Sorasaenee, H. B. Gray, and A. Ponce, “Bacterial spore detection by [Tb3+ (macrocycle)(dipicolinate)] luminescence,” J. Am. Chem. Soc. 129, 1474-1475 (2007).
[CrossRef] [PubMed]

Kirkbright, G. F.

G. F. Kirkbright and M. Sargent, Atomic Absorption and Fluorescence Spectroscopy (Academic, 1974).

Kullander, F.

P. Jonsson, F. Kullander, M. Nordstrand, T. Tjärnhage, P. Wästerby, and M. Lindgren, “Development of fluorescence-based point detector for biological sensing,” in Proceedings of Optically Based Biological and Chemical Sensing for Defence, J.C.Carrano and A.Zukauskas, eds., Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

Latva, M.

M. Latva, H. Takalo, V. Mukkala, C. Matachescu, J. C. Rodriquez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and the lanthanide(III) luminescence quantum yield,” J. Lumin. 75, 149-169 (1997).
[CrossRef]

Lim, D. V.

D. V. Lim, Microbiology (WCB/McGraw-Hill, 1998).
[PubMed]

Lima, P.

P. Lima, O. L. Malta, and S. Alves, Junior, “Estudo espectroscópico de complexos de Eu3+, Tb3+ e Gd3+ com ligantes derivados de Ácidos dicarboxílicos,” Quim. Nova 28, 805-808 (2005).
[CrossRef]

Lindgren, M.

P. Jonsson, F. Kullander, M. Nordstrand, T. Tjärnhage, P. Wästerby, and M. Lindgren, “Development of fluorescence-based point detector for biological sensing,” in Proceedings of Optically Based Biological and Chemical Sensing for Defence, J.C.Carrano and A.Zukauskas, eds., Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

Makoui, A.

A. Makoui and D. K. Killinger, “Fluorescence lifetime and intensity of terbium doped dipicolinic acid in water, HCl, and sodium acetate buffer solutions,” Appl. Opt. 48, 111-118 (2009).
[CrossRef]

A. Makoui, “Transient fluorescence spectroscopy and laser induced fluorescence lifetimes of terbium doped dipicolinic acid,” Ph.D. dissertation (University of South Florida, 2007).

Malta, O. L.

P. Lima, O. L. Malta, and S. Alves, Junior, “Estudo espectroscópico de complexos de Eu3+, Tb3+ e Gd3+ com ligantes derivados de Ácidos dicarboxílicos,” Quim. Nova 28, 805-808 (2005).
[CrossRef]

Matachescu, C.

M. Latva, H. Takalo, V. Mukkala, C. Matachescu, J. C. Rodriquez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and the lanthanide(III) luminescence quantum yield,” J. Lumin. 75, 149-169 (1997).
[CrossRef]

McGown, L. B.

D. L. Rosen, C. Sharpless, and L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082-1085 (1997).
[CrossRef]

Mukkala, V.

M. Latva, H. Takalo, V. Mukkala, C. Matachescu, J. C. Rodriquez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and the lanthanide(III) luminescence quantum yield,” J. Lumin. 75, 149-169 (1997).
[CrossRef]

Nickolov, Zh. S.

A. M. Chekalyk, V. V. Fadeev, G. M. Georgiev, and Zh. S. Nickolov, “Application of laser induced saturation of molecular fluorescence for lifetime measurements,” Opt. Commun. 38, 177-181 (1981).
[CrossRef]

Niles, S.

Nordstrand, M.

P. Jonsson, F. Kullander, M. Nordstrand, T. Tjärnhage, P. Wästerby, and M. Lindgren, “Development of fluorescence-based point detector for biological sensing,” in Proceedings of Optically Based Biological and Chemical Sensing for Defence, J.C.Carrano and A.Zukauskas, eds., Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

Patra, D.

I. Gregor, D. Patra, and J. Enderlein, “Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation,” ChemPhysChem 6, 164-170 (2005).
[CrossRef] [PubMed]

Patsayeva, S. V.

V. I. Yuzhakov, K. G. Yevsyukhina, and S. V. Patsayeva, “Laser induced saturation of fluorescence for complex organic molecules,” in Proceedings of ALT'97 International Conference on Laser Surface Processing, V.I.Pustovoy, ed., Proc. SPIE 3404, 388-396 (1998).
[CrossRef]

Pellegrino, P.

