Abstract

The decoupling point is a crossing in the dispersion curves of a photonic-crystal coupler. At this point, the energy in one waveguide cannot be transferred into the other one. Controlling the decoupling point can modify the properties of the coupler. From the extended tight-binding theory (TBT), which includes coupling of the guiding mode field up to the next nearest-neighboring defects, we found there is a blueshift in the frequency of the decoupling point in the square lattice and a redshift in the triangular lattice by translating the defect rods along the axis of the coupler. By moving the defects of the coupler close to each other transversely, not only the eigenfrequencies of the coupler but also separations of dispersion curves increase due to the stronger coupling between the defect rods. From the simulation results of the plane wave expansion and the finite difference time domain methods, the theoretical analyses of TBT agree with the numerical ones. Therefore, we successfully derive the design rules using the TBT for tuning the coupling length and decoupling frequency of a directional coupler.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. John, “Strong localization of photons on certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2488 (1987).
    [CrossRef] [PubMed]
  2. E. Yablonovitch, “Inhibited spontaneous emission on solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  3. E. Yablonovitch, “Photonic band-gap crystals,” J. Phys. Condens. Matter 5, 2443-2460 (1993).
    [CrossRef]
  4. A. Imhof, W. L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Phys. Rev. Lett. 83, 2942-2945 (1999).
    [CrossRef]
  5. W. J. Kim, W. Kuang, and J. D. O'Brien, “Dispersion characteristics of photonic crystal coupled resonator optical waveguides,” Opt. Express 11, 3431-3437 (2003).
    [CrossRef] [PubMed]
  6. R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046-4066 (2005).
    [CrossRef]
  7. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005).
    [CrossRef] [PubMed]
  8. M. Abashin, P. Tortora, I. M. Marki, U. Levy, W. Nakagawa, L. Vaccaro, H. P. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Express 14, 1643-1657 (2006).
    [CrossRef] [PubMed]
  9. K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. M. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
    [CrossRef]
  10. W. W. Huang, Y. Zhang, and B. J. Li, “Ultracompact wavelength and polarization splitters in periodic dielectric waveguides,” Opt. Express 16, 1600-1609 (2008).
    [CrossRef] [PubMed]
  11. D. Gerace and L. C. Andreani, “Low-loss guided modes in photonic crystal waveguides,” Opt. Express 13, 4939-4951 (2005).
    [CrossRef] [PubMed]
  12. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
    [CrossRef]
  13. Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, K. Ishida, and Y. Watanabe, “Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides,” Appl. Phys. Lett. 83, 3236-3238 (2003).
    [CrossRef]
  14. F. S. S. Chien, S. C. Cheng, Y. J. Hsu, and W. F. Hsieh, “Dual-band multiplexer/demultiplexer with photonic-crystal-waveguide couplers for bidirectional communications,” Opt. Commun. 266, 592-597 (2006).
    [CrossRef]
  15. F. S. S. Chien, Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12, 1119-1125 (2004).
    [CrossRef] [PubMed]
  16. H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12, 6606-6614 (2004).
    [CrossRef] [PubMed]
  17. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,” Opt. Express 8, 173-190 (2001).
    [CrossRef] [PubMed]
  18. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21, 1665-1673 (2004).
    [CrossRef]
  19. J. P. Albert, C. Jouanin, D. Cassagne, and D. Bertho, “Generalized Wannier function method for photonic crystals,” Phys. Rev. B 61, 4381-4384 (2000).
    [CrossRef]
  20. M. L. D'Yerville, D. Monge, D. Cassagne, and J. P. Albert, “Tight-binding method modelling of photonic crystal waveguides,” Opt. Quantum Electron. 34, 445-454 (2002).
    [CrossRef]
  21. K. Hosomi and T. Katsuyama, “A dispersion compensator using coupled defects in a photonic crystal,” IEEE J. Quantum Electron. 38, 825-829 (2002).
    [CrossRef]
  22. T. Kamalakis and T. Sphicopoulos, “Analytical expressions for the resonant frequencies and modal fields of finite coupled optical cavity chains,” IEEE J. Quantum Electron. 41, 1419-1425 (2005).
    [CrossRef]
  23. S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B 19, 2241-2249 (2002).
    [CrossRef]
  24. F. S. S. Chien, J. B. Tu, W. F. Hsieh, and S. C. Cheng, “Tight-binding theory for coupled photonic crystal waveguides,” Phys. Rev. B 75, 125113 (2007).
    [CrossRef]
  25. C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S. Katz, and A. Taflove, “Ultrawideband absorbing boundary-condition for termination of wave-guiding structure in FD-TD simulations,” IEEE Microw. Guid. Wave Lett. 4, 344-346 (1994).
    [CrossRef]
  26. D. N. Christodoulides and N. K. Efremidis, “Discrete temporal solitons along a chain of nonlinear coupled microcavities embedded in photonic crystals,” Opt. Lett. 27, 568-570 (2002).
    [CrossRef]
  27. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton, 1995), pp. 97-100.
  28. M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163-1165 (2002).
    [CrossRef]
  29. W. D. Zhou, Z. X. Qiang, and L. Chen, “Photonic crystal defect mode cavity modelling: a phenomenological dimensional reduction approach,” J. Phys. D 40, 2615-2623 (2007).
    [CrossRef]
  30. C. H. Huang, W. F. Hsieh, and S. C. Cheng, “Tight-binding theory for coupling asymmetric photonic crystal waveguides,” J. Korean Phys. Soc. 53, 1246-1250 (2008).
    [CrossRef]

