Abstract

We provide a simple analytical model for the modification of optical properties of active molecules and other objects when they are placed in the vicinity of metal nanoparticles of subwavelength dimensions. Specifically, we study the enhancement of optical radiation, electroluminescence, and photoluminescence absorbed or emitted by these objects. The theory takes into account the radiative decay of the surface plasmon mode supported by the metal nanospheres—a basic phenomenon that has been ignored in electrostatic treatment. Using the example of Ag nanospheres embedded in a GaN dielectric, we show that enhancement for each case depends strongly on the nanoparticle size-enabling optimization for each combination of absorption cross section, original radiative efficiency, and separation between the object and metal sphere. The enhancement effect is most significant for relatively weak and diluted absorbers and rather inefficient emitters that are placed in close proximity to the metal nanoparticles.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
    [CrossRef] [PubMed]
  2. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
    [CrossRef] [PubMed]
  3. R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
    [CrossRef]
  4. L. Rogobete, H. Schniepp, V. Sandoghdar, and C. Henkel, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623-1625 (2007).
    [CrossRef] [PubMed]
  5. C. Girard, O. J. F. Martin, and A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75, 3098-3101 (1995).
    [CrossRef] [PubMed]
  6. L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69, 3806-3808 (1996).
    [CrossRef]
  7. M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865 (2004).
    [CrossRef]
  8. G. Baffou, C. Girard, E. Dujardin, G. C. des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101(R) (2008).
    [CrossRef]
  9. G. C. des Francs, C. Girard, T. Laroche, G. Leveque, and O. J. F. Martin, “Theory of molecular excitation and relaxation near a plasmonic device,” J. Chem. Phys. 127, 034701 (2007).
    [CrossRef]
  10. D.-M. Yeh, C.-F. Huang, Y.-C. Lu, and C. C. Yang, “White-light light-emitting device based on surface plasmon-enhanced CdSe/ZnS nanocrystal wavelength conversion on a blue/green two-color light-emitting diode,” Appl. Phys. Lett. 92, 091112 (2008).
    [CrossRef]
  11. D. Maystre, “General study of grating anomalies from electromagnetic surface modes,” in Electromagnetic Surface Modes, A.D.Boardman, ed. (Wiley, 1982), Chap. 17.
  12. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  13. W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Weinheim, Ger.) 19, 3771-3782 (2007).
    [CrossRef]
  14. K. Okamoto, I. Niki, and A. Scherer, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87, 071102 (2005).
    [CrossRef]
  15. M. Moskovitz, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783-826 (1985).
    [CrossRef]
  16. M. Moskovits, L.-L. Tay, J. Yang, and T. Haslett, “SERS and the single molecule,” Top. Appl. Phys. 82, 215-226 (2002).
    [CrossRef]
  17. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
    [CrossRef]
  18. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering” Science 275, 1102-1106 (1997).
    [CrossRef] [PubMed]
  19. A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6 G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932-9939 (1999).
    [CrossRef]
  20. Z. Wang, S. Pan, T. D. Krauss, H. Dui, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100, 8638-8643 (2003).
    [CrossRef] [PubMed]
  21. M. Schmeits and L. Dambly, “Fast-electron scattering by bispherical surface-plasmon modes,” Phys. Rev. B 44, 12706-12712 (1991).
    [CrossRef]
  22. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357-4360 (1999).
    [CrossRef]
  23. H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826-1828 (2002).
    [CrossRef]
  24. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,”Opt. Commun. 220, 137-141 (2003).
    [CrossRef]
  25. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
    [CrossRef]
  26. M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite-difference time domain method,” J. Phys. Chem. B 107, 7607-7617 (2003).
    [CrossRef]
  27. J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115-118 (2004).
    [CrossRef]
  28. Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067-1071 (2004).
    [CrossRef]
  29. T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627-1631 (2004).
    [CrossRef]
  30. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899-903 (2004).
    [CrossRef]
  31. M. Moskovits and D. H. Jeong, “Engineering nanostructures for giant optical fields,” Chem. Phys. Lett. 397, 91-95 (2004).
    [CrossRef]
  32. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
    [CrossRef] [PubMed]
  33. D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149-4152 (1994).
    [CrossRef] [PubMed]
  34. H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318-4324 (2000).
    [CrossRef]
  35. F. Gonzalez and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic ir antennas,” Infrared Phys. Technol. 146, 418-428 (2004).
  36. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354-1356 (1997).
    [CrossRef]
  37. D. W. Pohl, “Near-field optics seen as an antenna problem,” in Near-field Optics, Principles and Applications, X.Zhu and M.Ohtsu, eds. (World Scientific, 2000), pp. 9-21.
  38. R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15, 13682-13688 (2006).
    [CrossRef]
  39. J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
    [CrossRef]
  40. H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622-2625 (2006).
    [CrossRef] [PubMed]
  41. N. A. Issa and R. Guckenberger, “Fluorescence near metal tips: the roles of energy transfer and surface plasmon polaritons,” Opt. Express 15, 12131-12144 (2007).
    [CrossRef] [PubMed]
  42. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957-1964 (2006).
    [CrossRef] [PubMed]
  43. J. B. Khurgin, G. Sun, and R. A. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93, 021120 (2008).
    [CrossRef]
  44. G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25, 1748-1755 (2008).
    [CrossRef]
  45. J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009).
    [CrossRef]
  46. G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94, 101103 (2009).
    [CrossRef]
  47. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).
  48. S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, 2007).
  49. Surface Plasmon Nanophotonics, Springer Series in Optical Sciences, M.L.Brongersma and P.G.Kik, eds. (Springer, 2007).
    [CrossRef]
  50. Nanophotonics with Surface Plasmons Vl. M.Shalaev and S.Kawata eds., (Elsevier, 2007).
  51. J. D. Jackson, Classical Electrodynamics, 2nd ed., (Wiley, 1962) pp.150 and 396.
  52. H. A. Haus, Waves and Fields in Optoelectronics, 1st ed. (Prentice-Hall, 1984).
  53. M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
    [CrossRef]
  54. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519-7526 (2004).
    [CrossRef]
  55. L. Tang, S. E Kocabas, S. Latif, A. K. Okyay, D-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226-229 (2008).
    [CrossRef]
  56. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
    [CrossRef]
  57. M. A. Ali, J. Moghaddassi, and S. A. Ahmed, “Optical properties of cooled Rhodamine B in ethanol,” J. Opt. Soc. Am. B 8, 1807-1810 (1991).
    [CrossRef]
  58. S. W. Osborne, P. Bloos, P. M. Smowton, and Y. C. Xin, “Optical absorption cross section of quantum dots,” J. Phys.: Condens. Matter 16, S3749-S3756 (2004).
    [CrossRef]
  59. G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
    [CrossRef]
  60. J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons--figures of merit,” J. Opt. Soc. Am. B 24, 1968-1980 (2007).
    [CrossRef]
  61. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681-681 (1946).
    [CrossRef]
  62. J. B. Khurgin and G. Sun, “Impact of disorder on surface plasmons in two-dimensional arrays of metal nanoparticles,”Appl. Phys. Lett. 94, 221111 (2009).
    [CrossRef]

