Abstract

A tri-rod structure (TRS), which can be seen as a combination of the double-rod structures reported by V. M. Shalaev et al. [Opt. Lett. 30, 3356 (2005) ], is proposed to control the polarization state of an electromagnetic (EM) wave in the near-infrared range. When a plane EM wave propagates through the TRS system, two orthogonal hybrid magnetic eigenmodes are established as a result of the strong hybridization effect. Thus, linearly polarized infrared light is shown to change its polarization around the resonance range after passing through an array of TRSs. The wavelength dependence of the polarization state is also calculated, and various polarized waves can be obtained. A metamaterial made of a large number of TRSs could be utilized as a polarization controllable medium with possible applications in optical elements and devices.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
    [CrossRef]
  2. V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356-3358 (2005).
    [CrossRef]
  3. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494-1496 (2004).
    [CrossRef] [PubMed]
  4. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351-1353 (2004).
    [CrossRef] [PubMed]
  5. N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, Th. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348-1350 (2005).
    [CrossRef] [PubMed]
  6. C. Enkich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
    [CrossRef]
  7. J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
    [CrossRef] [PubMed]
  8. A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
    [CrossRef] [PubMed]
  9. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 17-20 (2005).
    [CrossRef]
  10. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
    [CrossRef]
  11. T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155-11163 (2006).
    [CrossRef] [PubMed]
  12. F. M. Wang, H. Liu, T. Li, S. N. Zhu, and X. Zhang, “Omnidirectional negative refraction with wide bandwidth introduced by magnetic coupling in a tri-rod structure,” Phys. Rev. B 76, 075110 (2007).
    [CrossRef]
  13. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
    [CrossRef]
  14. Na Liu, Hui Liu, Shining Zhu, and Harald Giessen, “Stereometamaterials,” Nature Photon. 3, 157-162 (2009).
    [CrossRef]
  15. A. Alu, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express 14, 1557-1567 (2006).
    [CrossRef] [PubMed]
  16. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  17. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004).
    [CrossRef] [PubMed]
  18. S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
    [CrossRef]
  19. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47-49 (2007).
    [CrossRef] [PubMed]
  20. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005).
    [CrossRef] [PubMed]
  21. Z. M. Zhang and C. J. Fu, “Unusual photon tunneling in the presence of a layer with a negative refractive index,” Appl. Phys. Lett. 80, 1097 (2002).
    [CrossRef]
  22. K.-Y. Kim, “Photon tunneling in composite layers of negative- and positive-index media,” Phys. Rev. E 70, 047603 (2004).
    [CrossRef]
  23. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Star, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
    [CrossRef] [PubMed]
  24. T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
    [CrossRef]
  25. T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93, 021110 (2008).
    [CrossRef]
  26. M. Berute, M. Navarro-Cia, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103, 053102 (2008).
    [CrossRef]
  27. J. Hao, Yuan Yu, L. Ran, Jiang Tao, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
    [CrossRef] [PubMed]
  28. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  29. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).

2009 (1)

Na Liu, Hui Liu, Shining Zhu, and Harald Giessen, “Stereometamaterials,” Nature Photon. 3, 157-162 (2009).
[CrossRef]

2008 (3)

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

M. Berute, M. Navarro-Cia, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103, 053102 (2008).
[CrossRef]

2007 (4)

J. Hao, Yuan Yu, L. Ran, Jiang Tao, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef] [PubMed]

F. M. Wang, H. Liu, T. Li, S. N. Zhu, and X. Zhang, “Omnidirectional negative refraction with wide bandwidth introduced by magnetic coupling in a tri-rod structure,” Phys. Rev. B 76, 075110 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47-49 (2007).
[CrossRef] [PubMed]

2006 (5)

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
[CrossRef]

A. Alu, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express 14, 1557-1567 (2006).
[CrossRef] [PubMed]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155-11163 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Star, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

2005 (7)

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, Th. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348-1350 (2005).
[CrossRef] [PubMed]

V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356-3358 (2005).
[CrossRef]

C. Enkich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
[CrossRef] [PubMed]

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 17-20 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005).
[CrossRef] [PubMed]

2004 (4)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

K.-Y. Kim, “Photon tunneling in composite layers of negative- and positive-index media,” Phys. Rev. E 70, 047603 (2004).
[CrossRef]

2002 (1)

Z. M. Zhang and C. J. Fu, “Unusual photon tunneling in the presence of a layer with a negative refractive index,” Appl. Phys. Lett. 80, 1097 (2002).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1999 (1)

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Alu, A.