P. Pellegrino, N. F. Fell, Jr., D. L. Rosen, and J. B. Gillespie, “Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials,” Anal. Chem. 70, 1755-1760 (1998).
[CrossRef] [PubMed]

Pellegrino, P. M.

P. M. Pellegrino, N. F. Fell, Jr., and J. B. Gillespie, “Enhanced spore detection using dipicolinate extraction techniques,” Anal. Chim. Acta 455, 167-177 (2002).
[CrossRef]

Ponce, A.

M. L. Cable, J. P. Kirby, K. Sorasaenee, H. B. Gray, and A. Ponce, “Bacterial spore detection by [Tb3+ (macrocycle)(dipicolinate)] luminescence,” J. Am. Chem. Soc. 129, 1474-1475 (2007).
[CrossRef] [PubMed]

A. Ponce, Live/Dead Bacterial Spore Assay Using DPA-Triggered Tb Luminescence, NASA Tech Brief No. NPO-30444 (NASA, 2003), Vol. 27.

Rajnak, K.

Physics Auxiliary Publication Service, JCPSA-90-3443-63. J. Chem. Phys. , April 1, 1989, Vol. 90, No. 7, p. 3443. W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, American Institute of Physics (Physics Microform Reference: 8904A 0719).
[CrossRef]

Rana, R. S.

Physics Auxiliary Publication Service, JCPSA-90-3443-63. J. Chem. Phys. , April 1, 1989, Vol. 90, No. 7, p. 3443. W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, American Institute of Physics (Physics Microform Reference: 8904A 0719).
[CrossRef]

Richardson, F. S.

F. S. Richardson, “Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems,” Chem. Rev. (Washington, D.C.) 82, 541-552 (1982).
[CrossRef]

Rodriquez-Ubis, J. C.

M. Latva, H. Takalo, V. Mukkala, C. Matachescu, J. C. Rodriquez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and the lanthanide(III) luminescence quantum yield,” J. Lumin. 75, 149-169 (1997).
[CrossRef]

Rosen, D. L.

D. L. Rosen, “Airborne bacterial endospores detected by use of an impinger containing aqueous terbium chloride,” Appl. Opt. 45, 3152-3157 (2006).
[CrossRef] [PubMed]

D. L. Rosen and S. Niles, “Chelation number of terbium dipicolinate: effects on photoluminescence lifetime and intensity,” Appl. Spectrosc. 55, 208-216 (2001).
[CrossRef]

D. L. Rosen, “Bacterial spore detection and quantification methods,” U.S. patent 5,876,960 (March 2, 1999).

P. Pellegrino, N. F. Fell, Jr., D. L. Rosen, and J. B. Gillespie, “Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials,” Anal. Chem. 70, 1755-1760 (1998).
[CrossRef] [PubMed]

D. L. Rosen, C. Sharpless, and L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082-1085 (1997).
[CrossRef]

Sargent, M.

G. F. Kirkbright and M. Sargent, Atomic Absorption and Fluorescence Spectroscopy (Academic, 1974).

Sharpless, C.

D. L. Rosen, C. Sharpless, and L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082-1085 (1997).
[CrossRef]

Sorasaenee, K.

M. L. Cable, J. P. Kirby, K. Sorasaenee, H. B. Gray, and A. Ponce, “Bacterial spore detection by [Tb3+ (macrocycle)(dipicolinate)] luminescence,” J. Am. Chem. Soc. 129, 1474-1475 (2007).
[CrossRef] [PubMed]

Takalo, H.

M. Latva, H. Takalo, V. Mukkala, C. Matachescu, J. C. Rodriquez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and the lanthanide(III) luminescence quantum yield,” J. Lumin. 75, 149-169 (1997).
[CrossRef]

Tjärnhage, T.

P. Jonsson, F. Kullander, M. Nordstrand, T. Tjärnhage, P. Wästerby, and M. Lindgren, “Development of fluorescence-based point detector for biological sensing,” in Proceedings of Optically Based Biological and Chemical Sensing for Defence, J.C.Carrano and A.Zukauskas, eds., Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

Wästerby, P.

P. Jonsson, F. Kullander, M. Nordstrand, T. Tjärnhage, P. Wästerby, and M. Lindgren, “Development of fluorescence-based point detector for biological sensing,” in Proceedings of Optically Based Biological and Chemical Sensing for Defence, J.C.Carrano and A.Zukauskas, eds., Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

Yevsyukhina, K. G.