2009 (3)

J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94, 101103 (2009).
[CrossRef]

J. B. Khurgin and G. Sun, “Impact of disorder on surface plasmons in two-dimensional arrays of metal nanoparticles,”Appl. Phys. Lett. 94, 221111 (2009).
[CrossRef]

2008 (5)

J. B. Khurgin, G. Sun, and R. A. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93, 021120 (2008).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25, 1748-1755 (2008).
[CrossRef]

L. Tang, S. E Kocabas, S. Latif, A. K. Okyay, D-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226-229 (2008).
[CrossRef]

G. Baffou, C. Girard, E. Dujardin, G. C. des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101(R) (2008).
[CrossRef]

D.-M. Yeh, C.-F. Huang, Y.-C. Lu, and C. C. Yang, “White-light light-emitting device based on surface plasmon-enhanced CdSe/ZnS nanocrystal wavelength conversion on a blue/green two-color light-emitting diode,” Appl. Phys. Lett. 92, 091112 (2008).
[CrossRef]

2007 (6)

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Weinheim, Ger.) 19, 3771-3782 (2007).
[CrossRef]

G. C. des Francs, C. Girard, T. Laroche, G. Leveque, and O. J. F. Martin, “Theory of molecular excitation and relaxation near a plasmonic device,” J. Chem. Phys. 127, 034701 (2007).
[CrossRef]

L. Rogobete, H. Schniepp, V. Sandoghdar, and C. Henkel, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623-1625 (2007).
[CrossRef] [PubMed]

N. A. Issa and R. Guckenberger, “Fluorescence near metal tips: the roles of energy transfer and surface plasmon polaritons,” Opt. Express 15, 12131-12144 (2007).
[CrossRef] [PubMed]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons--figures of merit,” J. Opt. Soc. Am. B 24, 1968-1980 (2007).
[CrossRef]

2006 (6)

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957-1964 (2006).
[CrossRef] [PubMed]

R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15, 13682-13688 (2006).
[CrossRef]

J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622-2625 (2006).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

2005 (3)

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

K. Okamoto, I. Niki, and A. Scherer, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

2004 (9)

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519-7526 (2004).
[CrossRef]

S. W. Osborne, P. Bloos, P. M. Smowton, and Y. C. Xin, “Optical absorption cross section of quantum dots,” J. Phys.: Condens. Matter 16, S3749-S3756 (2004).
[CrossRef]

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865 (2004).
[CrossRef]

F. Gonzalez and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic ir antennas,” Infrared Phys. Technol. 146, 418-428 (2004).

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115-118 (2004).
[CrossRef]

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627-1631 (2004).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899-903 (2004).
[CrossRef]

M. Moskovits and D. H. Jeong, “Engineering nanostructures for giant optical fields,” Chem. Phys. Lett. 397, 91-95 (2004).
[CrossRef]

2003 (5)

Z. Wang, S. Pan, T. D. Krauss, H. Dui, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100, 8638-8643 (2003).
[CrossRef] [PubMed]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,”Opt. Commun. 220, 137-141 (2003).
[CrossRef]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite-difference time domain method,” J. Phys. Chem. B 107, 7607-7617 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

2002 (2)

M. Moskovits, L.-L. Tay, J. Yang, and T. Haslett, “SERS and the single molecule,” Top. Appl. Phys. 82, 215-226 (2002).
[CrossRef]

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

2001 (1)

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
[CrossRef] [PubMed]

2000 (2)

H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
[CrossRef]

1999 (2)

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6 G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932-9939 (1999).
[CrossRef]

