Abstract

We provide a simple analytical model for the modification of optical properties of active molecules and other objects when they are placed in the vicinity of metal nanoparticles of subwavelength dimensions. Specifically, we study the enhancement of optical radiation, electroluminescence, and photoluminescence absorbed or emitted by these objects. The theory takes into account the radiative decay of the surface plasmon mode supported by the metal nanospheres--a basic phenomenon that has been ignored in electrostatic treatment. Using the example of Ag nanospheres embedded in a GaN dielectric, we show that enhancement for each case depends strongly on the nanoparticle size-enabling optimization for each combination of absorption cross section, original radiative efficiency, and separation between the object and metal sphere. The enhancement effect is most significant for relatively weak and diluted absorbers and rather inefficient emitters that are placed in close proximity to the metal nanoparticles.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
    [CrossRef]
  2. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
    [CrossRef]
  3. R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
    [CrossRef]
  4. L. Rogobete, H. Schniepp, V. Sandoghdar, and C. Henkel, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623-1625 (2007).
    [CrossRef]
  5. C. Girard, O. J. F. Martin, and A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75, 3098-3101 (1995).
    [CrossRef]
  6. L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69, 3806-3808 (1996).
    [CrossRef]
  7. M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865 (2004).
    [CrossRef]
  8. G. Baffou, C. Girard, E. Dujardin, G. C. des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101(R) (2008).
    [CrossRef]
  9. G. C. des Francs, C. Girard, T. Laroche, G. Leveque, and O. J. F. Martin, “Theory of molecular excitation and relaxation near a plasmonic device,” J. Chem. Phys. 127, 034701 (2007).
    [CrossRef]
  10. D.-M. Yeh, C.-F. Huang, Y.-C. Lu, and C. C. Yang, “White-light light-emitting device based on surface plasmon-enhanced CdSe/ZnS nanocrystal wavelength conversion on a blue/green two-color light-emitting diode,” Appl. Phys. Lett. 92, 091112 (2008).
    [CrossRef]
  11. D. Maystre, “General study of grating anomalies from electromagnetic surface modes,” in Electromagnetic Surface Modes, A.D.Boardman, ed. (Wiley, 1982), Chap. 17.
  12. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
    [CrossRef]
  13. W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Weinheim, Ger.) 19, 3771-3782 (2007).
    [CrossRef]
  14. K. Okamoto, I. Niki, and A. Scherer, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87, 071102 (2005).
    [CrossRef]
  15. M. Moskovitz, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783-826 (1985).
    [CrossRef]
  16. M. Moskovits, L.-L. Tay, J. Yang, and T. Haslett, “SERS and the single molecule,” Top. Appl. Phys. 82, 215-226 (2002).
    [CrossRef]
  17. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
    [CrossRef]
  18. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering” Science 275, 1102-1106 (1997).
    [CrossRef]
  19. A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6 G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932-9939 (1999).
    [CrossRef]
  20. Z. Wang, S. Pan, T. D. Krauss, H. Dui, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100, 8638-8643 (2003).
    [CrossRef]
  21. M. Schmeits and L. Dambly, “Fast-electron scattering by bispherical surface-plasmon modes,” Phys. Rev. B 44, 12706-12712 (1991).
    [CrossRef]
  22. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357-4360 (1999).
    [CrossRef]
  23. H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826-1828 (2002).
    [CrossRef]
  24. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,”Opt. Commun. 220, 137-141 (2003).
    [CrossRef]
  25. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