2008 (2)

C. H. Huang, W. F. Hsieh, and S. C. Cheng, “Tight-binding theory for coupling asymmetric photonic crystal waveguides,” J. Korean Phys. Soc. 53, 1246-1250 (2008).
[CrossRef]

W. W. Huang, Y. Zhang, and B. J. Li, “Ultracompact wavelength and polarization splitters in periodic dielectric waveguides,” Opt. Express 16, 1600-1609 (2008).
[CrossRef] [PubMed]

2007 (2)

F. S. S. Chien, J. B. Tu, W. F. Hsieh, and S. C. Cheng, “Tight-binding theory for coupled photonic crystal waveguides,” Phys. Rev. B 75, 125113 (2007).
[CrossRef]

W. D. Zhou, Z. X. Qiang, and L. Chen, “Photonic crystal defect mode cavity modelling: a phenomenological dimensional reduction approach,” J. Phys. D 40, 2615-2623 (2007).
[CrossRef]

2006 (3)

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. M. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

F. S. S. Chien, S. C. Cheng, Y. J. Hsu, and W. F. Hsieh, “Dual-band multiplexer/demultiplexer with photonic-crystal-waveguide couplers for bidirectional communications,” Opt. Commun. 266, 592-597 (2006).
[CrossRef]

M. Abashin, P. Tortora, I. M. Marki, U. Levy, W. Nakagawa, L. Vaccaro, H. P. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Express 14, 1643-1657 (2006).
[CrossRef] [PubMed]

2005 (5)

D. Gerace and L. C. Andreani, “Low-loss guided modes in photonic crystal waveguides,” Opt. Express 13, 4939-4951 (2005).
[CrossRef] [PubMed]

R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046-4066 (2005).
[CrossRef]

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
[CrossRef]

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

T. Kamalakis and T. Sphicopoulos, “Analytical expressions for the resonant frequencies and modal fields of finite coupled optical cavity chains,” IEEE J. Quantum Electron. 41, 1419-1425 (2005).
[CrossRef]

2004 (3)

2003 (2)

W. J. Kim, W. Kuang, and J. D. O'Brien, “Dispersion characteristics of photonic crystal coupled resonator optical waveguides,” Opt. Express 11, 3431-3437 (2003).
[CrossRef] [PubMed]

Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, K. Ishida, and Y. Watanabe, “Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides,” Appl. Phys. Lett. 83, 3236-3238 (2003).
[CrossRef]

2002 (5)

M. L. D'Yerville, D. Monge, D. Cassagne, and J. P. Albert, “Tight-binding method modelling of photonic crystal waveguides,” Opt. Quantum Electron. 34, 445-454 (2002).
[CrossRef]