1997 (3)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering” Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354-1356 (1997).
[CrossRef]

1996 (1)

L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69, 3806-3808 (1996).
[CrossRef]

1995 (1)

C. Girard, O. J. F. Martin, and A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75, 3098-3101 (1995).
[CrossRef] [PubMed]

1994 (1)

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149-4152 (1994).
[CrossRef] [PubMed]

1991 (2)

M. Schmeits and L. Dambly, “Fast-electron scattering by bispherical surface-plasmon modes,” Phys. Rev. B 44, 12706-12712 (1991).
[CrossRef]

M. A. Ali, J. Moghaddassi, and S. A. Ahmed, “Optical properties of cooled Rhodamine B in ethanol,” J. Opt. Soc. Am. B 8, 1807-1810 (1991).
[CrossRef]

1985 (1)

M. Moskovitz, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783-826 (1985).
[CrossRef]

1946 (1)

M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681-681 (1946).
[CrossRef]

Ahmed, S. A.

Aizpurua, J.

H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Ali, M. A.

Apell, P.

H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Arias-Gonzalez, J. R.

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865 (2004).
[CrossRef]

Atay, T.

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627-1631 (2004).
[CrossRef]

Atwater, H.

J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

Atwater, H. A.

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622-2625 (2006).
[CrossRef] [PubMed]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,”Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Baffou, G.

G. Baffou, C. Girard, E. Dujardin, G. C. des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101(R) (2008).
[CrossRef]

Bakker, R. M.

Barnes, W. L.

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Weinheim, Ger.) 19, 3771-3782 (2007).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Bergman, D. J.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
[CrossRef] [PubMed]

Biteen, J. S.

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622-2625 (2006).
[CrossRef] [PubMed]

J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

Bloos, P.

S. W. Osborne, P. Bloos, P. M. Smowton, and Y. C. Xin, “Optical absorption cross section of quantum dots,” J. Phys.: Condens. Matter 16, S3749-S3756 (2004).
[CrossRef]

Boltasseva, A.

Boreman, G.

F. Gonzalez and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic ir antennas,” Infrared Phys. Technol. 146, 418-428 (2004).

Börjesson, L.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

Botet, R.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149-4152 (1994).
[CrossRef] [PubMed]

Brus, L. E.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6 G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932-9939 (1999).
[CrossRef]

Carminati, R.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865 (2004).
[CrossRef]

Dambly, L.

M. Schmeits and L. Dambly, “Fast-electron scattering by bispherical surface-plasmon modes,” Phys. Rev. B 44, 12706-12712 (1991).
[CrossRef]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

C. Girard, O. J. F. Martin, and A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75, 3098-3101 (1995).
[CrossRef] [PubMed]

des Francs, G. C.

G. Baffou, C. Girard, E. Dujardin, G. C. des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101(R) (2008).
[CrossRef]

G. C. des Francs, C. Girard, T. Laroche, G. Leveque, and O. J. F. Martin, “Theory of molecular excitation and relaxation near a plasmonic device,” J. Chem. Phys. 127, 034701 (2007).
[CrossRef]

Drachev, V. P.

Dui, H.

Z. Wang, S. Pan, T. D. Krauss, H. Dui, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100, 8638-8643 (2003).
[CrossRef] [PubMed]

Dujardin, E.

G. Baffou, C. Girard, E. Dujardin, G. C. des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101(R) (2008).
[CrossRef]

Durant, S.

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering” Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Enger, J.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115-118 (2004).
[CrossRef]

Faleev, S. V.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
[CrossRef] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Forrest, S. R.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519-7526 (2004).
[CrossRef]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Futamata, M.

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite-difference time domain method,” J. Phys. Chem. B 107, 7607-7617 (2003).
[CrossRef]

Girard, C.

G. Baffou, C. Girard, E. Dujardin, G. C. des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101(R) (2008).
[CrossRef]

G. C. des Francs, C. Girard, T. Laroche, G. Leveque, and O. J. F. Martin, “Theory of molecular excitation and relaxation near a plasmonic device,” J. Chem. Phys. 127, 034701 (2007).
[CrossRef]

C. Girard, O. J. F. Martin, and A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75, 3098-3101 (1995).
[CrossRef] [PubMed]

Goksör, M.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115-118 (2004).
[CrossRef]

Gonzalez, F.

F. Gonzalez and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic ir antennas,” Infrared Phys. Technol. 146, 418-428 (2004).

Greffet, J.-J.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865 (2004).
[CrossRef]

Gresillon, S.

Grober, R. D.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354-1356 (1997).
[CrossRef]

Guckenberger, R.

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Hanstorp, D.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115-118 (2004).
[CrossRef]

Haslett, T.

M. Moskovits, L.-L. Tay, J. Yang, and T. Haslett, “SERS and the single molecule,” Top. Appl. Phys. 82, 215-226 (2002).
[CrossRef]

Haus, H. A.

H. A. Haus, Waves and Fields in Optoelectronics, 1st ed. (Prentice-Hall, 1984).

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).

Henkel, C.

L. Rogobete, H. Schniepp, V. Sandoghdar, and C. Henkel, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623-1625 (2007).
[CrossRef] [PubMed]

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,”Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Huang, C.-F.