    [CrossRef]
  26. M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite-difference time domain method,” J. Phys. Chem. B 107, 7607-7617 (2003).
    [CrossRef]
  27. J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115-118 (2004).
    [CrossRef]
  28. Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067-1071 (2004).
    [CrossRef]
  29. T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627-1631 (2004).
    [CrossRef]
  30. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899-903 (2004).
    [CrossRef]
  31. M. Moskovits and D. H. Jeong, “Engineering nanostructures for giant optical fields,” Chem. Phys. Lett. 397, 91-95 (2004).
    [CrossRef]
  32. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
    [CrossRef]
  33. D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149-4152 (1994).
    [CrossRef]
  34. H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318-4324 (2000).
    [CrossRef]
  35. F. Gonzalez and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic ir antennas,” Infrared Phys. Technol. 146, 418-428 (2004).
  36. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354-1356 (1997).
    [CrossRef]
  37. D. W. Pohl, “Near-field optics seen as an antenna problem,” in Near-field Optics, Principles and Applications, X.Zhu and M.Ohtsu, eds. (World Scientific, 2000), pp. 9-21.
  38. R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15, 13682-13688 (2006).
    [CrossRef]
  39. J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
    [CrossRef]
  40. H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622-2625 (2006).
    [CrossRef]
  41. N. A. Issa and R. Guckenberger, “Fluorescence near metal tips: the roles of energy transfer and surface plasmon polaritons,” Opt. Express 15, 12131-12144 (2007).
    [CrossRef]
  42. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957-1964 (2006).
    [CrossRef]
  43. J. B. Khurgin, G. Sun, and R. A. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93, 021120 (2008).
    [CrossRef]
  44. G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25, 1748-1755 (2008).
    [CrossRef]
  45. J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009).
    [CrossRef]
  46. G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94, 101103 (2009).
    [CrossRef]
  47. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).
  48. S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, 2007).
  49. Surface Plasmon Nanophotonics, Springer Series in Optical Sciences, M.L.Brongersma and P.G.Kik, eds. (Springer, 2007).
  50. Nanophotonics with Surface Plasmons Vl. M.Shalaev and S.Kawata eds., (Elsevier, 2007).
  51. J. D. Jackson, Classical Electrodynamics, 2nd ed., (Wiley, 1962) pp.150 and 396.
  52. H. A. Haus, Waves and Fields in Optoelectronics, 1st ed. (Prentice-Hall, 1984).
  53. M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
    [CrossRef]
  54. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519-7526 (2004).
    [CrossRef]
  55. L. Tang, S. E Kocabas, S. Latif, A. K. Okyay, D-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226-229 (2008).
    [CrossRef]
  56. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
    [CrossRef]
  57. M. A. Ali, J. Moghaddassi, and S. A. Ahmed, “Optical properties of cooled Rhodamine B in ethanol,” J. Opt. Soc. Am. B 8, 1807-1810 (1991).
    [CrossRef]
  58. S. W. Osborne, P. Bloos, P. M. Smowton, and Y. C. Xin, “Optical absorption cross section of quantum dots,” J. Phys.: Condens. Matter 16, S3749-S3756 (2004).
    [CrossRef]
  59. G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
    [CrossRef]
  60. J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons--figures of merit,” J. Opt. Soc. Am. B 24, 1968-1980 (2007).
    [CrossRef]
  61. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681-681 (1946).
    [CrossRef]
  62. J. B. Khurgin and G. Sun, “Impact of disorder on surface plasmons in two-dimensional arrays of metal nanoparticles,”Appl. Phys. Lett. 94, 221111 (2009).
    [CrossRef]

