Abstract

Chemically selective microscopy based on broadband coherent anti-Stokes Raman scattering (CARS) is demonstrated on a mixed sample of 4μm diameter polystyrene (PS) and poly (methyl methacrylate) (PMMA) beads. The CARS signal from the PS or the PMMA beads is enhanced or suppressed, depending on the phase profile applied to the broadband spectrum. Using a combination of negative and positive (sloped) π-phase steps the purely nonresonant background signal is removed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142-4145 (1999).
    [CrossRef]
  2. E. Smith and G. Dent, Modern Raman Spectroscopy--A Practical Approach (Wiley, 2005).
  3. H. A. Rinia, M. Bonn, and M. Muller, “Quantitative multiplex CARS spectroscopy in congested spectral regions,” J. Phys. Chem. B 110, 4472-4479 (2006).
    [CrossRef] [PubMed]
  4. S. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803(R) (2005).
    [CrossRef]
  5. T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering,” Opt. Lett. 29, 2701-2704 (2004).
    [CrossRef] [PubMed]
  6. M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99, 10994-11001 (2002).
    [CrossRef] [PubMed]
  7. M. Cui, J. Skodack, and J. P. Ogilvie, “Chemical imaging with Fourier transform coherent anti-Stokes Raman scattering microscopy,” Appl. Opt. 47, 5790-5798 (2008).
    [CrossRef]
  8. S. Zhang, L. Zhang, X. Zhang, L. Ding, G. Chen, Z. Sun, and Z. Wang, “Selective excitation of CARS by adaptive pulse shaping based on genetic algorithm,” Chem. Phys. Lett. 433, 416-421 (2007).
    [CrossRef]
  9. D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-Stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88, 063004 (2002).
    [CrossRef] [PubMed]
  10. D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Quantum control of coherent anti-Stokes Raman processes,” Phys. Rev. A 65, 043408 (2002).
    [CrossRef]
  11. S. Postma, A. C. W. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, and H. L. Offerhaus, “Application of spectral phase shaping to high resolution CARS spectroscopy,” Opt. Express 16, 7985-7996 (2008).
    [CrossRef] [PubMed]
  12. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118, 9208-9215 (2003).
    [CrossRef]
  13. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31, 241-243 (2006).
    [CrossRef] [PubMed]
  14. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003), pp. 20-32.
  15. S. Postma, “Spectral phase shaping for non-linear spectroscopy and imaging,” Ph.D. dissertation (University of Twente, 2008), ISBN 978-90-365-2695-1.
  16. S. Postma, P. van der Walle, H. L. Offerhaus, and N. F. van Hulst, “Compact high-resolution spectral phase shaper,” Rev. Sci. Instrum. 76, 123105 (2005).
    [CrossRef]
  17. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1920-1960 (2000).
    [CrossRef]
  18. R. Fanciulli, L. Willmes, J. Savolainen, P. van der Walle, T. Bäck, and J. L. Herek, “Evolution strategies for laser pulse compression,” in Artificial Evolution, N.Monmarché, E.Talbi, P.Collet, M.Schoenauer, and E. Lutton, eds. (Springer, 2008), pp. 219-230.
  19. H. A. Willes, V. J. I. Zichy, and P. J. Hendra, “The laser Raman and infra-red spectra of poly(methyl methacrylate),” Polymer 10, 737-746 (1969).
    [CrossRef]
  20. J. Workman, Jr., Handbook of Organic Compounds: NIR, IR, Raman and UV-Vis Spectra Featuring Polymers and Surfaces (Academic, 2001).
    [PubMed]

2008 (2)

2007 (1)

S. Zhang, L. Zhang, X. Zhang, L. Ding, G. Chen, Z. Sun, and Z. Wang, “Selective excitation of CARS by adaptive pulse shaping based on genetic algorithm,” Chem. Phys. Lett. 433, 416-421 (2007).
[CrossRef]

2006 (2)