V. I. Yuzhakov, K. G. Yevsyukhina, and S. V. Patsayeva, “Laser induced saturation of fluorescence for complex organic molecules,” in Proceedings of ALT'97 International Conference on Laser Surface Processing, V.I.Pustovoy, ed., Proc. SPIE 3404, 388-396 (1998).
[CrossRef]

Yuzhakov, V. I.

V. I. Yuzhakov, K. G. Yevsyukhina, and S. V. Patsayeva, “Laser induced saturation of fluorescence for complex organic molecules,” in Proceedings of ALT'97 International Conference on Laser Surface Processing, V.I.Pustovoy, ed., Proc. SPIE 3404, 388-396 (1998).
[CrossRef]

Anal. Chem. (2)

D. L. Rosen, C. Sharpless, and L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082-1085 (1997).
[CrossRef]

P. Pellegrino, N. F. Fell, Jr., D. L. Rosen, and J. B. Gillespie, “Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials,” Anal. Chem. 70, 1755-1760 (1998).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

P. M. Pellegrino, N. F. Fell, Jr., and J. B. Gillespie, “Enhanced spore detection using dipicolinate extraction techniques,” Anal. Chim. Acta 455, 167-177 (2002).
[CrossRef]

Analyst (Cambridge, U.K.) (1)

A. A. Hindle and E. A. H. Hall, “Dipicolinic acid (DPA) assay revisited and appraised for spore detection,” Analyst (Cambridge, U.K.) 124, 1599-1604 (1999).
[CrossRef]

Appl. Opt. (3)

Appl. Spectrosc. (1)

Chem. Rev. (Washington, D.C.) (1)

F. S. Richardson, “Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems,” Chem. Rev. (Washington, D.C.) 82, 541-552 (1982).
[CrossRef]

ChemPhysChem (1)

I. Gregor, D. Patra, and J. Enderlein, “Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation,” ChemPhysChem 6, 164-170 (2005).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

M. L. Cable, J. P. Kirby, K. Sorasaenee, H. B. Gray, and A. Ponce, “Bacterial spore detection by [Tb3+ (macrocycle)(dipicolinate)] luminescence,” J. Am. Chem. Soc. 129, 1474-1475 (2007).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

Physics Auxiliary Publication Service, JCPSA-90-3443-63. J. Chem. Phys. , April 1, 1989, Vol. 90, No. 7, p. 3443. W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, American Institute of Physics (Physics Microform Reference: 8904A 0719).
[CrossRef]

J. Lumin. (1)

M. Latva, H. Takalo, V. Mukkala, C. Matachescu, J. C. Rodriquez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and the lanthanide(III) luminescence quantum yield,” J. Lumin. 75, 149-169 (1997).
[CrossRef]

Opt. Commun. (1)

A. M. Chekalyk, V. V. Fadeev, G. M. Georgiev, and Zh. S. Nickolov, “Application of laser induced saturation of molecular fluorescence for lifetime measurements,” Opt. Commun. 38, 177-181 (1981).
[CrossRef]

Quim. Nova (1)

P. Lima, O. L. Malta, and S. Alves, Junior, “Estudo espectroscópico de complexos de Eu3+, Tb3+ e Gd3+ com ligantes derivados de Ácidos dicarboxílicos,” Quim. Nova 28, 805-808 (2005).
[CrossRef]

Other (9)

A. Makoui, “Transient fluorescence spectroscopy and laser induced fluorescence lifetimes of terbium doped dipicolinic acid,” Ph.D. dissertation (University of South Florida, 2007).

V. I. Yuzhakov, K. G. Yevsyukhina, and S. V. Patsayeva, “Laser induced saturation of fluorescence for complex organic molecules,” in Proceedings of ALT'97 International Conference on Laser Surface Processing, V.I.Pustovoy, ed., Proc. SPIE 3404, 388-396 (1998).
[CrossRef]

P. Jonsson, F. Kullander, M. Nordstrand, T. Tjärnhage, P. Wästerby, and M. Lindgren, “Development of fluorescence-based point detector for biological sensing,” in Proceedings of Optically Based Biological and Chemical Sensing for Defence, J.C.Carrano and A.Zukauskas, eds., Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

I. E. Alcamo, Fundamentals of Microbiology (Addison-Wesley, 1984).

D. V. Lim, Microbiology (WCB/McGraw-Hill, 1998).
[PubMed]

W. Gould and A. Hurst, The Bacterial Spore (Academic, 1969).

A. Ponce, Live/Dead Bacterial Spore Assay Using DPA-Triggered Tb Luminescence, NASA Tech Brief No. NPO-30444 (NASA, 2003), Vol. 27.