2009 (3)

J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94, 101103 (2009).
[CrossRef]

J. B. Khurgin and G. Sun, “Impact of disorder on surface plasmons in two-dimensional arrays of metal nanoparticles,”Appl. Phys. Lett. 94, 221111 (2009).
[CrossRef]

2008 (5)

J. B. Khurgin, G. Sun, and R. A. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93, 021120 (2008).
[CrossRef]

L. Tang, S. E Kocabas, S. Latif, A. K. Okyay, D-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226-229 (2008).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25, 1748-1755 (2008).
[CrossRef]

G. Baffou, C. Girard, E. Dujardin, G. C. des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101(R) (2008).
[CrossRef]

D.-M. Yeh, C.-F. Huang, Y.-C. Lu, and C. C. Yang, “White-light light-emitting device based on surface plasmon-enhanced CdSe/ZnS nanocrystal wavelength conversion on a blue/green two-color light-emitting diode,” Appl. Phys. Lett. 92, 091112 (2008).
[CrossRef]

2007 (6)

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Weinheim, Ger.) 19, 3771-3782 (2007).
[CrossRef]

G. C. des Francs, C. Girard, T. Laroche, G. Leveque, and O. J. F. Martin, “Theory of molecular excitation and relaxation near a plasmonic device,” J. Chem. Phys. 127, 034701 (2007).
[CrossRef]

L. Rogobete, H. Schniepp, V. Sandoghdar, and C. Henkel, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623-1625 (2007).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons--figures of merit,” J. Opt. Soc. Am. B 24, 1968-1980 (2007).
[CrossRef]

N. A. Issa and R. Guckenberger, “Fluorescence near metal tips: the roles of energy transfer and surface plasmon polaritons,” Opt. Express 15, 12131-12144 (2007).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

2006 (6)

R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15, 13682-13688 (2006).
[CrossRef]

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957-1964 (2006).
[CrossRef]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622-2625 (2006).
[CrossRef]

2005 (3)

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

K. Okamoto, I. Niki, and A. Scherer, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

2004 (9)

S. W. Osborne, P. Bloos, P. M. Smowton, and Y. C. Xin, “Optical absorption cross section of quantum dots,” J. Phys.: Condens. Matter 16, S3749-S3756 (2004).
[CrossRef]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519-7526 (2004).
[CrossRef]

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865 (2004).
[CrossRef]

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115-118 (2004).
[CrossRef]

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627-1631 (2004).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899-903 (2004).
[CrossRef]

M. Moskovits and D. H. Jeong, “Engineering nanostructures for giant optical fields,” Chem. Phys. Lett. 397, 91-95 (2004).
[CrossRef]

F. Gonzalez and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic ir antennas,” Infrared Phys. Technol. 146, 418-428 (2004).

2003 (5)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,”Opt. Commun. 220, 137-141 (2003).
[CrossRef]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite-difference time domain method,” J. Phys. Chem. B 107, 7607-7617 (2003).
[CrossRef]

Z. Wang, S. Pan, T. D. Krauss, H. Dui, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100, 8638-8643 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef]

2002 (2)

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

M. Moskovits, L.-L. Tay, J. Yang, and T. Haslett, “SERS and the single molecule,” Top. Appl. Phys. 82, 215-226 (2002).
[CrossRef]

2001 (1)

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
[CrossRef]

2000 (2)

H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
[CrossRef]

1999 (2)

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6 G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932-9939 (1999).
[CrossRef]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

1997 (3)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering” Science 275, 1102-1106 (1997).
[CrossRef]

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354-1356 (1997).
[CrossRef]

1996 (1)

L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69, 3806-3808 (1996).
[CrossRef]

1995 (1)

C. Girard, O. J. F. Martin, and A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75, 3098-3101 (1995).
[CrossRef]

1994 (1)

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149-4152 (1994).
[CrossRef]

1991 (2)

M. Schmeits and L. Dambly, “Fast-electron scattering by bispherical surface-plasmon modes,” Phys. Rev. B 44, 12706-12712 (1991).
[CrossRef]

M. A. Ali, J. Moghaddassi, and S. A. Ahmed, “Optical properties of cooled Rhodamine B in ethanol,” J. Opt. Soc. Am. B 8, 1807-1810 (1991).
[CrossRef]

1985 (1)

M. Moskovitz, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783-826 (1985).
[CrossRef]

1946 (1)

M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681-681 (1946).
[CrossRef]

Ahmed, S. A.

Aizpurua, J.

H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Ali, M. A.

Apell, P.

H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Arias-Gonzalez, J. R.

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865 (2004).
[CrossRef]

Atay, T.

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627-1631 (2004).
[CrossRef]

Atwater, H.

J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

Atwater, H. A.

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622-2625 (2006).
[CrossRef]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,”Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Baffou, G.

G. Baffou, C. Girard, E. Dujardin, G. C. des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101(R) (2008).
[CrossRef]

Bakker, R. M.