K. Hosomi and T. Katsuyama, “A dispersion compensator using coupled defects in a photonic crystal,” IEEE J. Quantum Electron. 38, 825-829 (2002).
[CrossRef]

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163-1165 (2002).
[CrossRef]

D. N. Christodoulides and N. K. Efremidis, “Discrete temporal solitons along a chain of nonlinear coupled microcavities embedded in photonic crystals,” Opt. Lett. 27, 568-570 (2002).
[CrossRef]

S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B 19, 2241-2249 (2002).
[CrossRef]

2001 (1)

2000 (1)

J. P. Albert, C. Jouanin, D. Cassagne, and D. Bertho, “Generalized Wannier function method for photonic crystals,” Phys. Rev. B 61, 4381-4384 (2000).
[CrossRef]

1999 (1)

A. Imhof, W. L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Phys. Rev. Lett. 83, 2942-2945 (1999).
[CrossRef]

1994 (1)

C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S. Katz, and A. Taflove, “Ultrawideband absorbing boundary-condition for termination of wave-guiding structure in FD-TD simulations,” IEEE Microw. Guid. Wave Lett. 4, 344-346 (1994).
[CrossRef]

1993 (1)

E. Yablonovitch, “Photonic band-gap crystals,” J. Phys. Condens. Matter 5, 2443-2460 (1993).
[CrossRef]

1987 (2)

S. John, “Strong localization of photons on certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2488 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission on solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Abashin, M.

Albert, J. P.

M. L. D'Yerville, D. Monge, D. Cassagne, and J. P. Albert, “Tight-binding method modelling of photonic crystal waveguides,” Opt. Quantum Electron. 34, 445-454 (2002).
[CrossRef]

J. P. Albert, C. Jouanin, D. Cassagne, and D. Bertho, “Generalized Wannier function method for photonic crystals,” Phys. Rev. B 61, 4381-4384 (2000).
[CrossRef]

Andreani, L. C.

Asakawa, K.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. M. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12, 6606-6614 (2004).
[CrossRef] [PubMed]

Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, K. Ishida, and Y. Watanabe, “Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides,” Appl. Phys. Lett. 83, 3236-3238 (2003).
[CrossRef]

Awazu, K.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. M. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Baets, R.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. M. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Bertho, D.

J. P. Albert, C. Jouanin, D. Cassagne, and D. Bertho, “Generalized Wannier function method for photonic crystals,” Phys. Rev. B 61, 4381-4384 (2000).
[CrossRef]

Borel, P. I.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. M. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Cassagne, D.

M. L. D'Yerville, D. Monge, D. Cassagne, and J. P. Albert, “Tight-binding method modelling of photonic crystal waveguides,” Opt. Quantum Electron. 34, 445-454 (2002).
[CrossRef]

J. P. Albert, C. Jouanin, D. Cassagne, and D. Bertho, “Generalized Wannier function method for photonic crystals,” Phys. Rev. B 61, 4381-4384 (2000).
[CrossRef]

Chang-Hasnain, C. J.

Chen, L.

W. D. Zhou, Z. X. Qiang, and L. Chen, “Photonic crystal defect mode cavity modelling: a phenomenological dimensional reduction approach,” J. Phys. D 40, 2615-2623 (2007).
[CrossRef]

Cheng, S. C.

C. H. Huang, W. F. Hsieh, and S. C. Cheng, “Tight-binding theory for coupling asymmetric photonic crystal waveguides,” J. Korean Phys. Soc. 53, 1246-1250 (2008).
[CrossRef]

F. S. S. Chien, J. B. Tu, W. F. Hsieh, and S. C. Cheng, “Tight-binding theory for coupled photonic crystal waveguides,” Phys. Rev. B 75, 125113 (2007).
[CrossRef]

F. S. S. Chien, S. C. Cheng, Y. J. Hsu, and W. F. Hsieh, “Dual-band multiplexer/demultiplexer with photonic-crystal-waveguide couplers for bidirectional communications,” Opt. Commun. 266, 592-597 (2006).
[CrossRef]

F. S. S. Chien, Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12, 1119-1125 (2004).
[CrossRef] [PubMed]

Chien, F. S. S.