H. A. Rinia, M. Bonn, and M. Muller, “Quantitative multiplex CARS spectroscopy in congested spectral regions,” J. Phys. Chem. B 110, 4472-4479 (2006).
[CrossRef] [PubMed]

E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31, 241-243 (2006).
[CrossRef] [PubMed]

2005 (2)

S. Postma, P. van der Walle, H. L. Offerhaus, and N. F. van Hulst, “Compact high-resolution spectral phase shaper,” Rev. Sci. Instrum. 76, 123105 (2005).
[CrossRef]

S. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803(R) (2005).
[CrossRef]

2004 (1)

2003 (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118, 9208-9215 (2003).
[CrossRef]

2002 (3)

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-Stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88, 063004 (2002).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Quantum control of coherent anti-Stokes Raman processes,” Phys. Rev. A 65, 043408 (2002).
[CrossRef]

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99, 10994-11001 (2002).
[CrossRef] [PubMed]

2000 (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1920-1960 (2000).
[CrossRef]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

1969 (1)

H. A. Willes, V. J. I. Zichy, and P. J. Hendra, “The laser Raman and infra-red spectra of poly(methyl methacrylate),” Polymer 10, 737-746 (1969).
[CrossRef]

Bäck, T.

R. Fanciulli, L. Willmes, J. Savolainen, P. van der Walle, T. Bäck, and J. L. Herek, “Evolution strategies for laser pulse compression,” in Artificial Evolution, N.Monmarché, E.Talbi, P.Collet, M.Schoenauer, and E. Lutton, eds. (Springer, 2008), pp. 219-230.

Bonn, M.

H. A. Rinia, M. Bonn, and M. Muller, “Quantitative multiplex CARS spectroscopy in congested spectral regions,” J. Phys. Chem. B 110, 4472-4479 (2006).
[CrossRef] [PubMed]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003), pp. 20-32.

Caster, A. G.

S. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803(R) (2005).
[CrossRef]

Chen, G.

S. Zhang, L. Zhang, X. Zhang, L. Ding, G. Chen, Z. Sun, and Z. Wang, “Selective excitation of CARS by adaptive pulse shaping based on genetic algorithm,” Chem. Phys. Lett. 433, 416-421 (2007).
[CrossRef]

Cicerone, M. T.

Cui, M.

Dent, G.

E. Smith and G. Dent, Modern Raman Spectroscopy--A Practical Approach (Wiley, 2005).

Ding, L.

S. Zhang, L. Zhang, X. Zhang, L. Ding, G. Chen, Z. Sun, and Z. Wang, “Selective excitation of CARS by adaptive pulse shaping based on genetic algorithm,” Chem. Phys. Lett. 433, 416-421 (2007).
[CrossRef]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118, 9208-9215 (2003).
[CrossRef]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-Stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88, 063004 (2002).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Quantum control of coherent anti-Stokes Raman processes,” Phys. Rev. A 65, 043408 (2002).
[CrossRef]

Evans, C. L.

Fanciulli, R.

R. Fanciulli, L. Willmes, J. Savolainen, P. van der Walle, T. Bäck, and J. L. Herek, “Evolution strategies for laser pulse compression,” in Artificial Evolution, N.Monmarché, E.Talbi, P.Collet, M.Schoenauer, and E. Lutton, eds. (Springer, 2008), pp. 219-230.

Gross, P.

Hendra, P. J.

H. A. Willes, V. J. I. Zichy, and P. J. Hendra, “The laser Raman and infra-red spectra of poly(methyl methacrylate),” Polymer 10, 737-746 (1969).
[CrossRef]

Herek, J. L.

S. Postma, A. C. W. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, and H. L. Offerhaus, “Application of spectral phase shaping to high resolution CARS spectroscopy,” Opt. Express 16, 7985-7996 (2008).
[CrossRef] [PubMed]

R. Fanciulli, L. Willmes, J. Savolainen, P. van der Walle, T. Bäck, and J. L. Herek, “Evolution strategies for laser pulse compression,” in Artificial Evolution, N.Monmarché, E.Talbi, P.Collet, M.Schoenauer, and E. Lutton, eds. (Springer, 2008), pp. 219-230.