Barnes, W. L.

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Weinheim, Ger.) 19, 3771-3782 (2007).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef]

Bergman, D. J.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
[CrossRef]

Biteen, J. S.

J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622-2625 (2006).
[CrossRef]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

Bloos, P.

S. W. Osborne, P. Bloos, P. M. Smowton, and Y. C. Xin, “Optical absorption cross section of quantum dots,” J. Phys.: Condens. Matter 16, S3749-S3756 (2004).
[CrossRef]

Boltasseva, A.

Boreman, G.

F. Gonzalez and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic ir antennas,” Infrared Phys. Technol. 146, 418-428 (2004).

Börjesson, L.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

Botet, R.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149-4152 (1994).
[CrossRef]

Brus, L. E.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6 G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932-9939 (1999).
[CrossRef]

Carminati, R.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865 (2004).
[CrossRef]

Dambly, L.

M. Schmeits and L. Dambly, “Fast-electron scattering by bispherical surface-plasmon modes,” Phys. Rev. B 44, 12706-12712 (1991).
[CrossRef]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef]

C. Girard, O. J. F. Martin, and A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75, 3098-3101 (1995).
[CrossRef]

des Francs, G. C.

G. Baffou, C. Girard, E. Dujardin, G. C. des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101(R) (2008).
[CrossRef]

G. C. des Francs, C. Girard, T. Laroche, G. Leveque, and O. J. F. Martin, “Theory of molecular excitation and relaxation near a plasmonic device,” J. Chem. Phys. 127, 034701 (2007).
[CrossRef]

Drachev, V. P.

Dui, H.

Z. Wang, S. Pan, T. D. Krauss, H. Dui, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100, 8638-8643 (2003).
[CrossRef]

Dujardin, E.

G. Baffou, C. Girard, E. Dujardin, G. C. des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101(R) (2008).
[CrossRef]

Durant, S.

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering” Science 275, 1102-1106 (1997).
[CrossRef]

Enger, J.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115-118 (2004).
[CrossRef]

Faleev, S. V.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
[CrossRef]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Forrest, S. R.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519-7526 (2004).
[CrossRef]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

Futamata, M.

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite-difference time domain method,” J. Phys. Chem. B 107, 7607-7617 (2003).
[CrossRef]

Girard, C.

G. Baffou, C. Girard, E. Dujardin, G. C. des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101(R) (2008).
[CrossRef]

G. C. des Francs, C. Girard, T. Laroche, G. Leveque, and O. J. F. Martin, “Theory of molecular excitation and relaxation near a plasmonic device,” J. Chem. Phys. 127, 034701 (2007).
[CrossRef]

C. Girard, O. J. F. Martin, and A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75, 3098-3101 (1995).
[CrossRef]

Goksör, M.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115-118 (2004).
[CrossRef]

Gonzalez, F.

F. Gonzalez and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic ir antennas,” Infrared Phys. Technol. 146, 418-428 (2004).

Greffet, J.-J.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865 (2004).
[CrossRef]

Gresillon, S.

Grober, R. D.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354-1356 (1997).
[CrossRef]

Guckenberger, R.

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

Hanstorp, D.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115-118 (2004).
[CrossRef]

Haslett, T.

M. Moskovits, L.-L. Tay, J. Yang, and T. Haslett, “SERS and the single molecule,” Top. Appl. Phys. 82, 215-226 (2002).
[CrossRef]

Haus, H. A.

H. A. Haus, Waves and Fields in Optoelectronics, 1st ed. (Prentice-Hall, 1984).

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).

Henkel, C.

L. Rogobete, H. Schniepp, V. Sandoghdar, and C. Henkel, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623-1625 (2007).
[CrossRef]

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,”Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Huang, C.-F.

D.-M. Yeh, C.-F. Huang, Y.-C. Lu, and C. C. Yang, “White-light light-emitting device based on surface plasmon-enhanced CdSe/ZnS nanocrystal wavelength conversion on a blue/green two-color light-emitting diode,” Appl. Phys. Lett. 92, 091112 (2008).
[CrossRef]

Ishikawa, M.