D. L. Rosen, “Bacterial spore detection and quantification methods,” U.S. patent 5,876,960 (March 2, 1999).

G. F. Kirkbright and M. Sargent, Atomic Absorption and Fluorescence Spectroscopy (Academic, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Experimentally measured fluorescence intensity as a function of time of a sample of [ 50 μ M ] DPA with [ 50 μ M ] Tb Cl 3 in distilled water when excited with the chopper-modulated 8.5 kHz microchip laser, for the chopper operating at four different frequencies.

Fig. 3
Fig. 3

Energy levels of the terbium ion and the lowest lying triplet state of the DPA molecule, as measured by Lima et al. [20] and Latva et al. [21].

Fig. 4
Fig. 4

Simple theoretical energy level model representing the energy levels of the DPA-Tb complex. In this model fluorescence emission originates from level 2.

Fig. 5
Fig. 5

(a) Experimentally obtained fluorescence intensity for aqueous solution of the DPA-Tb complex for three chopper speeds of 50, 500, and 1000 Hz . (b) Predicted fluorescence intensity using TFS analysis of the four-level model of DPA-Tb for three chopper speeds of 50, 500, and 1000 Hz .

Fig. 6
Fig. 6

Comparison of experimental fluorescence intensity amplitude as a function of chopper frequency with that predicted using the TFS technique and for several different fluorescence lifetime values.

Fig. 7
Fig. 7

Fluorescence signals measured from DPA-Tb using a symmetric 30-slit blade at the indicated chopper frequencies.

Fig. 8
Fig. 8

Fluorescence signals measured using an asymmetric 15-slit blade at the indicated chopper frequencies.

Fig. 9
Fig. 9

Fluorescence signals measured using the asymmetric superimposed blades at the indicated chopper frequencies.

Fig. 10
Fig. 10

Simulation of the population density of the N 2 energy level in the “simple” model as a function of time for the modified 15-slit chopper blade operating at the indicated chopper frequencies.

Fig. 11
Fig. 11

Energy level diagram for the five-level DPA-Tb complex including quenching rates. Fluorescence originates from level 3 in this model.

Fig. 12
Fig. 12

Population density of the fluorescing level, N 3 , of the five-level quenching model, for three chopper speeds of 50, 500, and 1000 Hz .

Fig. 13
Fig. 13

Energy level diagram for the DPA-Tb complex including upconversion rates. N 1 and N 2 depict the first singlet and triplet states of the DPA molecule, respectively. N 3 , N 4 , and N up depict the D 4 5 , the F 7 series, and a second excited state of the Tb 3 + ion, respectively.

Fig. 14
Fig. 14

Diagram representing one period of the train of asymmetric laser pulses used as the excitation signal in the simulation using the simple four-level energy model shown in Fig. 4. I 1 = 0.6 × 10 22 ( photons cm 2 s ) , I 2 = 0.4 × 10 22 ( photons cm 2 s ) , I 3 = 0.4 × 10 22 ( photons cm 2 s ) , d t off 1 = 2 × 10 6 s , d t off 2 = 0.4 × 10 6 s , d t off 3 = 1.2 × 10 6 s .

Fig. 15
Fig. 15

Simulations of the signal obtained by using the excitation source shown in Fig. 15 along with the unmodified 30-slit chopper blade.

Tables (1)

Tables Icon

Table 1 Typical Parameter Values used for TFS Simulation of DPA-Tb

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d N 0 d t = I σ N 1 I σ N 0 + γ 30 N 3 ,
d N 1 d t = I σ N 0 I σ N 1 γ 12 N 1 ,
d N 2 d t = γ 12 N 1 γ 23 N 2 ,
d N 3 d t = γ 23 N 2 γ 30 N 3 ,
N = N 0 + N 1 + N 2 + N 3 .

Metrics