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Kattawar, G. W.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99, 10994-11001 (2002).
[CrossRef] [PubMed]

Kee, T. W.

Korterik, J. P.

Leone, S. R.

S. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803(R) (2005).
[CrossRef]

Lim, S.

S. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803(R) (2005).
[CrossRef]

Lucht, R. P.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99, 10994-11001 (2002).
[CrossRef] [PubMed]

Lutton, E.

R. Fanciulli, L. Willmes, J. Savolainen, P. van der Walle, T. Bäck, and J. L. Herek, “Evolution strategies for laser pulse compression,” in Artificial Evolution, N.Monmarché, E.Talbi, P.Collet, M.Schoenauer, and E. Lutton, eds. (Springer, 2008), pp. 219-230.

Muller, M.

H. A. Rinia, M. Bonn, and M. Muller, “Quantitative multiplex CARS spectroscopy in congested spectral regions,” J. Phys. Chem. B 110, 4472-4479 (2006).
[CrossRef] [PubMed]

Offerhaus, H. L.

Ogilvie, J. P.

Opatrný, T.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99, 10994-11001 (2002).
[CrossRef] [PubMed]

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118, 9208-9215 (2003).
[CrossRef]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-Stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88, 063004 (2002).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Quantum control of coherent anti-Stokes Raman processes,” Phys. Rev. A 65, 043408 (2002).
[CrossRef]

Pilloff, H.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99, 10994-11001 (2002).
[CrossRef] [PubMed]

Postma, S.

S. Postma, A. C. W. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, and H. L. Offerhaus, “Application of spectral phase shaping to high resolution CARS spectroscopy,” Opt. Express 16, 7985-7996 (2008).
[CrossRef] [PubMed]

S. Postma, P. van der Walle, H. L. Offerhaus, and N. F. van Hulst, “Compact high-resolution spectral phase shaper,” Rev. Sci. Instrum. 76, 123105 (2005).
[CrossRef]

S. Postma, “Spectral phase shaping for non-linear spectroscopy and imaging,” Ph.D. dissertation (University of Twente, 2008), ISBN 978-90-365-2695-1.

Potma, E. O.

Rebane, A.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99, 10994-11001 (2002).
[CrossRef] [PubMed]

Rinia, H. A.

H. A. Rinia, M. Bonn, and M. Muller, “Quantitative multiplex CARS spectroscopy in congested spectral regions,” J. Phys. Chem. B 110, 4472-4479 (2006).
[CrossRef] [PubMed]

Savolainen, J.

R. Fanciulli, L. Willmes, J. Savolainen, P. van der Walle, T. Bäck, and J. L. Herek, “Evolution strategies for laser pulse compression,” in Artificial Evolution, N.Monmarché, E.Talbi, P.Collet, M.Schoenauer, and E. Lutton, eds. (Springer, 2008), pp. 219-230.

Scully, M. O.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99, 10994-11001 (2002).
[CrossRef] [PubMed]

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118, 9208-9215 (2003).
[CrossRef]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-Stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88, 063004 (2002).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Quantum control of coherent anti-Stokes Raman processes,” Phys. Rev. A 65, 043408 (2002).
[CrossRef]

Skodack, J.

Smith, E.

E. Smith and G. Dent, Modern Raman Spectroscopy--A Practical Approach (Wiley, 2005).

Sokolov, A. V.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99, 10994-11001 (2002).
[CrossRef] [PubMed]

Sun, Z.

S. Zhang, L. Zhang, X. Zhang, L. Ding, G. Chen, Z. Sun, and Z. Wang, “Selective excitation of CARS by adaptive pulse shaping based on genetic algorithm,” Chem. Phys. Lett. 433, 416-421 (2007).
[CrossRef]

van der Walle, P.