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite-difference time domain method,” J. Phys. Chem. B 107, 7607-7617 (2003).
[CrossRef]

Issa, N. A.

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 2nd ed., (Wiley, 1962) pp.150 and 396.

Jeong, D. H.

M. Moskovits and D. H. Jeong, “Engineering nanostructures for giant optical fields,” Chem. Phys. Lett. 397, 91-95 (2004).
[CrossRef]

Kall, M.

H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Käll, M.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115-118 (2004).
[CrossRef]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

Khurgin, J. B.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94, 101103 (2009).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009).
[CrossRef]

J. B. Khurgin and G. Sun, “Impact of disorder on surface plasmons in two-dimensional arrays of metal nanoparticles,”Appl. Phys. Lett. 94, 221111 (2009).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25, 1748-1755 (2008).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93, 021120 (2008).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons--figures of merit,” J. Opt. Soc. Am. B 24, 1968-1980 (2007).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

Kildishev, A. V.

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Kocabas, S. E

L. Tang, S. E Kocabas, S. Latif, A. K. Okyay, D-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226-229 (2008).
[CrossRef]

Kovacs, J.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149-4152 (1994).
[CrossRef]

Krauss, T. D.

Z. Wang, S. Pan, T. D. Krauss, H. Dui, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100, 8638-8643 (2003).
[CrossRef]

Kreibig, U.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
[CrossRef]

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,”Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

Kuwata, H.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,”Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Laroche, T.

G. C. des Francs, C. Girard, T. Laroche, G. Leveque, and O. J. F. Martin, “Theory of molecular excitation and relaxation near a plasmonic device,” J. Chem. Phys. 127, 034701 (2007).
[CrossRef]

Latif, S.

L. Tang, S. E Kocabas, S. Latif, A. K. Okyay, D-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226-229 (2008).
[CrossRef]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,”Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Leveque, G.

G. C. des Francs, C. Girard, T. Laroche, G. Leveque, and O. J. F. Martin, “Theory of molecular excitation and relaxation near a plasmonic device,” J. Chem. Phys. 127, 034701 (2007).
[CrossRef]

Lewis, N.

J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899-903 (2004).
[CrossRef]

Liu, Z.

Lu, Y.-C.

D.-M. Yeh, C.-F. Huang, Y.-C. Lu, and C. C. Yang, “White-light light-emitting device based on surface plasmon-enhanced CdSe/ZnS nanocrystal wavelength conversion on a blue/green two-color light-emitting diode,” Appl. Phys. Lett. 92, 091112 (2008).
[CrossRef]

Luth, H.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
[CrossRef]

Ly-Gagnon, D-S.

L. Tang, S. E Kocabas, S. Latif, A. K. Okyay, D-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226-229 (2008).
[CrossRef]

Maier, S. A.

Martin, O. J. F.

G. Baffou, C. Girard, E. Dujardin, G. C. des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101(R) (2008).
[CrossRef]

G. C. des Francs, C. Girard, T. Laroche, G. Leveque, and O. J. F. Martin, “Theory of molecular excitation and relaxation near a plasmonic device,” J. Chem. Phys. 127, 034701 (2007).
[CrossRef]

C. Girard, O. J. F. Martin, and A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75, 3098-3101 (1995).
[CrossRef]

Maruyama, Y.

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite-difference time domain method,” J. Phys. Chem. B 107, 7607-7617 (2003).
[CrossRef]

Maystre, D.

D. Maystre, “General study of grating anomalies from electromagnetic surface modes,” in Electromagnetic Surface Modes, A.D.Boardman, ed. (Wiley, 1982), Chap. 17.

Meissner, D.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
[CrossRef]

Mertens, H.

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622-2625 (2006).
[CrossRef]

J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

Michaels, A. M.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6 G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932-9939 (1999).
[CrossRef]

Miller, D. A. B.