D.-M. Yeh, C.-F. Huang, Y.-C. Lu, and C. C. Yang, “White-light light-emitting device based on surface plasmon-enhanced CdSe/ZnS nanocrystal wavelength conversion on a blue/green two-color light-emitting diode,” Appl. Phys. Lett. 92, 091112 (2008).
[CrossRef]

Ishikawa, M.

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite-difference time domain method,” J. Phys. Chem. B 107, 7607-7617 (2003).
[CrossRef]

Issa, N. A.

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 2nd ed., (Wiley, 1962) pp.150 and 396.

Jeong, D. H.

M. Moskovits and D. H. Jeong, “Engineering nanostructures for giant optical fields,” Chem. Phys. Lett. 397, 91-95 (2004).
[CrossRef]

Kall, M.

H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Käll, M.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115-118 (2004).
[CrossRef]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

Khurgin, J. B.

J. B. Khurgin and G. Sun, “Impact of disorder on surface plasmons in two-dimensional arrays of metal nanoparticles,”Appl. Phys. Lett. 94, 221111 (2009).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94, 101103 (2009).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93, 021120 (2008).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25, 1748-1755 (2008).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons--figures of merit,” J. Opt. Soc. Am. B 24, 1968-1980 (2007).
[CrossRef]

Kildishev, A. V.

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Kocabas, S. E

L. Tang, S. E Kocabas, S. Latif, A. K. Okyay, D-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226-229 (2008).
[CrossRef]

Kovacs, J.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149-4152 (1994).
[CrossRef] [PubMed]

Krauss, T. D.

Z. Wang, S. Pan, T. D. Krauss, H. Dui, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100, 8638-8643 (2003).
[CrossRef] [PubMed]

Kreibig, U.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
[CrossRef]

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,”Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Kuwata, H.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,”Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Laroche, T.

G. C. des Francs, C. Girard, T. Laroche, G. Leveque, and O. J. F. Martin, “Theory of molecular excitation and relaxation near a plasmonic device,” J. Chem. Phys. 127, 034701 (2007).
[CrossRef]

Latif, S.

L. Tang, S. E Kocabas, S. Latif, A. K. Okyay, D-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226-229 (2008).
[CrossRef]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,”Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Leveque, G.

G. C. des Francs, C. Girard, T. Laroche, G. Leveque, and O. J. F. Martin, “Theory of molecular excitation and relaxation near a plasmonic device,” J. Chem. Phys. 127, 034701 (2007).
[CrossRef]

Lewis, N.

J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899-903 (2004).
[CrossRef]

Liu, Z.

Lu, Y.-C.

D.-M. Yeh, C.-F. Huang, Y.-C. Lu, and C. C. Yang, “White-light light-emitting device based on surface plasmon-enhanced CdSe/ZnS nanocrystal wavelength conversion on a blue/green two-color light-emitting diode,” Appl. Phys. Lett. 92, 091112 (2008).
[CrossRef]

Luth, H.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
[CrossRef]

Ly-Gagnon, D-S.

L. Tang, S. E Kocabas, S. Latif, A. K. Okyay, D-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226-229 (2008).
[CrossRef]

Maier, S. A.

Martin, O. J. F.

G. Baffou, C. Girard, E. Dujardin, G. C. des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101(R) (2008).
[CrossRef]

G. C. des Francs, C. Girard, T. Laroche, G. Leveque, and O. J. F. Martin, “Theory of molecular excitation and relaxation near a plasmonic device,” J. Chem. Phys. 127, 034701 (2007).
[CrossRef]

C. Girard, O. J. F. Martin, and A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75, 3098-3101 (1995).
[CrossRef] [PubMed]

Maruyama, Y.

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite-difference time domain method,” J. Phys. Chem. B 107, 7607-7617 (2003).
[CrossRef]

Maystre, D.

D. Maystre, “General study of grating anomalies from electromagnetic surface modes,” in Electromagnetic Surface Modes, A.D.Boardman, ed. (Wiley, 1982), Chap. 17.

Meissner, D.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
[CrossRef]

Mertens, H.

J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622-2625 (2006).
[CrossRef] [PubMed]

Michaels, A. M.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6 G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932-9939 (1999).
[CrossRef]

Miller, D. A. B.

L. Tang, S. E Kocabas, S. Latif, A. K. Okyay, D-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226-229 (2008).
[CrossRef]

Miyano, K.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

Miyazaki, H. T.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

Mock, J. J.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Moghaddassi, J.

Moskovits, M.

M. Moskovits and D. H. Jeong, “Engineering nanostructures for giant optical fields,” Chem. Phys. Lett. 397, 91-95 (2004).
[CrossRef]

M. Moskovits, L.-L. Tay, J. Yang, and T. Haslett, “SERS and the single molecule,” Top. Appl. Phys. 82, 215-226 (2002).
[CrossRef]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149-4152 (1994).
[CrossRef] [PubMed]

Moskovitz, M.

M. Moskovitz, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783-826 (1985).
[CrossRef]

Murray, W. A.

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Weinheim, Ger.) 19, 3771-3782 (2007).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering” Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Niki, I.

K. Okamoto, I. Niki, and A. Scherer, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

Nirmal, M.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6 G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932-9939 (1999).
[CrossRef]

Nordlander, P.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899-903 (2004).
[CrossRef]

Novotny, L.

L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69, 3806-3808 (1996).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).

Nurmikko, A. V.

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627-1631 (2004).
[CrossRef]

Okamoto, K.

K. Okamoto, I. Niki, and A. Scherer, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

Okyay, A. K.

L. Tang, S. E Kocabas, S. Latif, A. K. Okyay, D-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226-229 (2008).
[CrossRef]

Osborne, S. W.

S. W. Osborne, P. Bloos, P. M. Smowton, and Y. C. Xin, “Optical absorption cross section of quantum dots,” J. Phys.: Condens. Matter 16, S3749-S3756 (2004).
[CrossRef]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899-903 (2004).
[CrossRef]

Pan, S.

Z. Wang, S. Pan, T. D. Krauss, H. Dui, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100, 8638-8643 (2003).
[CrossRef] [PubMed]

Pedersen, R. H.

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Peumans, P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519-7526 (2004).
[CrossRef]

Pohl, D. W.

D. W. Pohl, “Near-field optics seen as an antenna problem,” in Near-field Optics, Principles and Applications, X.Zhu and M.Ohtsu, eds. (World Scientific, 2000), pp. 9-21.

Polman, A.

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622-2625 (2006).
[CrossRef] [PubMed]

J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

Prikulis, J.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115-118 (2004).
[CrossRef]

Prober, D. E.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354-1356 (1997).
[CrossRef]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899-903 (2004).
[CrossRef]

Purcell, M.

M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681-681 (1946).
[CrossRef]

Ramser, K.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115-118 (2004).
[CrossRef]

Rand, B. P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519-7526 (2004).
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,”Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Rogobete, L.

L. Rogobete, H. Schniepp, V. Sandoghdar, and C. Henkel, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623-1625 (2007).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Rostalski, J.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
[CrossRef]

Rothberg, L. J.

Z. Wang, S. Pan, T. D. Krauss, H. Dui, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100, 8638-8643 (2003).
[CrossRef] [PubMed]

Sandoghdar, V.

L. Rogobete, H. Schniepp, V. Sandoghdar, and C. Henkel, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623-1625 (2007).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Saraswat, K. C.

L. Tang, S. E Kocabas, S. Latif, A. K. Okyay, D-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226-229 (2008).
[CrossRef]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Scherer, A.

K. Okamoto, I. Niki, and A. Scherer, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

Schmeits, M.

M. Schmeits and L. Dambly, “Fast-electron scattering by bispherical surface-plasmon modes,” Phys. Rev. B 44, 12706-12712 (1991).
[CrossRef]

Schniepp, H.

Schoelkopf, R. J.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354-1356 (1997).
[CrossRef]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Schultz, S.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Shalaev, V. M.

R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15, 13682-13688 (2006).
[CrossRef]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149-4152 (1994).
[CrossRef] [PubMed]

Smith, D. R.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Smowton, P. M.

S. W. Osborne, P. Bloos, P. M. Smowton, and Y. C. Xin, “Optical absorption cross section of quantum dots,” J. Phys.: Condens. Matter 16, S3749-S3756 (2004).
[CrossRef]

Song, J. H.

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627-1631 (2004).
[CrossRef]

Soref, R. A.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94, 101103 (2009).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25, 1748-1755 (2008).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93, 021120 (2008).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons--figures of merit,” J. Opt. Soc. Am. B 24, 1968-1980 (2007).
[CrossRef]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899-903 (2004).
[CrossRef]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
[CrossRef] [PubMed]

Su, K. H.

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Suh, J. S.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149-4152 (1994).
[CrossRef] [PubMed]

Sun, G.

J. B. Khurgin and G. Sun, “Impact of disorder on surface plasmons in two-dimensional arrays of metal nanoparticles,”Appl. Phys. Lett. 94, 221111 (2009).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94, 101103 (2009).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25, 1748-1755 (2008).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93, 021120 (2008).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons--figures of merit,” J. Opt. Soc. Am. B 24, 1968-1980 (2007).
[CrossRef]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Svedberg, F.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115-118 (2004).
[CrossRef]

Tamaru, H.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

Tang, L.

L. Tang, S. E Kocabas, S. Latif, A. K. Okyay, D-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226-229 (2008).
[CrossRef]

Tay, L.-L.

M. Moskovits, L.-L. Tay, J. Yang, and T. Haslett, “SERS and the single molecule,” Top. Appl. Phys. 82, 215-226 (2002).
[CrossRef]

Thomas, M.

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865 (2004).
[CrossRef]

Tsai, D. P.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149-4152 (1994).
[CrossRef] [PubMed]

Vigoureux, J. M.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Wang, Z.

Z. Wang, S. Pan, T. D. Krauss, H. Dui, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100, 8638-8643 (2003).
[CrossRef] [PubMed]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149-4152 (1994).
[CrossRef] [PubMed]

Wei, Q. H.

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Westphalen, M.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
[CrossRef]

Xin, Y. C.

S. W. Osborne, P. Bloos, P. M. Smowton, and Y. C. Xin, “Optical absorption cross section of quantum dots,” J. Phys.: Condens. Matter 16, S3749-S3756 (2004).
[CrossRef]

Xu, H.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

Xu, H. X.

H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Yang, C. C.

D.-M. Yeh, C.-F. Huang, Y.-C. Lu, and C. C. Yang, “White-light light-emitting device based on surface plasmon-enhanced CdSe/ZnS nanocrystal wavelength conversion on a blue/green two-color light-emitting diode,” Appl. Phys. Lett. 92, 091112 (2008).
[CrossRef]

Yang, J.

M. Moskovits, L.-L. Tay, J. Yang, and T. Haslett, “SERS and the single molecule,” Top. Appl. Phys. 82, 215-226 (2002).
[CrossRef]

Yeh, D.-M.

D.-M. Yeh, C.-F. Huang, Y.-C. Lu, and C. C. Yang, “White-light light-emitting device based on surface plasmon-enhanced CdSe/ZnS nanocrystal wavelength conversion on a blue/green two-color light-emitting diode,” Appl. Phys. Lett. 92, 091112 (2008).
[CrossRef]

Yu, E. T.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Zhang, X.

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Adv. Mater. (Weinheim, Ger.) (1)

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Weinheim, Ger.) 19, 3771-3782 (2007).
[CrossRef]

Appl. Phys. Lett. (13)

K. Okamoto, I. Niki, and A. Scherer, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69, 3806-3808 (1996).
[CrossRef]

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865 (2004).
[CrossRef]

D.-M. Yeh, C.-F. Huang, Y.-C. Lu, and C. C. Yang, “White-light light-emitting device based on surface plasmon-enhanced CdSe/ZnS nanocrystal wavelength conversion on a blue/green two-color light-emitting diode,” Appl. Phys. Lett. 92, 091112 (2008).
[CrossRef]

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354-1356 (1997).
[CrossRef]

J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93, 021120 (2008).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94, 101103 (2009).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

J. B. Khurgin and G. Sun, “Impact of disorder on surface plasmons in two-dimensional arrays of metal nanoparticles,”Appl. Phys. Lett. 94, 221111 (2009).
[CrossRef]

Chem. Phys. Lett. (1)

M. Moskovits and D. H. Jeong, “Engineering nanostructures for giant optical fields,” Chem. Phys. Lett. 397, 91-95 (2004).
[CrossRef]

Infrared Phys. Technol. (1)

F. Gonzalez and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic ir antennas,” Infrared Phys. Technol. 146, 418-428 (2004).

J. Am. Chem. Soc. (1)

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6 G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932-9939 (1999).
[CrossRef]

J. Appl. Phys. (1)

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519-7526 (2004).
[CrossRef]

J. Chem. Phys. (1)

G. C. des Francs, C. Girard, T. Laroche, G. Leveque, and O. J. F. Martin, “Theory of molecular excitation and relaxation near a plasmonic device,” J. Chem. Phys. 127, 034701 (2007).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. B (1)

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite-difference time domain method,” J. Phys. Chem. B 107, 7607-7617 (2003).
[CrossRef]

J. Phys.: Condens. Matter (1)

S. W. Osborne, P. Bloos, P. M. Smowton, and Y. C. Xin, “Optical absorption cross section of quantum dots,” J. Phys.: Condens. Matter 16, S3749-S3756 (2004).
[CrossRef]

Nano Lett. (6)

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622-2625 (2006).
[CrossRef] [PubMed]

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115-118 (2004).
[CrossRef]

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627-1631 (2004).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899-903 (2004).
[CrossRef]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Nat. Photonics (1)

L. Tang, S. E Kocabas, S. Latif, A. K. Okyay, D-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226-229 (2008).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Opt. Commun. (2)

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,”Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. (1)

M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681-681 (1946).
[CrossRef]

Phys. Rev. B (2)

G. Baffou, C. Girard, E. Dujardin, G. C. des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101(R) (2008).
[CrossRef]

M. Schmeits and L. Dambly, “Fast-electron scattering by bispherical surface-plasmon modes,” Phys. Rev. B 44, 12706-12712 (1991).
[CrossRef]

Phys. Rev. E (1)

H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Phys. Rev. Lett. (7)

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
[CrossRef] [PubMed]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149-4152 (1994).
[CrossRef] [PubMed]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

C. Girard, O. J. F. Martin, and A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75, 3098-3101 (1995).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Wang, S. Pan, T. D. Krauss, H. Dui, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100, 8638-8643 (2003).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

M. Moskovitz, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783-826 (1985).
[CrossRef]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering” Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
[CrossRef]

Top. Appl. Phys. (1)

M. Moskovits, L.-L. Tay, J. Yang, and T. Haslett, “SERS and the single molecule,” Top. Appl. Phys. 82, 215-226 (2002).
[CrossRef]

Other (8)

D. Maystre, “General study of grating anomalies from electromagnetic surface modes,” in Electromagnetic Surface Modes, A.D.Boardman, ed. (Wiley, 1982), Chap. 17.

D. W. Pohl, “Near-field optics seen as an antenna problem,” in Near-field Optics, Principles and Applications, X.Zhu and M.Ohtsu, eds. (World Scientific, 2000), pp. 9-21.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).

S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, 2007).

Surface Plasmon Nanophotonics, Springer Series in Optical Sciences, M.L.Brongersma and P.G.Kik, eds. (Springer, 2007).
[CrossRef]

Nanophotonics with Surface Plasmons Vl. M.Shalaev and S.Kawata eds., (Elsevier, 2007).

J. D. Jackson, Classical Electrodynamics, 2nd ed., (Wiley, 1962) pp.150 and 396.

H. A. Haus, Waves and Fields in Optoelectronics, 1st ed. (Prentice-Hall, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Illustration of the spherical coordinate system used to describe the metal sphere dipole polarized along z axis with radius a separated from a molecule by a distance d.

Fig. 2
Fig. 2

Illustration of the charge distribution and dipole moment for the three lowest modes l = 1 , 2 , 3 showing net dipole moment vanishes for all higher-order modes l 2 .

Fig. 3
Fig. 3

Frequencies of the various modes associated with the Ag nanosphere embedded in the GaN.

Fig. 4
Fig. 4

Fraction of SP energy of various modes resides within the metal sphere embedded in a range of dielectrics.

Fig. 5
Fig. 5

Illustration of a metal nanosphere with radius a placed at the apex of a focused Gaussian beam with a numerical aperture characterized by the far-field half-angle θ a . In the absence of the metal sphere, the beam will be focused onto a diffraction-limited spot with radius w 0 at the waist.

Fig. 6
Fig. 6

Illustration of the enhancement process of optical absorption by a molecule placed at distance d from the metal sphere with radius a.

Fig. 7
Fig. 7

Absorption enhancement as a function of sphere radius a for the Ag Ga N system wherein the absorbing molecules with a range of total absorption cross section are placed at d = 5 nm from the Ag sphere.

Fig. 8
Fig. 8

Absorption enhancement in the Ag Ga N system optimized for absorbing molecules with a total absorption cross section N a σ a placed at distance d from the Ag sphere.

Fig. 9
Fig. 9

Illustration of enhancement of EL from a molecule placed at distance d from the metal sphere.

Fig. 10
Fig. 10

Purcell factor F p , 1 of a metal nanoparticle as a function of sphere radius.

Fig. 11
Fig. 11

Enhancement factor F e by an Ag nanosphere as a function of sphere radius a for a range of the original radiative efficiency of the molecule η rad for d = 10 nm .

Fig. 12
Fig. 12

Enhancement F e , opt by an optimized single isolated Ag nanosphere as a function of the original radiative efficiency η rad of the molecule positioned at some distance d away from the metal sphere.

Fig. 13
Fig. 13

Illustration of the enhancement of a PL process by the in-coupling of the optical excitation into the SP mode surrounding a metal sphere and by the out-coupling of the SP mode into the radiative mode.

Fig. 14
Fig. 14

Absorption F a , emission F e , and total enhancement factors F P L versus metal sphere radius for Ag Ga N .

Fig. 15
Fig. 15

Optimized PL enhancement factor versus frequency detuning ratio of the optical excitation ω ex ω dp and PL emission ω PL ω dp .

Fig. 16
Fig. 16

Optimized PL enhancement as a function of (a) original radiative efficiency η rad at fixed N a σ a = 1 nm 2 and (b) absorption cross-section N a σ a at fixed η rad = 0.01 for several values of molecule–metal spacing d and near resonance optical excitation and PL emission.

Equations (51)

Equations on this page are rendered with MathJax. Learn more.

Φ l = { C ( r a ) l P l ( cos θ ) , r < a C ( a r ) l + 1 P l ( cos θ ) , r a } , ,
l ε M ( ω l ) + ( l + 1 ) ε D ( ω l ) = 0 ,
ε M = 1 ω p 2 ω 2 + j γ ω ,
ω l = ω p l l + ( l + 1 ) ε D .
ω dp = ω 1 = ω p 1 + 2 ε D 2.35 eV
ω SPP = ω = ω p 1 + ε D 3.19 eV ,
E l ( r , θ ) = { E in , l E out , l } = { E max , l ( r a ) l 1 [ l l + 1 P l ( cos θ ) r ̂ + 1 sin θ [ P l + 1 ( cos θ ) cos θ P l ( cos θ ) ] θ ̂ ] , r < a E max , l ( a r ) l + 2 [ P l ( cos θ ) r ̂ + 1 sin θ [ P l + 1 ( cos θ ) cos θ P l ( cos θ ) ] θ ̂ ] , r a } ,
U in , l = 1 4 ε 0 ω ε M ω r < a | E in | 2 d 3 r = 1 4 ε 0 ε D E max , l 2 8 π a 3 ( l + 1 ) 2 ( 2 l + 1 ) [ l ε D + l + 1 2 ] ,
U out , l = 1 4 ε 0 ε D r > a | E out | 2 d 3 r = 1 4 ε 0 ε D E max , l 2 4 π a 3 ( l + 1 ) ( 2 l + 1 ) ,
U l = U in , l + U out , l = 1 4 ε 0 ε D E max , l 2 8 π a 3 ( l + 1 ) 2 ( 2 l + 1 ) [ ( l + 1 ) + l ε D ] .
V eff , l = 8 π a 3 l + ( l + 1 ) ε D ( l + 1 ) 2 ( 2 l + 1 ) ε D = 8 π a 3 ( l + 1 ) ( 2 l + 1 ) [ 1 + l ( l + 1 ) ε D ] .
V eff , dp = 4 π a 3 3 ( 1 + 1 2 ε D ) ,
f M , l = U in , l U l = 1 2 [ 2 l + ( l + 1 ) ε D l + ( l + 1 ) ε D ] ,
( d U l d t ) n rad = 1 4 ε 0 ω Im [ ( ω ε M ) ω ] r < a | E in , l | 2 d 3 r ,
γ n rad , l = 1 U l ( d U l d t ) n rad γ ,
σ l ( θ ) = ε 0 ( ε M 1 ) E in , l r ̂ ( a , θ ) ε 0 ( ε D 1 ) E out , l r ̂ ( a , θ ) = 2 l + 1 l + 1 ε 0 E max , l P l ( cos θ ) ,
p l = 2 π a 2 0 π σ l ( θ ) a cos θ sin θ d θ .
p 1 2 = 24 π a 3 ε 0 2 ε D + 1 U 1 .
( d U 1 d t ) rad = ε D 3 2 ω dp 4 12 π ε 0 c 3 p 1 2 ,
γ rad = 1 U 1 ( d U 1 d t ) rad = 2 ω dp 1 + 2 ε D ( 2 π a λ dp ) 3 ,
ρ l ( ω , d ) = L l ( ω ) V eff , l ( 1 + d a ) 2 l 4 ,
L l ( ω ) = γ l 2 π ( ω ω l ) 2 + γ l 2 4 ,
γ l = { γ rad + γ , l = 1 γ , l 2 } .
w 0 = λ ex π θ a ,
| s + | 2 = n Z 0 π ( w 0 2 ) 2 E foc 2 ,
f ( θ a , ϕ a ) = 3 8 π ( 1 sin 2 θ a cos 2 ϕ a ) .
γ rad Ω = γ rad 0 Ω f ( θ a , ϕ a ) d Ω 3 8 γ rad θ a 2 ,
κ in Ω = γ rad Ω θ a 2 3 γ rad 2 .
γ abs = c n N a σ a V eff , dp ( 1 1 + d a ) 6 ,
d A d t = j ( ω ex ω dp ) A γ n rad + γ rad + γ abs 2 A + θ a 2 3 γ rad 2 s + .
A = 3 2 γ rad 1 2 θ a ( γ n rad + γ rad + γ abs ) + j 2 ( ω ex ω dp ) s + .
Q n = 2 ω dp γ n rad ( 1 + 2 ε D ) 2 ω dp γ ( 1 + 2 ε D )
Q a = 2 ω dp γ abs ( 1 + 2 ε D ) = λ dp 2 N a σ a χ 3 3 π ε D ( χ + χ d χ ) 6 ,
E max , 1 E foc = 3 ε D 2 ( ω dp ω ex ) [ 1 δ ex 2 + ( χ 3 + Q n 1 + Q a 1 ) 2 ] 1 2 .
B SP = γ abs U 1 = c n N a σ a ( 1 4 ε 0 ε D E max , 1 2 ) ( 1 1 + d a ) 6
B foc = c n N a σ a ( 1 2 ε 0 ε D E foc 2 )
F a ( ω ex ) = B SP B foc = E max , 1 2 2 E foc 2 ( χ χ + χ d ) 6 = 9 ε D 4 ( ω dp ω ex ) 2 1 δ ex 2 + ( χ 3 + Q n 1 + Q a 1 ) 2 ( χ χ + χ d ) 6 ,
F a , opt 9 ε D Q n 2 4 [ 2 Q n ( 3 π ε D N a σ a λ dp 2 ) 1 2 + 1 ] 2
ρ rad ( ω EL ) = 1 3 π 2 ( 2 π λ EL ) 3 1 ω EL ,
F p , l = ρ l ( ω EL , d ) ρ rad ( ω EL ) = 3 π ε D ω EL L l ( ω EL ) 8 χ EL 3 ( 2 l + 1 ) ( l + 1 ) 2 ( l + 1 ) ε D + l ( χ χ + χ d ) 2 l + 4 ,
f q = l = 2 F p , l F p , 1 = l = 2 π γ 1 L l ( ω dp ) ( 2 ε D + 1 ) 24 ( 1 + χ d χ ) 2 l 2 ( 2 l + 1 ) ( l + 1 ) 2 ( l + 1 ) ε D + l .
f q 1 12 γ 1 γ n rad ( ω ¯ l 2 ω dp ) 2 + γ n rad 2 4 l = 2 ( 2 l + 1 ) ( l + 1 ) ( 1 + χ d χ ) 2 l 2 1 6 ( χ χ d ) 3 ( γ 1 γ n rad ) 1 1 + δ l 2 2 = 1 6 ( χ χ d ) 3 ( 1 + Q n χ 3 ) 1 1 + δ l 2 2 ,
δ l 2 = 2 ( ω ¯ l 2 ω dp ) γ n rad = 2 ( ω ¯ l 2 ω dp ) γ .
d d min [ ( 1 + Q n χ 3 ) 1 1 + δ l 2 2 ] 1 3 a     .
F p , 1 = 9 ε D 2 χ EL 3 ( ω EL ω dp ) χ 3 + Q n 1 δ EL 2 + ( χ 3 + Q n 1 ) 2 ( χ χ + χ d ) 6 ,
η M = τ rad 1 + τ rad 1 F p , 1 η dp τ n rad 1 + τ rad 1 ( F p , 1 + 1 ) ,
η dp = γ rad γ n rad + γ rad = Q n χ 3 1 + Q n χ 3 .
η rad = τ rad 1 τ n rad 1 + τ rad 1
F e ( ω EL ) = η M η rad = 1 + F p , 1 ( ω EL ) η dp 1 + F p , 1 ( ω EL ) η rad ,
F e 1 + F p , 1 η dp = 1 + 9 ε D Q n 2 2 ( 1 + Q n χ 3 ) 2 ( χ χ + χ d ) 6 .
F PL ( ω ex , ω PL ) = F a ( ω ex ) F e ( ω PL )

Metrics