F. S. S. Chien, J. B. Tu, W. F. Hsieh, and S. C. Cheng, “Tight-binding theory for coupled photonic crystal waveguides,” Phys. Rev. B 75, 125113 (2007).
[CrossRef]

F. S. S. Chien, S. C. Cheng, Y. J. Hsu, and W. F. Hsieh, “Dual-band multiplexer/demultiplexer with photonic-crystal-waveguide couplers for bidirectional communications,” Opt. Commun. 266, 592-597 (2006).
[CrossRef]

F. S. S. Chien, Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12, 1119-1125 (2004).
[CrossRef] [PubMed]

Christodoulides, D. N.

D'Yerville, M. L.

M. L. D'Yerville, D. Monge, D. Cassagne, and J. P. Albert, “Tight-binding method modelling of photonic crystal waveguides,” Opt. Quantum Electron. 34, 445-454 (2002).
[CrossRef]

Efremidis, N. K.

Fainman, Y.

Fallahi, M.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
[CrossRef]

Gerace, D.

Hamann, H. F.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Herzig, H. P.

Hosomi, K.

K. Hosomi and T. Katsuyama, “A dispersion compensator using coupled defects in a photonic crystal,” IEEE J. Quantum Electron. 38, 825-829 (2002).
[CrossRef]

Hsieh, W. F.

C. H. Huang, W. F. Hsieh, and S. C. Cheng, “Tight-binding theory for coupling asymmetric photonic crystal waveguides,” J. Korean Phys. Soc. 53, 1246-1250 (2008).
[CrossRef]

F. S. S. Chien, J. B. Tu, W. F. Hsieh, and S. C. Cheng, “Tight-binding theory for coupled photonic crystal waveguides,” Phys. Rev. B 75, 125113 (2007).
[CrossRef]

F. S. S. Chien, S. C. Cheng, Y. J. Hsu, and W. F. Hsieh, “Dual-band multiplexer/demultiplexer with photonic-crystal-waveguide couplers for bidirectional communications,” Opt. Commun. 266, 592-597 (2006).
[CrossRef]

F. S. S. Chien, Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12, 1119-1125 (2004).
[CrossRef] [PubMed]

Hsu, Y. J.

F. S. S. Chien, S. C. Cheng, Y. J. Hsu, and W. F. Hsieh, “Dual-band multiplexer/demultiplexer with photonic-crystal-waveguide couplers for bidirectional communications,” Opt. Commun. 266, 592-597 (2006).
[CrossRef]

F. S. S. Chien, Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12, 1119-1125 (2004).
[CrossRef] [PubMed]

Huang, C. H.

C. H. Huang, W. F. Hsieh, and S. C. Cheng, “Tight-binding theory for coupling asymmetric photonic crystal waveguides,” J. Korean Phys. Soc. 53, 1246-1250 (2008).
[CrossRef]

Huang, W. W.

Ikeda, N.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. M. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12, 6606-6614 (2004).
[CrossRef] [PubMed]

Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, K. Ishida, and Y. Watanabe, “Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides,” Appl. Phys. Lett. 83, 3236-3238 (2003).
[CrossRef]

Imhof, A.

A. Imhof, W. L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Phys. Rev. Lett. 83, 2942-2945 (1999).
[CrossRef]

Inoue, K.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. M. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12, 6606-6614 (2004).
[CrossRef] [PubMed]

Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, K. Ishida, and Y. Watanabe, “Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides,” Appl. Phys. Lett. 83, 3236-3238 (2003).
[CrossRef]

Ishida, K.

Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, K. Ishida, and Y. Watanabe, “Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides,” Appl. Phys. Lett. 83, 3236-3238 (2003).
[CrossRef]

Ishikawa, H.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. M. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12, 6606-6614 (2004).
[CrossRef] [PubMed]

Joannopoulos, J. D.

John, S.

S. John, “Strong localization of photons on certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2488 (1987).
[CrossRef] [PubMed]

Johnson, S. G.

Joseph, R. M.