L. Tang, S. E Kocabas, S. Latif, A. K. Okyay, D-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226-229 (2008).
[CrossRef]

Miyano, K.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

Miyazaki, H. T.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

Mock, J. J.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

Moghaddassi, J.

Moskovits, M.

M. Moskovits and D. H. Jeong, “Engineering nanostructures for giant optical fields,” Chem. Phys. Lett. 397, 91-95 (2004).
[CrossRef]

M. Moskovits, L.-L. Tay, J. Yang, and T. Haslett, “SERS and the single molecule,” Top. Appl. Phys. 82, 215-226 (2002).
[CrossRef]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149-4152 (1994).
[CrossRef]

Moskovitz, M.

M. Moskovitz, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783-826 (1985).
[CrossRef]

Murray, W. A.

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Weinheim, Ger.) 19, 3771-3782 (2007).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering” Science 275, 1102-1106 (1997).
[CrossRef]

Niki, I.

K. Okamoto, I. Niki, and A. Scherer, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

Nirmal, M.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6 G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932-9939 (1999).
[CrossRef]

Nordlander, P.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899-903 (2004).
[CrossRef]

Novotny, L.

L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69, 3806-3808 (1996).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).

Nurmikko, A. V.

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627-1631 (2004).
[CrossRef]

Okamoto, K.

K. Okamoto, I. Niki, and A. Scherer, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

Okyay, A. K.

L. Tang, S. E Kocabas, S. Latif, A. K. Okyay, D-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226-229 (2008).
[CrossRef]

Osborne, S. W.

S. W. Osborne, P. Bloos, P. M. Smowton, and Y. C. Xin, “Optical absorption cross section of quantum dots,” J. Phys.: Condens. Matter 16, S3749-S3756 (2004).
[CrossRef]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899-903 (2004).
[CrossRef]

Pan, S.

Z. Wang, S. Pan, T. D. Krauss, H. Dui, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100, 8638-8643 (2003).
[CrossRef]

Pedersen, R. H.

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Peumans, P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519-7526 (2004).
[CrossRef]

Pohl, D. W.

D. W. Pohl, “Near-field optics seen as an antenna problem,” in Near-field Optics, Principles and Applications, X.Zhu and M.Ohtsu, eds. (World Scientific, 2000), pp. 9-21.

Polman, A.

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622-2625 (2006).
[CrossRef]

J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

Prikulis, J.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115-118 (2004).
[CrossRef]

Prober, D. E.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354-1356 (1997).
[CrossRef]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899-903 (2004).
[CrossRef]

Purcell, M.

M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681-681 (1946).
[CrossRef]

Ramser, K.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115-118 (2004).
[CrossRef]

Rand, B. P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519-7526 (2004).
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,”Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Rogobete, L.

L. Rogobete, H. Schniepp, V. Sandoghdar, and C. Henkel, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623-1625 (2007).
[CrossRef]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

Rostalski, J.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
[CrossRef]

Rothberg, L. J.

Z. Wang, S. Pan, T. D. Krauss, H. Dui, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100, 8638-8643 (2003).
[CrossRef]

Sandoghdar, V.

L. Rogobete, H. Schniepp, V. Sandoghdar, and C. Henkel, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623-1625 (2007).
[CrossRef]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

Saraswat, K. C.

L. Tang, S. E Kocabas, S. Latif, A. K. Okyay, D-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226-229 (2008).
[CrossRef]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Scherer, A.

K. Okamoto, I. Niki, and A. Scherer, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

Schmeits, M.

M. Schmeits and L. Dambly, “Fast-electron scattering by bispherical surface-plasmon modes,” Phys. Rev. B 44, 12706-12712 (1991).
[CrossRef]

Schniepp, H.

Schoelkopf, R. J.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354-1356 (1997).
[CrossRef]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

Schultz, S.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Shalaev, V. M.

R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15, 13682-13688 (2006).
[CrossRef]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149-4152 (1994).
[CrossRef]

Smith, D. R.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Smowton, P. M.