S. Postma, P. van der Walle, H. L. Offerhaus, and N. F. van Hulst, “Compact high-resolution spectral phase shaper,” Rev. Sci. Instrum. 76, 123105 (2005).
[CrossRef]

R. Fanciulli, L. Willmes, J. Savolainen, P. van der Walle, T. Bäck, and J. L. Herek, “Evolution strategies for laser pulse compression,” in Artificial Evolution, N.Monmarché, E.Talbi, P.Collet, M.Schoenauer, and E. Lutton, eds. (Springer, 2008), pp. 219-230.

van Hulst, N. F.

S. Postma, P. van der Walle, H. L. Offerhaus, and N. F. van Hulst, “Compact high-resolution spectral phase shaper,” Rev. Sci. Instrum. 76, 123105 (2005).
[CrossRef]

van Rhijn, A. C. W.

Wang, Z.

S. Zhang, L. Zhang, X. Zhang, L. Ding, G. Chen, Z. Sun, and Z. Wang, “Selective excitation of CARS by adaptive pulse shaping based on genetic algorithm,” Chem. Phys. Lett. 433, 416-421 (2007).
[CrossRef]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1920-1960 (2000).
[CrossRef]

Willes, H. A.

H. A. Willes, V. J. I. Zichy, and P. J. Hendra, “The laser Raman and infra-red spectra of poly(methyl methacrylate),” Polymer 10, 737-746 (1969).
[CrossRef]

Willmes, L.

R. Fanciulli, L. Willmes, J. Savolainen, P. van der Walle, T. Bäck, and J. L. Herek, “Evolution strategies for laser pulse compression,” in Artificial Evolution, N.Monmarché, E.Talbi, P.Collet, M.Schoenauer, and E. Lutton, eds. (Springer, 2008), pp. 219-230.

Workman, J.

J. Workman, Jr., Handbook of Organic Compounds: NIR, IR, Raman and UV-Vis Spectra Featuring Polymers and Surfaces (Academic, 2001).
[PubMed]

Xie, X. S.

E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31, 241-243 (2006).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Yelin, D.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-Stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88, 063004 (2002).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Quantum control of coherent anti-Stokes Raman processes,” Phys. Rev. A 65, 043408 (2002).
[CrossRef]

Zhang, L.

S. Zhang, L. Zhang, X. Zhang, L. Ding, G. Chen, Z. Sun, and Z. Wang, “Selective excitation of CARS by adaptive pulse shaping based on genetic algorithm,” Chem. Phys. Lett. 433, 416-421 (2007).
[CrossRef]

Zhang, S.

S. Zhang, L. Zhang, X. Zhang, L. Ding, G. Chen, Z. Sun, and Z. Wang, “Selective excitation of CARS by adaptive pulse shaping based on genetic algorithm,” Chem. Phys. Lett. 433, 416-421 (2007).
[CrossRef]

Zhang, X.

S. Zhang, L. Zhang, X. Zhang, L. Ding, G. Chen, Z. Sun, and Z. Wang, “Selective excitation of CARS by adaptive pulse shaping based on genetic algorithm,” Chem. Phys. Lett. 433, 416-421 (2007).
[CrossRef]

Zichy, V. J. I.

H. A. Willes, V. J. I. Zichy, and P. J. Hendra, “The laser Raman and infra-red spectra of poly(methyl methacrylate),” Polymer 10, 737-746 (1969).
[CrossRef]

Zubairy, M. S.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99, 10994-11001 (2002).
[CrossRef] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Appl. Opt. (1)

Chem. Phys. Lett. (1)

S. Zhang, L. Zhang, X. Zhang, L. Ding, G. Chen, Z. Sun, and Z. Wang, “Selective excitation of CARS by adaptive pulse shaping based on genetic algorithm,” Chem. Phys. Lett. 433, 416-421 (2007).
[CrossRef]

J. Chem. Phys. (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118, 9208-9215 (2003).
[CrossRef]

J. Phys. Chem. B (1)

H. A. Rinia, M. Bonn, and M. Muller, “Quantitative multiplex CARS spectroscopy in congested spectral regions,” J. Phys. Chem. B 110, 4472-4479 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (2)

S. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803(R) (2005).
[CrossRef]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Quantum control of coherent anti-Stokes Raman processes,” Phys. Rev. A 65, 043408 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-Stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88, 063004 (2002).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Polymer (1)

H. A. Willes, V. J. I. Zichy, and P. J. Hendra, “The laser Raman and infra-red spectra of poly(methyl methacrylate),” Polymer 10, 737-746 (1969).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99, 10994-11001 (2002).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

S. Postma, P. van der Walle, H. L. Offerhaus, and N. F. van Hulst, “Compact high-resolution spectral phase shaper,” Rev. Sci. Instrum. 76, 123105 (2005).
[CrossRef]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1920-1960 (2000).
[CrossRef]

Other (5)

R. Fanciulli, L. Willmes, J. Savolainen, P. van der Walle, T. Bäck, and J. L. Herek, “Evolution strategies for laser pulse compression,” in Artificial Evolution, N.Monmarché, E.Talbi, P.Collet, M.Schoenauer, and E. Lutton, eds. (Springer, 2008), pp. 219-230.

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003), pp. 20-32.

S. Postma, “Spectral phase shaping for non-linear spectroscopy and imaging,” Ph.D. dissertation (University of Twente, 2008), ISBN 978-90-365-2695-1.

J. Workman, Jr., Handbook of Organic Compounds: NIR, IR, Raman and UV-Vis Spectra Featuring Polymers and Surfaces (Academic, 2001).
[PubMed]

E. Smith and G. Dent, Modern Raman Spectroscopy--A Practical Approach (Wiley, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Complex Lorentzian fit (red) of the Raman spectrum of PMMA (black). (b) Complex Lorentzian fit (red) of the Raman spectrum of PS (black). (c) Negative phase step scan simulation on PS. (d) Positive phase step scan simulation on PS. (e) 2D difference spectrum simulation on PS. (f) 2D difference spectrum measurement on PS. (c)–(f) are given as a function of excitation frequency on the lower axis with emission frequency on the vertical axis. The upper axis shows the corresponding vibrational frequency that is addressed by the pump frequency minus the Stokes frequency.

Fig. 2
Fig. 2

(a) Simulation of integrated difference intensity for PS (solid curve) and PMMA (dashed curve) as a function of phase step location. (b) Measurement on PS of the integrated difference intensity as a function of phase step location.

Fig. 3
Fig. 3

Schematic representation of the setup.

Fig. 4
Fig. 4

CARS images of 4 μ m PS and PMMA beads. Image size approximately 80 × 80 μ m . (a) For a positive π-phase step at 370.2 THz . (b) For a negative π-phase step at 370.2 THz . (c) For a Fourier limited pulse. Note that the same intensity scale bar applies to (a) and (b), but (c) has a different scale bar.

Fig. 5
Fig. 5

Chemically selective imaging. Difference intensity images for two phase step locations. Image size approximately 80 × 80 μ m . (a) Phase step at 370.2 THz , revealing the PMMA beads. (b) Phase step at 373.2 THz , showing the PS beads. The same intensity scale bar applies to both images.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

χ ( 3 ) = χ N R ( 3 ) + χ R ( 3 ) = χ N R ( 3 ) + k A R k Ω k 2 ( ω p ω s ) 2 2 i ( ω p ω s ) Γ R k ,
I CARS P ( ω + ω s ) e i Φ ( ω + ω s ) [ χ R ( 3 ) ( ω ) + χ N R ( 3 ) ] P ( ω ) e i Φ ( ω s ) 2 .

Metrics