C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S. Katz, and A. Taflove, “Ultrawideband absorbing boundary-condition for termination of wave-guiding structure in FD-TD simulations,” IEEE Microw. Guid. Wave Lett. 4, 344-346 (1994).
[CrossRef]

Jouanin, C.

J. P. Albert, C. Jouanin, D. Cassagne, and D. Bertho, “Generalized Wannier function method for photonic crystals,” Phys. Rev. B 61, 4381-4384 (2000).
[CrossRef]

Kamalakis, T.

T. Kamalakis and T. Sphicopoulos, “Analytical expressions for the resonant frequencies and modal fields of finite coupled optical cavity chains,” IEEE J. Quantum Electron. 41, 1419-1425 (2005).
[CrossRef]

Kanamoto, K.

Katsuyama, T.

K. Hosomi and T. Katsuyama, “A dispersion compensator using coupled defects in a photonic crystal,” IEEE J. Quantum Electron. 38, 825-829 (2002).
[CrossRef]

Katz, D. S.

C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S. Katz, and A. Taflove, “Ultrawideband absorbing boundary-condition for termination of wave-guiding structure in FD-TD simulations,” IEEE Microw. Guid. Wave Lett. 4, 344-346 (1994).
[CrossRef]

Kim, W. J.

Kitagawa, Y.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. M. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Kivshar, Y. S.

Kristensen, M.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. M. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Ku, P. C.

Kuang, W.

Lagendijk, A.

A. Imhof, W. L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Phys. Rev. Lett. 83, 2942-2945 (1999).
[CrossRef]

Levy, U.

Li, B. J.

Liu, T.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
[CrossRef]

Mansuripur, M.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
[CrossRef]

Marki, I. M.

Maruyama, T.

Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, K. Ishida, and Y. Watanabe, “Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides,” Appl. Phys. Lett. 83, 3236-3238 (2003).
[CrossRef]

McNab, S. J.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton, 1995), pp. 97-100.

Mingaleev, S. F.

Miyashita, K.

Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, K. Ishida, and Y. Watanabe, “Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides,” Appl. Phys. Lett. 83, 3236-3238 (2003).
[CrossRef]

Mizutani, A.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. M. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Moloney, J. V.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
[CrossRef]

Monge, D.

M. L. D'Yerville, D. Monge, D. Cassagne, and J. P. Albert, “Tight-binding method modelling of photonic crystal waveguides,” Opt. Quantum Electron. 34, 445-454 (2002).
[CrossRef]

Nakagawa, W.

Nakamura, H.

H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12, 6606-6614 (2004).
[CrossRef] [PubMed]

Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, K. Ishida, and Y. Watanabe, “Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides,” Appl. Phys. Lett. 83, 3236-3238 (2003).
[CrossRef]

Nakamura, S.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. M. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Nakamura, Y.

O'Boyle, M.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

O'Brien, J. D.

Ohkouchi, S.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. M. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12, 6606-6614 (2004).
[CrossRef] [PubMed]

Ozaki, N.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. M. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Poon, J. K. S.

Qiang, Z. X.

W. D. Zhou, Z. X. Qiang, and L. Chen, “Photonic crystal defect mode cavity modelling: a phenomenological dimensional reduction approach,” J. Phys. D 40, 2615-2623 (2007).
[CrossRef]

Qiu, M.

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163-1165 (2002).
[CrossRef]

Reuter, C. E.

C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S. Katz, and A. Taflove, “Ultrawideband absorbing boundary-condition for termination of wave-guiding structure in FD-TD simulations,” IEEE Microw. Guid. Wave Lett. 4, 344-346 (1994).
[CrossRef]

Scheuer, J.

Sigmund, O.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. M. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Sphicopoulos, T.

T. Kamalakis and T. Sphicopoulos, “Analytical expressions for the resonant frequencies and modal fields of finite coupled optical cavity chains,” IEEE J. Quantum Electron. 41, 1419-1425 (2005).
[CrossRef]

Sprik, R.

A. Imhof, W. L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Phys. Rev. Lett. 83, 2942-2945 (1999).
[CrossRef]

Sugimoto, Y.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. M. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12, 6606-6614 (2004).
[CrossRef] [PubMed]

Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, K. Ishida, and Y. Watanabe, “Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides,” Appl. Phys. Lett. 83, 3236-3238 (2003).
[CrossRef]

Taflove, A.