S. W. Osborne, P. Bloos, P. M. Smowton, and Y. C. Xin, “Optical absorption cross section of quantum dots,” J. Phys.: Condens. Matter 16, S3749-S3756 (2004).
[CrossRef]

Song, J. H.

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627-1631 (2004).
[CrossRef]

Soref, R. A.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94, 101103 (2009).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25, 1748-1755 (2008).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93, 021120 (2008).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons--figures of merit,” J. Opt. Soc. Am. B 24, 1968-1980 (2007).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899-903 (2004).
[CrossRef]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
[CrossRef]

Su, K. H.

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Suh, J. S.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149-4152 (1994).
[CrossRef]

Sun, G.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94, 101103 (2009).
[CrossRef]

J. B. Khurgin and G. Sun, “Impact of disorder on surface plasmons in two-dimensional arrays of metal nanoparticles,”Appl. Phys. Lett. 94, 221111 (2009).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25, 1748-1755 (2008).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93, 021120 (2008).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons--figures of merit,” J. Opt. Soc. Am. B 24, 1968-1980 (2007).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

Svedberg, F.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115-118 (2004).
[CrossRef]

Tamaru, H.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

Tang, L.

L. Tang, S. E Kocabas, S. Latif, A. K. Okyay, D-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226-229 (2008).
[CrossRef]

Tay, L.-L.

M. Moskovits, L.-L. Tay, J. Yang, and T. Haslett, “SERS and the single molecule,” Top. Appl. Phys. 82, 215-226 (2002).
[CrossRef]

Thomas, M.

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865 (2004).
[CrossRef]

Tsai, D. P.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149-4152 (1994).
[CrossRef]

Vigoureux, J. M.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Wang, Z.

Z. Wang, S. Pan, T. D. Krauss, H. Dui, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100, 8638-8643 (2003).
[CrossRef]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149-4152 (1994).
[CrossRef]

Wei, Q. H.

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Westphalen, M.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
[CrossRef]

Xin, Y. C.

S. W. Osborne, P. Bloos, P. M. Smowton, and Y. C. Xin, “Optical absorption cross section of quantum dots,” J. Phys.: Condens. Matter 16, S3749-S3756 (2004).
[CrossRef]

Xu, H.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

Xu, H. X.

H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Yang, C. C.

D.-M. Yeh, C.-F. Huang, Y.-C. Lu, and C. C. Yang, “White-light light-emitting device based on surface plasmon-enhanced CdSe/ZnS nanocrystal wavelength conversion on a blue/green two-color light-emitting diode,” Appl. Phys. Lett. 92, 091112 (2008).
[CrossRef]

Yang, J.

M. Moskovits, L.-L. Tay, J. Yang, and T. Haslett, “SERS and the single molecule,” Top. Appl. Phys. 82, 215-226 (2002).
[CrossRef]

Yeh, D.-M.

D.-M. Yeh, C.-F. Huang, Y.-C. Lu, and C. C. Yang, “White-light light-emitting device based on surface plasmon-enhanced CdSe/ZnS nanocrystal wavelength conversion on a blue/green two-color light-emitting diode,” Appl. Phys. Lett. 92, 091112 (2008).
[CrossRef]

Yu, E. T.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Zhang, X.

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Adv. Mater. (Weinheim, Ger.) (1)

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Weinheim, Ger.) 19, 3771-3782 (2007).
[CrossRef]

Appl. Phys. Lett. (13)

K. Okamoto, I. Niki, and A. Scherer, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69, 3806-3808 (1996).
[CrossRef]

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865 (2004).
[CrossRef]

D.-M. Yeh, C.-F. Huang, Y.-C. Lu, and C. C. Yang, “White-light light-emitting device based on surface plasmon-enhanced CdSe/ZnS nanocrystal wavelength conversion on a blue/green two-color light-emitting diode,” Appl. Phys. Lett. 92, 091112 (2008).
[CrossRef]

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354-1356 (1997).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93, 021120 (2008).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94, 101103 (2009).
[CrossRef]

J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

J. B. Khurgin and G. Sun, “Impact of disorder on surface plasmons in two-dimensional arrays of metal nanoparticles,”Appl. Phys. Lett. 94, 221111 (2009).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

M. Moskovits and D. H. Jeong, “Engineering nanostructures for giant optical fields,” Chem. Phys. Lett. 397, 91-95 (2004).
[CrossRef]

Infrared Phys. Technol. (1)

F. Gonzalez and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic ir antennas,” Infrared Phys. Technol. 146, 418-428 (2004).