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Berute, M.

M. Berute, M. Navarro-Cia, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103, 053102 (2008).
[CrossRef]

Burger, S.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
[CrossRef]

C. Enkich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

Cai, W. S.

Campillo, I.

M. Berute, M. Navarro-Cia, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103, 053102 (2008).
[CrossRef]

Chan, C. T.

J. Hao, Yuan Yu, L. Ran, Jiang Tao, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef] [PubMed]

Chen, P.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

Chettiar, U. K.

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Star, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Dolling, G.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
[CrossRef]

Dong, Z. G.

Drachev, V. P.

Economou, E. N.

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, Th. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348-1350 (2005).
[CrossRef] [PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Engheta, N.

Enkich, C.

C. Enkich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

Enkrich, C.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Firsov, A. A.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 17-20 (2005).
[CrossRef]

Fu, C. J.

Z. M. Zhang and C. J. Fu, “Unusual photon tunneling in the presence of a layer with a negative refractive index,” Appl. Phys. Lett. 80, 1097 (2002).
[CrossRef]

Geim, A. K.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 17-20 (2005).
[CrossRef]

Genov, D. A.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Giessen, Harald

Na Liu, Hui Liu, Shining Zhu, and Harald Giessen, “Stereometamaterials,” Nature Photon. 3, 157-162 (2009).
[CrossRef]

Gleeson, H. F.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 17-20 (2005).
[CrossRef]

Grigorenko, A. N.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 17-20 (2005).
[CrossRef]

Gundogdu, T. F.

Hao, J.

J. Hao, Yuan Yu, L. Ran, Jiang Tao, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef] [PubMed]

Holden, A.

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Ishikawa, A.

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
[CrossRef] [PubMed]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Star, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Kafesaki, M.

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, Th. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348-1350 (2005).
[CrossRef] [PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Katsarakis, N.

Kawata, S.

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
[CrossRef] [PubMed]

Khrushchev, I. Y.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 17-20 (2005).
[CrossRef]

Kildishev, A. V.

Kim, K.-Y.

K.-Y. Kim, “Photon tunneling in composite layers of negative- and positive-index media,” Phys. Rev. E 70, 047603 (2004).
[CrossRef]

Klein, M. W.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
[CrossRef]

Kong, J. A.

J. Hao, Yuan Yu, L. Ran, Jiang Tao, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef] [PubMed]

Konstantinidis, G.

Koschny, T.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Koschny, Th.

C. Enkich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, Th. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348-1350 (2005).
[CrossRef] [PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Kostopoulos, A.

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Li, T.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

F. M. Wang, H. Liu, T. Li, S. N. Zhu, and X. Zhang, “Omnidirectional negative refraction with wide bandwidth introduced by magnetic coupling in a tri-rod structure,” Phys. Rev. B 76, 075110 (2007).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155-11163 (2006).
[CrossRef] [PubMed]

Li, T. Q.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

Linden, S.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47-49 (2007).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
[CrossRef]

C. Enkich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Liu, H.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

F. M. Wang, H. Liu, T. Li, S. N. Zhu, and X. Zhang, “Omnidirectional negative refraction with wide bandwidth introduced by magnetic coupling in a tri-rod structure,” Phys. Rev. B 76, 075110 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155-11163 (2006).
[CrossRef] [PubMed]

Liu, Hui

Na Liu, Hui Liu, Shining Zhu, and Harald Giessen, “Stereometamaterials,” Nature Photon. 3, 157-162 (2009).
[CrossRef]

Liu, Na

Na Liu, Hui Liu, Shining Zhu, and Harald Giessen, “Stereometamaterials,” Nature Photon. 3, 157-162 (2009).
[CrossRef]

Liu, Y. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Star, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Navarro-Cia, M.

M. Berute, M. Navarro-Cia, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103, 053102 (2008).
[CrossRef]

Padilla, W. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Penciu, R. S.

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Star, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Petrovic, J.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 17-20 (2005).
[CrossRef]

Ran, L.

J. Hao, Yuan Yu, L. Ran, Jiang Tao, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef] [PubMed]

Robbins, D.

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Salandrino, A.

Sarychev, A. K.

Schmidt, F.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
[CrossRef]

C. Enkich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Star, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Star, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Sorolla, M.

M. Berute, M. Navarro-Cia, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103, 053102 (2008).
[CrossRef]

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47-49 (2007).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
[CrossRef]

C. Enkich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, Th. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348-1350 (2005).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Star, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Star, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Steele, J. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Stewart, W.

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Sun, C.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Tanaka, T.

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
[CrossRef] [PubMed]

Tao, Jiang

J. Hao, Yuan Yu, L. Ran, Jiang Tao, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef] [PubMed]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Wang, F. M.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

F. M. Wang, H. Liu, T. Li, S. N. Zhu, and X. Zhang, “Omnidirectional negative refraction with wide bandwidth introduced by magnetic coupling in a tri-rod structure,” Phys. Rev. B 76, 075110 (2007).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155-11163 (2006).
[CrossRef] [PubMed]

Wang, S. M.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

Wegener, M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47-49 (2007).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
[CrossRef]

C. Enkich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004).
[CrossRef] [PubMed]

Wu, D. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Wu, R. X.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Yin, X. G.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

Yu, Yuan

J. Hao, Yuan Yu, L. Ran, Jiang Tao, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef] [PubMed]

Yuan, H. K.

Zhang, X.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

F. M. Wang, H. Liu, T. Li, S. N. Zhu, and X. Zhang, “Omnidirectional negative refraction with wide bandwidth introduced by magnetic coupling in a tri-rod structure,” Phys. Rev. B 76, 075110 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155-11163 (2006).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Zhang, Y.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 17-20 (2005).
[CrossRef]

Zhang, Z. M.

Z. M. Zhang and C. J. Fu, “Unusual photon tunneling in the presence of a layer with a negative refractive index,” Appl. Phys. Lett. 80, 1097 (2002).
[CrossRef]

Zhou, J.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Zhou, J. F.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
[CrossRef]

C. Enkich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Zhou, L.

J. Hao, Yuan Yu, L. Ran, Jiang Tao, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef] [PubMed]

Zhu, S. N.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

F. M. Wang, H. Liu, T. Li, S. N. Zhu, and X. Zhang, “Omnidirectional negative refraction with wide bandwidth introduced by magnetic coupling in a tri-rod structure,” Phys. Rev. B 76, 075110 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155-11163 (2006).
[CrossRef] [PubMed]

Zhu, Shining

Na Liu, Hui Liu, Shining Zhu, and Harald Giessen, “Stereometamaterials,” Nature Photon. 3, 157-162 (2009).
[CrossRef]

Zschiedrich, L.

C. Enkich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

Z. M. Zhang and C. J. Fu, “Unusual photon tunneling in the presence of a layer with a negative refractive index,” Appl. Phys. Lett. 80, 1097 (2002).
[CrossRef]

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. Appl. Phys. (1)

M. Berute, M. Navarro-Cia, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103, 053102 (2008).
[CrossRef]

Nature (1)

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 17-20 (2005).
[CrossRef]

Nature Photon. (1)

Na Liu, Hui Liu, Shining Zhu, and Harald Giessen, “Stereometamaterials,” Nature Photon. 3, 157-162 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (2)

F. M. Wang, H. Liu, T. Li, S. N. Zhu, and X. Zhang, “Omnidirectional negative refraction with wide bandwidth introduced by magnetic coupling in a tri-rod structure,” Phys. Rev. B 76, 075110 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

Phys. Rev. E (1)

K.-Y. Kim, “Photon tunneling in composite layers of negative- and positive-index media,” Phys. Rev. E 70, 047603 (2004).
[CrossRef]

Phys. Rev. Lett. (6)

J. Hao, Yuan Yu, L. Ran, Jiang Tao, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef] [PubMed]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

C. Enkich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
[CrossRef] [PubMed]

Science (6)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Star, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47-49 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Other (2)

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Structure of a cubic unit cell of the TRS with d = 100 nm , a = 300 nm , b = 20 nm , and l = 500 nm . (b) Equivalent L C circuit of the TRS. (c) Metamaterial made of the TRS. The polarization and direction of the incident EM wave are represented.

Fig. 2
Fig. 2

(a) Local magnetic field amplitude | H z | detected between rods A and B for the TRS (black solid curve for θ=−45° and black dotted curve for θ=45°) and DRS [green (gray) solid curve for θ=0°]. (b) Magnetic field amplitude | H z | calculated between rods A and B of the TRS for incident polarizations θ=−30°, −10°, 10°, 30°. Local magnetic field vector profiles and current distributions (c)–(d) for the | α mode at λ α = 1.122 μ m with θ=−45° and (e)–(f) for | β mode at λ β = 1.211 μ m with θ=45° .

Fig. 3
Fig. 3

Amplitudes of the electric field components | E x | and | E z | when the plane wave passes through the metamaterial consisting of TRSs. The chosen incident polarization angles from (a) to (f) are θ=−45°, 45°, −30°, 30°, −10°, 10°.

Fig. 4
Fig. 4

Phase difference between the two transmission electric components.

Fig. 5
Fig. 5

Polarization patterns of the transmitted waves obtained at different wavelengths for the incident case θ=0°. The arrows in the figures indicate the rotation directions of the transmission waves.

Fig. 6
Fig. 6

Rotation angle δ between the principal axis of the polarization for the transmitted wave and the x direction with different incident polarizations θ.

Fig. 7
Fig. 7

Retrieved amplitudes of the electric field components | E x | and | E z | by coordinate transformation theory. The chosen incident polarization angles from (a) to (d) are θ=−30°, 30°, −10°, 10°.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

J 0 = ( L 2 ) ( Q ̇ 1 2 + Q ̇ 2 2 ) ( 1 2 C ) ( Q 1 2 + Q 2 2 ) + M Q ̇ 1 Q ̇ 2 .
d d t ( J 0 Q ̇ i ) J 0 Q i = 0 ( i = 1 , 2 ) ,
( E x | E x | ) 2 + ( E z | E z | ) 2 2 E x E z | E x | | E z | cos ϕ = sin 2 ϕ ,
tan ( 2 δ ) = 2 | E x | | E z | cos ϕ ( | E x | 2 | E z | 2 ) .
J 1 = ( L 2 ) ( Q ̇ 1 2 + Q ̇ 2 2 ) ( 1 2 C ) ( Q 1 2 + Q 2 2 ) + M Q ̇ 1 Q ̇ 2 m x H x i m z H z i .
d d t ( J 1 Q ̇ i ) J 1 Q i = R Q ̇ i ( i = 1 , 2 ) .
Q ̇ 1 = κ ω 2 s H x ( ω 2 + i Γ ω ω 0 2 ) s H z ( 1 κ 2 ) ( ω 2 + i γ α ω ω α 2 ) ( ω 2 + i γ β ω ω β 2 ) ,
Q ̇ 2 = ( ω 2 + i Γ ω ω 0 2 ) s H x + κ ω 2 s H z ( 1 κ 2 ) ( ω 2 + i γ α ω ω α 2 ) ( ω 2 + i γ β ω ω β 2 ) ,
μ x x ( z z ) = 1 ( ω 2 + i Γ ω ω 0 2 ) s s ( 1 κ 2 ) ( ω 2 + i γ α ω ω α 2 ) ( ω 2 + i γ β ω ω β 2 ) ,
μ x z ( z x ) = κ ω 2 s s ( 1 κ 2 ) ( ω 2 + i γ α ω ω α 2 ) ( ω 2 + i γ β ω ω β 2 ) .
k α = k 0 ε 0 ( 1 s s ( 1 κ ) ( ω 2 + i γ α ω ω α 2 ) ) ,
k β = k 0 ε 0 ( 1 s s ( 1 + κ ) ( ω 2 + i γ β ω ω β 2 ) ) ,
μ α = 1 s s ( 1 κ ) ( ω 2 + i γ α ω ω α 2 ) ,
μ β = 1 s s ( 1 + κ ) ( ω 2 + i γ β ω ω β 2 ) .
e ̂ α = 1 2 ( x ̂ z ̂ ) , e ̂ β = 1 2 ( x ̂ z ̂ ) ,
( E x t E z t ) = 1 2 ( ( E x i E z i ) T α + ( E x i + E z i ) T β ( E x i E z i ) T α + ( E x i + E z i ) T β ) ,
T α ( β ) = 4 n α ( β ) exp ( i n α ( β ) k 0 d ) ( n α ( β ) + 1 ) 2 ( n α ( β ) 1 ) 2 exp ( 2 i n α ( β ) k 0 d ) .

Metrics