C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S. Katz, and A. Taflove, “Ultrawideband absorbing boundary-condition for termination of wave-guiding structure in FD-TD simulations,” IEEE Microw. Guid. Wave Lett. 4, 344-346 (1994).
[CrossRef]

Takata, Y.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. M. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Tanaka, Y.

H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12, 6606-6614 (2004).
[CrossRef] [PubMed]

Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, K. Ishida, and Y. Watanabe, “Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides,” Appl. Phys. Lett. 83, 3236-3238 (2003).
[CrossRef]

Thiele, E. T.

C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S. Katz, and A. Taflove, “Ultrawideband absorbing boundary-condition for termination of wave-guiding structure in FD-TD simulations,” IEEE Microw. Guid. Wave Lett. 4, 344-346 (1994).
[CrossRef]

Tortora, P.

Tu, J. B.

F. S. S. Chien, J. B. Tu, W. F. Hsieh, and S. C. Cheng, “Tight-binding theory for coupled photonic crystal waveguides,” Phys. Rev. B 75, 125113 (2007).
[CrossRef]

Tucker, R. S.

Vaccaro, L.

Vlasov, Y. A.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Vos, W. L.

A. Imhof, W. L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Phys. Rev. Lett. 83, 2942-2945 (1999).
[CrossRef]

Wang, X. M.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. M. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Watanabe, A.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. M. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Watanabe, Y.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. M. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12, 6606-6614 (2004).
[CrossRef] [PubMed]

Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, K. Ishida, and Y. Watanabe, “Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides,” Appl. Phys. Lett. 83, 3236-3238 (2003).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton, 1995), pp. 97-100.

Xu, Y.

Yablonovitch, E.

E. Yablonovitch, “Photonic band-gap crystals,” J. Phys. Condens. Matter 5, 2443-2460 (1993).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission on solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yang, T.

Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, K. Ishida, and Y. Watanabe, “Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides,” Appl. Phys. Lett. 83, 3236-3238 (2003).
[CrossRef]

Yariv, A.

Zakharian, A. R.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
[CrossRef]

Zhang, Y.

Zhou, W. D.

W. D. Zhou, Z. X. Qiang, and L. Chen, “Photonic crystal defect mode cavity modelling: a phenomenological dimensional reduction approach,” J. Phys. D 40, 2615-2623 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, K. Ishida, and Y. Watanabe, “Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides,” Appl. Phys. Lett. 83, 3236-3238 (2003).
[CrossRef]

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163-1165 (2002).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. Hosomi and T. Katsuyama, “A dispersion compensator using coupled defects in a photonic crystal,” IEEE J. Quantum Electron. 38, 825-829 (2002).
[CrossRef]

T. Kamalakis and T. Sphicopoulos, “Analytical expressions for the resonant frequencies and modal fields of finite coupled optical cavity chains,” IEEE J. Quantum Electron. 41, 1419-1425 (2005).
[CrossRef]

IEEE Microw. Guid. Wave Lett. (1)

C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S. Katz, and A. Taflove, “Ultrawideband absorbing boundary-condition for termination of wave-guiding structure in FD-TD simulations,” IEEE Microw. Guid. Wave Lett. 4, 344-346 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
[CrossRef]

J. Korean Phys. Soc. (1)

C. H. Huang, W. F. Hsieh, and S. C. Cheng, “Tight-binding theory for coupling asymmetric photonic crystal waveguides,” J. Korean Phys. Soc. 53, 1246-1250 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

J. Phys. Condens. Matter (1)

E. Yablonovitch, “Photonic band-gap crystals,” J. Phys. Condens. Matter 5, 2443-2460 (1993).
[CrossRef]

J. Phys. D (1)

W. D. Zhou, Z. X. Qiang, and L. Chen, “Photonic crystal defect mode cavity modelling: a phenomenological dimensional reduction approach,” J. Phys. D 40, 2615-2623 (2007).
[CrossRef]

Nature (1)

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

New J. Phys. (1)

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. M. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Opt. Commun. (1)

F. S. S. Chien, S. C. Cheng, Y. J. Hsu, and W. F. Hsieh, “Dual-band multiplexer/demultiplexer with photonic-crystal-waveguide couplers for bidirectional communications,” Opt. Commun. 266, 592-597 (2006).
[CrossRef]

Opt. Express (7)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

M. L. D'Yerville, D. Monge, D. Cassagne, and J. P. Albert, “Tight-binding method modelling of photonic crystal waveguides,” Opt. Quantum Electron. 34, 445-454 (2002).
[CrossRef]

Phys. Rev. B (2)

F. S. S. Chien, J. B. Tu, W. F. Hsieh, and S. C. Cheng, “Tight-binding theory for coupled photonic crystal waveguides,” Phys. Rev. B 75, 125113 (2007).
[CrossRef]

J. P. Albert, C. Jouanin, D. Cassagne, and D. Bertho, “Generalized Wannier function method for photonic crystals,” Phys. Rev. B 61, 4381-4384 (2000).
[CrossRef]

Phys. Rev. Lett. (3)

A. Imhof, W. L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Phys. Rev. Lett. 83, 2942-2945 (1999).
[CrossRef]

S. John, “Strong localization of photons on certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2488 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission on solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Other (1)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton, 1995), pp. 97-100.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Geometric structures of (a) single and (b) double PCWs with the lattice constant a. P m ’s are the coupling coefficients between defects within a single waveguide. α and β are the coupling coefficients between waveguides.

Fig. 2
Fig. 2

Electric field distribution ( E z ) of the point-defect mode of (a) square lattice and (b) triangular lattice. The dielectric constant and the radius of the perfect dielectric rods are 12 and 0.2 a , respectively. The radius of the defect rod is 0.1 a in the square lattice and 0.09 a in the triangular lattice.

Fig. 3
Fig. 3

(a) Eigenfrequencies, (b) electric field along the y axis, and (c) electric field along the x axis of the point-defect modes with a defect rod located at different positions along the y axis, where c is the speed of light in vacuum.

Fig. 4
Fig. 4

Ways of moving the defect rods in single or coupled PCWs.

Fig. 5
Fig. 5

Electric field distribution of the point-defect mode before ( x = 0 a ) and after moving the defect rods by 0.5 a along the x axis ( x = 0.5 a ) . (a) Electric field located at y = 2 a in the square lattice and (b) electric field located at y = 3 a in the triangular lattice.

Fig. 6
Fig. 6

Dispersion curves of a single PCW with all the defect rods moving along (a) y direction and (b) x direction.

Fig. 7
Fig. 7

Dispersion curves of the shifted DCs, whose structures are indicated in the insets.

Fig. 8
Fig. 8

Dispersion curves as moving the defect rods along the x direction in (a) square lattice and (b) triangular lattice.

Fig. 9
Fig. 9

(a) Dispersion relation curves and the FDTD simulation results of the original DC without moving defects in (b), longitudinally moving the defect rods by 0.5 a in (c), and transversely moving the defects closer by 0.5 a in (d).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

i t u n = ( ω 0 P 0 ) u n m = 1 P m ( u n + m + u n m ) ,
P m = ω 0 d r 3 Δ ε ( r ) E 0 ( r n a x ) E 0 ( r ( n + m ) a x ) d r 3 [ μ H 0 ( r n a x ) 2 + ε E 0 ( r n a x ) 2 ] .
ω 1 ( k ) = ω 0 P 0 m = 1 2 P m cos ( m k a ) .
( ω ω 1 ) U 0 + ( α + β cos ( k a ) ) V 0 = 0 ,
( ω ω 1 ) V 0 + ( α + β cos ( k a ) ) U 0 = 0 ,
ω ( k ) = ω 1 ( k ) ± ( α + 2 β cos ( k a ) ) ,
ζ 2 ζ 1 ( E 2 ( a , 2 a ) E 2 ( 0 , 2 a ) ) ( E 1 ( a , 2 a ) E 1 ( 0 , 2 a ) ) .

Metrics