J. Am. Chem. Soc. (1)

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6 G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932-9939 (1999).
[CrossRef]

J. Appl. Phys. (1)

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519-7526 (2004).
[CrossRef]

J. Chem. Phys. (1)

G. C. des Francs, C. Girard, T. Laroche, G. Leveque, and O. J. F. Martin, “Theory of molecular excitation and relaxation near a plasmonic device,” J. Chem. Phys. 127, 034701 (2007).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. B (1)

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite-difference time domain method,” J. Phys. Chem. B 107, 7607-7617 (2003).
[CrossRef]

J. Phys.: Condens. Matter (1)

S. W. Osborne, P. Bloos, P. M. Smowton, and Y. C. Xin, “Optical absorption cross section of quantum dots,” J. Phys.: Condens. Matter 16, S3749-S3756 (2004).
[CrossRef]

Nano Lett. (6)

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622-2625 (2006).
[CrossRef]

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115-118 (2004).
[CrossRef]

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627-1631 (2004).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899-903 (2004).
[CrossRef]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Nat. Photonics (1)

L. Tang, S. E Kocabas, S. Latif, A. K. Okyay, D-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226-229 (2008).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef]

Opt. Commun. (2)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,”Opt. Commun. 220, 137-141 (2003).
[CrossRef]

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. (1)

M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681-681 (1946).
[CrossRef]

Phys. Rev. B (2)

G. Baffou, C. Girard, E. Dujardin, G. C. des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101(R) (2008).
[CrossRef]

M. Schmeits and L. Dambly, “Fast-electron scattering by bispherical surface-plasmon modes,” Phys. Rev. B 44, 12706-12712 (1991).
[CrossRef]

Phys. Rev. E (1)

H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318-4324 (2000).
[CrossRef]

Phys. Rev. Lett. (7)

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
[CrossRef]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149-4152 (1994).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

C. Girard, O. J. F. Martin, and A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75, 3098-3101 (1995).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Wang, S. Pan, T. D. Krauss, H. Dui, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100, 8638-8643 (2003).
[CrossRef]

Rev. Mod. Phys. (1)

M. Moskovitz, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783-826 (1985).
[CrossRef]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering” Science 275, 1102-1106 (1997).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
[CrossRef]

Top. Appl. Phys. (1)

M. Moskovits, L.-L. Tay, J. Yang, and T. Haslett, “SERS and the single molecule,” Top. Appl. Phys. 82, 215-226 (2002).
[CrossRef]

Other (8)

D. Maystre, “General study of grating anomalies from electromagnetic surface modes,” in Electromagnetic Surface Modes, A.D.Boardman, ed. (Wiley, 1982), Chap. 17.

D. W. Pohl, “Near-field optics seen as an antenna problem,” in Near-field Optics, Principles and Applications, X.Zhu and M.Ohtsu, eds. (World Scientific, 2000), pp. 9-21.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).

S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, 2007).

Surface Plasmon Nanophotonics, Springer Series in Optical Sciences, M.L.Brongersma and P.G.Kik, eds. (Springer, 2007).

Nanophotonics with Surface Plasmons Vl. M.Shalaev and S.Kawata eds., (Elsevier, 2007).

J. D. Jackson, Classical Electrodynamics, 2nd ed., (Wiley, 1962) pp.150 and 396.

H. A. Haus, Waves and Fields in Optoelectronics, 1st ed. (Prentice-Hall, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics