Abstract

We present a detailed study of the use of Fabry–Perot (FP) cavities for the spectroscopy of single InAs quantum dots (QDs). We derive optimal cavity characteristics and resolution limits and measure photoluminescence linewidths as low as 0.9GHz. By embedding the QDs in a planar cavity, we obtain a sufficiently large signal to actively feed back on the length of the FP to lock to the emission of a single QD with a stability below 2% of the QD linewidth. An integration time of approximately two seconds is found to yield an optimum compromise between shot noise and cavity length fluctuations.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Michler, Single Quantum Dots, Fundamentals, Applications and New Concepts (Springer-Verlag, 2003).
  2. P. M. Petroff, A. Lorke, and A. Imamoğlu, “Epitaxially self-assembled quantum dots,” Phys. Today 54, 46-52 (2001).
    [CrossRef]
  3. S. Seidl, A. Högele, M. Kroner, K. Karrai, A. Badolato, P. Petroff, and R. Warburton, “Tuning the cross-gap transition energy of a quantum dot by uniaxial stress,” Physica E 32, 14-16 (2006).
    [CrossRef]
  4. H. Gotoh, H. Kamada, H. Ando, and J. Temmyo, “Lateral electric-field effects on excitonic photoemissions in InGaAs quantum disks,” Appl. Phys. Lett. 76, 867-869 (2000).
    [CrossRef]
  5. M. M. Vogel, S. M. Ulrich, R. Hafenbrak, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Influence of lateral electric fields on multiexcitonic transitions and fine structure of single quantum dots,” Appl. Phys. Lett. 91, 051904 (2007).
    [CrossRef]
  6. M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
    [CrossRef]
  7. K. Kowalik, O. Krebs, A. Golnik, J. Suffczyński, P. Wojnar, J. Kossut, J. A. Gaj, and P. Voisin, “Manipulating the exciton fine structure of single CdTe/ZnTe quantum dots by an in-plane magnetic field,” Phys. Rev. B 75, 195340 (2007).
    [CrossRef]
  8. G. Jundt, L. Robledo, A. Högele, S. Fält, and A. Imamoğlu, “Observation of dressed excitonic states in a single quantum dot,” Phys. Rev. Lett. 100, 177401 (2008).
    [CrossRef] [PubMed]
  9. A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Emission spectrum of a dressed exciton-biexciton complex in a semiconductor quantum dot,” Phys. Rev. Lett. 101, 027401 (2008).
    [CrossRef] [PubMed]
  10. A. E. Siegman, Lasers (University Science Books, 1986).
  11. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550-1567 (1966).
    [CrossRef] [PubMed]
  12. P. Horowitz, and H. WinfieldThe Art of Electronics (Cambridge Univ. Press, 1989), pp. 431-2.
  13. G. S. Solomon, C. Santori, M. Pelton, J. Vučković, D. Fattal, E. Waks, and Y. Yamamoto, “Efficient, regulated single photons from quantum dots in post microcavities,” in Optics of Quantum Dots and Wires, G.S.Solomon and G.W.Bryant, eds. (Artech House, 2005), pp. 483-535.
  14. H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814-2816 (1990).
    [CrossRef]
  15. D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005-3008 (1996).
    [CrossRef] [PubMed]
  16. V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944-9947 (2000).
    [CrossRef]
  17. A. Högele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D. Gerardot, and P. M. Petroff, “Voltage-controlled optics of a quantum dot,” Phys. Rev. Lett. 93, 217401 (2004).
    [CrossRef] [PubMed]
  18. P. Frantsuzov, M. Kuno, B. Janko, and R. A. Marcus, “Universal emission intermittency in quantum dots, nanorods and nanowires,” Nat. Phys. 4, 519-522 (2008).
    [CrossRef]
  19. G. F. Franklin, D. J. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems (Prentice Hall, 2001).
  20. T. Baer, F. V. Kowalski, and J. L. Hall, “Frequency stabilization of a 0.633-μm He-Ne longitudinal Zeeman laser,” Appl. Opt. 19, 3173-3177 (1980).
    [CrossRef] [PubMed]
  21. A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Processes (McGraw Hill, 2002).

2008

G. Jundt, L. Robledo, A. Högele, S. Fält, and A. Imamoğlu, “Observation of dressed excitonic states in a single quantum dot,” Phys. Rev. Lett. 100, 177401 (2008).
[CrossRef] [PubMed]

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Emission spectrum of a dressed exciton-biexciton complex in a semiconductor quantum dot,” Phys. Rev. Lett. 101, 027401 (2008).
[CrossRef] [PubMed]

P. Frantsuzov, M. Kuno, B. Janko, and R. A. Marcus, “Universal emission intermittency in quantum dots, nanorods and nanowires,” Nat. Phys. 4, 519-522 (2008).
[CrossRef]

2007

K. Kowalik, O. Krebs, A. Golnik, J. Suffczyński, P. Wojnar, J. Kossut, J. A. Gaj, and P. Voisin, “Manipulating the exciton fine structure of single CdTe/ZnTe quantum dots by an in-plane magnetic field,” Phys. Rev. B 75, 195340 (2007).
[CrossRef]

M. M. Vogel, S. M. Ulrich, R. Hafenbrak, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Influence of lateral electric fields on multiexcitonic transitions and fine structure of single quantum dots,” Appl. Phys. Lett. 91, 051904 (2007).
[CrossRef]

2006

S. Seidl, A. Högele, M. Kroner, K. Karrai, A. Badolato, P. Petroff, and R. Warburton, “Tuning the cross-gap transition energy of a quantum dot by uniaxial stress,” Physica E 32, 14-16 (2006).
[CrossRef]

2004

A. Högele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D. Gerardot, and P. M. Petroff, “Voltage-controlled optics of a quantum dot,” Phys. Rev. Lett. 93, 217401 (2004).
[CrossRef] [PubMed]

2002

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

2001

P. M. Petroff, A. Lorke, and A. Imamoğlu, “Epitaxially self-assembled quantum dots,” Phys. Today 54, 46-52 (2001).
[CrossRef]

2000

H. Gotoh, H. Kamada, H. Ando, and J. Temmyo, “Lateral electric-field effects on excitonic photoemissions in InGaAs quantum disks,” Appl. Phys. Lett. 76, 867-869 (2000).
[CrossRef]

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944-9947 (2000).
[CrossRef]

1996

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005-3008 (1996).
[CrossRef] [PubMed]

1990

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814-2816 (1990).
[CrossRef]

1980

1966

Anan, T.

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814-2816 (1990).
[CrossRef]

Ando, H.

H. Gotoh, H. Kamada, H. Ando, and J. Temmyo, “Lateral electric-field effects on excitonic photoemissions in InGaAs quantum disks,” Appl. Phys. Lett. 76, 867-869 (2000).
[CrossRef]

Badolato, A.

S. Seidl, A. Högele, M. Kroner, K. Karrai, A. Badolato, P. Petroff, and R. Warburton, “Tuning the cross-gap transition energy of a quantum dot by uniaxial stress,” Physica E 32, 14-16 (2006).
[CrossRef]

Baer, T.

Bayer, M.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Bimberg, D.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944-9947 (2000).
[CrossRef]

Brorson, S. D.

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814-2816 (1990).
[CrossRef]

Emami-Naeini, A.

G. F. Franklin, D. J. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems (Prentice Hall, 2001).

Engelhardt, R.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944-9947 (2000).
[CrossRef]

Fafard, S.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Fält, S.

G. Jundt, L. Robledo, A. Högele, S. Fält, and A. Imamoğlu, “Observation of dressed excitonic states in a single quantum dot,” Phys. Rev. Lett. 100, 177401 (2008).
[CrossRef] [PubMed]

Fang, W.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Emission spectrum of a dressed exciton-biexciton complex in a semiconductor quantum dot,” Phys. Rev. Lett. 101, 027401 (2008).
[CrossRef] [PubMed]

Fattal, D.

G. S. Solomon, C. Santori, M. Pelton, J. Vučković, D. Fattal, E. Waks, and Y. Yamamoto, “Efficient, regulated single photons from quantum dots in post microcavities,” in Optics of Quantum Dots and Wires, G.S.Solomon and G.W.Bryant, eds. (Artech House, 2005), pp. 483-535.

Forchel, A.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Franklin, G. F.

G. F. Franklin, D. J. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems (Prentice Hall, 2001).

Frantsuzov, P.

P. Frantsuzov, M. Kuno, B. Janko, and R. A. Marcus, “Universal emission intermittency in quantum dots, nanorods and nanowires,” Nat. Phys. 4, 519-522 (2008).
[CrossRef]

Gaj, J. A.

K. Kowalik, O. Krebs, A. Golnik, J. Suffczyński, P. Wojnar, J. Kossut, J. A. Gaj, and P. Voisin, “Manipulating the exciton fine structure of single CdTe/ZnTe quantum dots by an in-plane magnetic field,” Phys. Rev. B 75, 195340 (2007).
[CrossRef]

Gammon, D.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005-3008 (1996).
[CrossRef] [PubMed]

Gerardot, B. D.

A. Högele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D. Gerardot, and P. M. Petroff, “Voltage-controlled optics of a quantum dot,” Phys. Rev. Lett. 93, 217401 (2004).
[CrossRef] [PubMed]

Golnik, A.

K. Kowalik, O. Krebs, A. Golnik, J. Suffczyński, P. Wojnar, J. Kossut, J. A. Gaj, and P. Voisin, “Manipulating the exciton fine structure of single CdTe/ZnTe quantum dots by an in-plane magnetic field,” Phys. Rev. B 75, 195340 (2007).
[CrossRef]

Gorbunov, A. A.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Gotoh, H.

H. Gotoh, H. Kamada, H. Ando, and J. Temmyo, “Lateral electric-field effects on excitonic photoemissions in InGaAs quantum disks,” Appl. Phys. Lett. 76, 867-869 (2000).
[CrossRef]

Hafenbrak, R.

M. M. Vogel, S. M. Ulrich, R. Hafenbrak, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Influence of lateral electric fields on multiexcitonic transitions and fine structure of single quantum dots,” Appl. Phys. Lett. 91, 051904 (2007).
[CrossRef]

Hall, J. L.

Hawrylak, P.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Heitz, R.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944-9947 (2000).
[CrossRef]

Hinzer, K.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Högele, A.

G. Jundt, L. Robledo, A. Högele, S. Fält, and A. Imamoğlu, “Observation of dressed excitonic states in a single quantum dot,” Phys. Rev. Lett. 100, 177401 (2008).
[CrossRef] [PubMed]

S. Seidl, A. Högele, M. Kroner, K. Karrai, A. Badolato, P. Petroff, and R. Warburton, “Tuning the cross-gap transition energy of a quantum dot by uniaxial stress,” Physica E 32, 14-16 (2006).
[CrossRef]

A. Högele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D. Gerardot, and P. M. Petroff, “Voltage-controlled optics of a quantum dot,” Phys. Rev. Lett. 93, 217401 (2004).
[CrossRef] [PubMed]

Horowitz, P.

P. Horowitz, and H. WinfieldThe Art of Electronics (Cambridge Univ. Press, 1989), pp. 431-2.

Imamoglu, A.

G. Jundt, L. Robledo, A. Högele, S. Fält, and A. Imamoğlu, “Observation of dressed excitonic states in a single quantum dot,” Phys. Rev. Lett. 100, 177401 (2008).
[CrossRef] [PubMed]

P. M. Petroff, A. Lorke, and A. Imamoğlu, “Epitaxially self-assembled quantum dots,” Phys. Today 54, 46-52 (2001).
[CrossRef]

Ippen, E. P.

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814-2816 (1990).
[CrossRef]

Janko, B.

P. Frantsuzov, M. Kuno, B. Janko, and R. A. Marcus, “Universal emission intermittency in quantum dots, nanorods and nanowires,” Nat. Phys. 4, 519-522 (2008).
[CrossRef]

Jundt, G.

G. Jundt, L. Robledo, A. Högele, S. Fält, and A. Imamoğlu, “Observation of dressed excitonic states in a single quantum dot,” Phys. Rev. Lett. 100, 177401 (2008).
[CrossRef] [PubMed]

Kamada, H.

H. Gotoh, H. Kamada, H. Ando, and J. Temmyo, “Lateral electric-field effects on excitonic photoemissions in InGaAs quantum disks,” Appl. Phys. Lett. 76, 867-869 (2000).
[CrossRef]

Karrai, K.

S. Seidl, A. Högele, M. Kroner, K. Karrai, A. Badolato, P. Petroff, and R. Warburton, “Tuning the cross-gap transition energy of a quantum dot by uniaxial stress,” Physica E 32, 14-16 (2006).
[CrossRef]

A. Högele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D. Gerardot, and P. M. Petroff, “Voltage-controlled optics of a quantum dot,” Phys. Rev. Lett. 93, 217401 (2004).
[CrossRef] [PubMed]

Katzer, D. S.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005-3008 (1996).
[CrossRef] [PubMed]

Klopf, F.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Kogelnik, H.

Kossut, J.

K. Kowalik, O. Krebs, A. Golnik, J. Suffczyński, P. Wojnar, J. Kossut, J. A. Gaj, and P. Voisin, “Manipulating the exciton fine structure of single CdTe/ZnTe quantum dots by an in-plane magnetic field,” Phys. Rev. B 75, 195340 (2007).
[CrossRef]

Kowalik, K.

K. Kowalik, O. Krebs, A. Golnik, J. Suffczyński, P. Wojnar, J. Kossut, J. A. Gaj, and P. Voisin, “Manipulating the exciton fine structure of single CdTe/ZnTe quantum dots by an in-plane magnetic field,” Phys. Rev. B 75, 195340 (2007).
[CrossRef]

Kowalski, F. V.

Krebs, O.

K. Kowalik, O. Krebs, A. Golnik, J. Suffczyński, P. Wojnar, J. Kossut, J. A. Gaj, and P. Voisin, “Manipulating the exciton fine structure of single CdTe/ZnTe quantum dots by an in-plane magnetic field,” Phys. Rev. B 75, 195340 (2007).
[CrossRef]

Kroner, M.

S. Seidl, A. Högele, M. Kroner, K. Karrai, A. Badolato, P. Petroff, and R. Warburton, “Tuning the cross-gap transition energy of a quantum dot by uniaxial stress,” Physica E 32, 14-16 (2006).
[CrossRef]

A. Högele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D. Gerardot, and P. M. Petroff, “Voltage-controlled optics of a quantum dot,” Phys. Rev. Lett. 93, 217401 (2004).
[CrossRef] [PubMed]

Kuno, M.

P. Frantsuzov, M. Kuno, B. Janko, and R. A. Marcus, “Universal emission intermittency in quantum dots, nanorods and nanowires,” Nat. Phys. 4, 519-522 (2008).
[CrossRef]

Kuther, A.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Lawall, J.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Emission spectrum of a dressed exciton-biexciton complex in a semiconductor quantum dot,” Phys. Rev. Lett. 101, 027401 (2008).
[CrossRef] [PubMed]

Li, T.

Lorke, A.

P. M. Petroff, A. Lorke, and A. Imamoğlu, “Epitaxially self-assembled quantum dots,” Phys. Today 54, 46-52 (2001).
[CrossRef]

Marcus, R. A.

P. Frantsuzov, M. Kuno, B. Janko, and R. A. Marcus, “Universal emission intermittency in quantum dots, nanorods and nanowires,” Nat. Phys. 4, 519-522 (2008).
[CrossRef]

Michler, P.

M. M. Vogel, S. M. Ulrich, R. Hafenbrak, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Influence of lateral electric fields on multiexcitonic transitions and fine structure of single quantum dots,” Appl. Phys. Lett. 91, 051904 (2007).
[CrossRef]

P. Michler, Single Quantum Dots, Fundamentals, Applications and New Concepts (Springer-Verlag, 2003).

Muller, A.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Emission spectrum of a dressed exciton-biexciton complex in a semiconductor quantum dot,” Phys. Rev. Lett. 101, 027401 (2008).
[CrossRef] [PubMed]

Nishi, K.

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814-2816 (1990).
[CrossRef]

Ortner, G.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Papoulis, A.

A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Processes (McGraw Hill, 2002).

Park, D.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005-3008 (1996).
[CrossRef] [PubMed]

Pelton, M.

G. S. Solomon, C. Santori, M. Pelton, J. Vučković, D. Fattal, E. Waks, and Y. Yamamoto, “Efficient, regulated single photons from quantum dots in post microcavities,” in Optics of Quantum Dots and Wires, G.S.Solomon and G.W.Bryant, eds. (Artech House, 2005), pp. 483-535.

Petroff, P.

S. Seidl, A. Högele, M. Kroner, K. Karrai, A. Badolato, P. Petroff, and R. Warburton, “Tuning the cross-gap transition energy of a quantum dot by uniaxial stress,” Physica E 32, 14-16 (2006).
[CrossRef]

Petroff, P. M.

A. Högele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D. Gerardot, and P. M. Petroff, “Voltage-controlled optics of a quantum dot,” Phys. Rev. Lett. 93, 217401 (2004).
[CrossRef] [PubMed]

P. M. Petroff, A. Lorke, and A. Imamoğlu, “Epitaxially self-assembled quantum dots,” Phys. Today 54, 46-52 (2001).
[CrossRef]

Pillai, S. U.

A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Processes (McGraw Hill, 2002).

Pohl, U. W.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944-9947 (2000).
[CrossRef]

Powell, D. J.

G. F. Franklin, D. J. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems (Prentice Hall, 2001).

Rastelli, A.

M. M. Vogel, S. M. Ulrich, R. Hafenbrak, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Influence of lateral electric fields on multiexcitonic transitions and fine structure of single quantum dots,” Appl. Phys. Lett. 91, 051904 (2007).
[CrossRef]

Reinecke, T. L.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Reithmaier, J. P.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Robledo, L.

G. Jundt, L. Robledo, A. Högele, S. Fält, and A. Imamoğlu, “Observation of dressed excitonic states in a single quantum dot,” Phys. Rev. Lett. 100, 177401 (2008).
[CrossRef] [PubMed]

Rodt, S.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944-9947 (2000).
[CrossRef]

Santori, C.

G. S. Solomon, C. Santori, M. Pelton, J. Vučković, D. Fattal, E. Waks, and Y. Yamamoto, “Efficient, regulated single photons from quantum dots in post microcavities,” in Optics of Quantum Dots and Wires, G.S.Solomon and G.W.Bryant, eds. (Artech House, 2005), pp. 483-535.

Schäfer, F.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Schmidt, O. G.

M. M. Vogel, S. M. Ulrich, R. Hafenbrak, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Influence of lateral electric fields on multiexcitonic transitions and fine structure of single quantum dots,” Appl. Phys. Lett. 91, 051904 (2007).
[CrossRef]

Seidl, S.

S. Seidl, A. Högele, M. Kroner, K. Karrai, A. Badolato, P. Petroff, and R. Warburton, “Tuning the cross-gap transition energy of a quantum dot by uniaxial stress,” Physica E 32, 14-16 (2006).
[CrossRef]

A. Högele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D. Gerardot, and P. M. Petroff, “Voltage-controlled optics of a quantum dot,” Phys. Rev. Lett. 93, 217401 (2004).
[CrossRef] [PubMed]

Shanabrook, B. V.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005-3008 (1996).
[CrossRef] [PubMed]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Snow, E. S.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005-3008 (1996).
[CrossRef] [PubMed]

Solomon, G. S.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Emission spectrum of a dressed exciton-biexciton complex in a semiconductor quantum dot,” Phys. Rev. Lett. 101, 027401 (2008).
[CrossRef] [PubMed]

G. S. Solomon, C. Santori, M. Pelton, J. Vučković, D. Fattal, E. Waks, and Y. Yamamoto, “Efficient, regulated single photons from quantum dots in post microcavities,” in Optics of Quantum Dots and Wires, G.S.Solomon and G.W.Bryant, eds. (Artech House, 2005), pp. 483-535.

Steingrüber, R.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944-9947 (2000).
[CrossRef]

Stern, O.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Stier, O.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944-9947 (2000).
[CrossRef]

Suffczynski, J.

K. Kowalik, O. Krebs, A. Golnik, J. Suffczyński, P. Wojnar, J. Kossut, J. A. Gaj, and P. Voisin, “Manipulating the exciton fine structure of single CdTe/ZnTe quantum dots by an in-plane magnetic field,” Phys. Rev. B 75, 195340 (2007).
[CrossRef]

Temmyo, J.

H. Gotoh, H. Kamada, H. Ando, and J. Temmyo, “Lateral electric-field effects on excitonic photoemissions in InGaAs quantum disks,” Appl. Phys. Lett. 76, 867-869 (2000).
[CrossRef]

Türck, V.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944-9947 (2000).
[CrossRef]

Ulrich, S. M.

M. M. Vogel, S. M. Ulrich, R. Hafenbrak, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Influence of lateral electric fields on multiexcitonic transitions and fine structure of single quantum dots,” Appl. Phys. Lett. 91, 051904 (2007).
[CrossRef]

Vogel, M. M.

M. M. Vogel, S. M. Ulrich, R. Hafenbrak, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Influence of lateral electric fields on multiexcitonic transitions and fine structure of single quantum dots,” Appl. Phys. Lett. 91, 051904 (2007).
[CrossRef]

Voisin, P.

K. Kowalik, O. Krebs, A. Golnik, J. Suffczyński, P. Wojnar, J. Kossut, J. A. Gaj, and P. Voisin, “Manipulating the exciton fine structure of single CdTe/ZnTe quantum dots by an in-plane magnetic field,” Phys. Rev. B 75, 195340 (2007).
[CrossRef]

Vuckovic, J.

G. S. Solomon, C. Santori, M. Pelton, J. Vučković, D. Fattal, E. Waks, and Y. Yamamoto, “Efficient, regulated single photons from quantum dots in post microcavities,” in Optics of Quantum Dots and Wires, G.S.Solomon and G.W.Bryant, eds. (Artech House, 2005), pp. 483-535.

Waks, E.

G. S. Solomon, C. Santori, M. Pelton, J. Vučković, D. Fattal, E. Waks, and Y. Yamamoto, “Efficient, regulated single photons from quantum dots in post microcavities,” in Optics of Quantum Dots and Wires, G.S.Solomon and G.W.Bryant, eds. (Artech House, 2005), pp. 483-535.

Walck, S. N.

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

Wang, L.

M. M. Vogel, S. M. Ulrich, R. Hafenbrak, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Influence of lateral electric fields on multiexcitonic transitions and fine structure of single quantum dots,” Appl. Phys. Lett. 91, 051904 (2007).
[CrossRef]

Warburton, R.

S. Seidl, A. Högele, M. Kroner, K. Karrai, A. Badolato, P. Petroff, and R. Warburton, “Tuning the cross-gap transition energy of a quantum dot by uniaxial stress,” Physica E 32, 14-16 (2006).
[CrossRef]

Warburton, R. J.

A. Högele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D. Gerardot, and P. M. Petroff, “Voltage-controlled optics of a quantum dot,” Phys. Rev. Lett. 93, 217401 (2004).
[CrossRef] [PubMed]

Winfield, H.

P. Horowitz, and H. WinfieldThe Art of Electronics (Cambridge Univ. Press, 1989), pp. 431-2.

Wojnar, P.

K. Kowalik, O. Krebs, A. Golnik, J. Suffczyński, P. Wojnar, J. Kossut, J. A. Gaj, and P. Voisin, “Manipulating the exciton fine structure of single CdTe/ZnTe quantum dots by an in-plane magnetic field,” Phys. Rev. B 75, 195340 (2007).
[CrossRef]

Yamada, H.

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814-2816 (1990).
[CrossRef]

Yamamoto, Y.

G. S. Solomon, C. Santori, M. Pelton, J. Vučković, D. Fattal, E. Waks, and Y. Yamamoto, “Efficient, regulated single photons from quantum dots in post microcavities,” in Optics of Quantum Dots and Wires, G.S.Solomon and G.W.Bryant, eds. (Artech House, 2005), pp. 483-535.

Yokoyama, H.

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814-2816 (1990).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814-2816 (1990).
[CrossRef]

H. Gotoh, H. Kamada, H. Ando, and J. Temmyo, “Lateral electric-field effects on excitonic photoemissions in InGaAs quantum disks,” Appl. Phys. Lett. 76, 867-869 (2000).
[CrossRef]

M. M. Vogel, S. M. Ulrich, R. Hafenbrak, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Influence of lateral electric fields on multiexcitonic transitions and fine structure of single quantum dots,” Appl. Phys. Lett. 91, 051904 (2007).
[CrossRef]

Nat. Phys.

P. Frantsuzov, M. Kuno, B. Janko, and R. A. Marcus, “Universal emission intermittency in quantum dots, nanorods and nanowires,” Nat. Phys. 4, 519-522 (2008).
[CrossRef]

Phys. Rev. B

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944-9947 (2000).
[CrossRef]

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
[CrossRef]

K. Kowalik, O. Krebs, A. Golnik, J. Suffczyński, P. Wojnar, J. Kossut, J. A. Gaj, and P. Voisin, “Manipulating the exciton fine structure of single CdTe/ZnTe quantum dots by an in-plane magnetic field,” Phys. Rev. B 75, 195340 (2007).
[CrossRef]

Phys. Rev. Lett.

G. Jundt, L. Robledo, A. Högele, S. Fält, and A. Imamoğlu, “Observation of dressed excitonic states in a single quantum dot,” Phys. Rev. Lett. 100, 177401 (2008).
[CrossRef] [PubMed]

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Emission spectrum of a dressed exciton-biexciton complex in a semiconductor quantum dot,” Phys. Rev. Lett. 101, 027401 (2008).
[CrossRef] [PubMed]

A. Högele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D. Gerardot, and P. M. Petroff, “Voltage-controlled optics of a quantum dot,” Phys. Rev. Lett. 93, 217401 (2004).
[CrossRef] [PubMed]

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005-3008 (1996).
[CrossRef] [PubMed]

Phys. Today

P. M. Petroff, A. Lorke, and A. Imamoğlu, “Epitaxially self-assembled quantum dots,” Phys. Today 54, 46-52 (2001).
[CrossRef]

Physica E

S. Seidl, A. Högele, M. Kroner, K. Karrai, A. Badolato, P. Petroff, and R. Warburton, “Tuning the cross-gap transition energy of a quantum dot by uniaxial stress,” Physica E 32, 14-16 (2006).
[CrossRef]

Other

P. Horowitz, and H. WinfieldThe Art of Electronics (Cambridge Univ. Press, 1989), pp. 431-2.

G. S. Solomon, C. Santori, M. Pelton, J. Vučković, D. Fattal, E. Waks, and Y. Yamamoto, “Efficient, regulated single photons from quantum dots in post microcavities,” in Optics of Quantum Dots and Wires, G.S.Solomon and G.W.Bryant, eds. (Artech House, 2005), pp. 483-535.

A. E. Siegman, Lasers (University Science Books, 1986).

G. F. Franklin, D. J. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems (Prentice Hall, 2001).

A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Processes (McGraw Hill, 2002).

P. Michler, Single Quantum Dots, Fundamentals, Applications and New Concepts (Springer-Verlag, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experiment measurement setup.

Fig. 2
Fig. 2

(a) Photon count rate versus FP piezo voltage of QD fluorescence. The difference between the two sets of (fine-structure split) peaks gives a measure of the cavity-free spectral range FSR 40     GHz . The smaller set of split peaks corresponds to the excitation of a higher-order mode in the FP cavity. Inset, QD spectrum obtained from measuring QD fluorescence in the spectrometer without FP cavity. The tallest peak in this spectrum is selected by the spectrometer and resolved with the FP cavity to give the data shown in (a). (b) High-resolution spectroscopy of single QD fluorescence line (dark points). The Lorentzian fit (solid line) gives a FWHM of 1.2 GHz . For comparison, the cavity line is plotted on the same graph (curve). The cavity has a FWHM of 0.25 GHz , implying a QD FWHM of 0.95 GHz .

Fig. 3
Fig. 3

(a) Measured standard deviation of transmitted photon count rate Γ as a function of integration time τ for P = 0.05 , I = 1 (circles), and P = 0.1 , I = 1 (squares). Solid curves, corresponding theoretical predictions assuming power spectral density of cavity-length fluctuations varies as ω 2.9 . Dashed curve, theoretical prediction for P = 0.05 , I = 1 assuming power spectral density of cavity-length fluctuations varies as ω 1.2 . (b) Solid points, measured standard deviation of Γ as a function of P for τ = 0.11 s (triangles), τ = 0.89 s (circles), and τ = 3.56 s (squares); integral gain I = 1 in all three cases.

Equations (42)

Equations on this page are rendered with MathJax. Learn more.

g ( ν ) = T ( Δ ν cav 2 ) 2 ( ν ν cav ) 2 + ( Δ ν cav 2 ) 2 ,
Δ ν cav = FSR F ,
f ( ν ) = Γ QD Δ ν qd 2 π 1 ( ν ν qd ) 2 + ( Δ ν qd 2 ) 2 .
Γ ( ν cav ) = Γ max ( Δ ν det 2 ) 2 ( ν cav ν qd ) 2 + ( Δ ν det 2 ) 2 ,
Δ ν det = Δ ν qd + Δ ν cav ,
Γ max = Γ QD T Δ ν cav Δ ν qd + Δ ν cav
δ ν qd = 1 d Γ d ν qd δ Γ .
δ Γ = Γ τ ,
Γ opt = 2 3 Γ max .
δ ν qd = 3 3 8 T Γ QD τ ( Δ ν qd + Δ ν cav ) 3 2 Δ ν cav .
Δ ν cav = Δ ν qd 2 ,
δ ν qd = 9 3 16 Δ ν qd Γ max τ .
Γ ( ν opt ) = 3 4 Γ max + Γ b k .
Δ ν cav = Δ ν qd ,
δ ν qd = 4 3 9 Δ ν qd Γ max 3 Γ max + 4 Γ b k τ .
S δ L ( ω ) = a ω b ,
σ Γ 2 = Γ 0 τ { 1 + P 2 π J ( P , I ) } + a β 2 π τ b 1 Q ( b , P , I ) .
S δ L ( ω ) ω 1.2 nm 2 Hz ,
Γ n + 1 = Γ 0 + K PZT β P { ε n + I m = 0 n ε m } + β δ L n ,
ε n = Γ n + δ Γ n Γ 0 .
Γ n + 1 σ Γ n P Γ n 1 = P I Γ 0 P { ( 1 + I ) δ Γ n δ Γ n 1 } + β ( δ L n δ L n 1 ) ,
P = β K PZT P ,
σ = 1 P ( 1 + I ) ;
Γ ( z ) = P I z 2 ( z 1 ) ( z 2 σ z P ) Γ 0 ,
+ P [ 1 ( 1 + I ) z ] z 2 σ z P δ Γ ( z ) ,
+ β ( z 1 ) z 2 σ z P δ L ( z ) .
z 2 σ z P = 0
0 < P < 1 ,
0 < I < 2 P 2.
lim n E { Γ n } = lim z 1 ( 1 z 1 ) Γ ( z ) ,
= Γ 0 ,
σ Γ 2 = 1 2 π π π S Γ D ( ω ) d ω ,
S δ Γ D ( ω ) = Γ 0 τ .
H δ Γ ( z ) = P [ 1 ( 1 + I ) z ] z 2 σ z P ,
S Γ ( 1 ) ( ω ) = S δ Γ D ( ω ) | H δ Γ ( e i ω ) | 2 .
H δ L ( z ) = β ( z 1 ) z 2 σ z P ,
S Γ ( 2 ) ( ω ) = S δ L D ( ω ) | H δ L ( e i ω ) | 2 .
S δ L D ( ω ) = 1 τ n = sinc 2 ( ω + 2 π n 2 ) S δ L ( ω + 2 π n τ ) ,
S δ L ( ω ) = a | ω | b
σ Γ 2 = 1 π 0 π S δ Γ D ( ω ) + S Γ ( 1 ) ( ω ) + S Γ ( 2 ) ( ω ) d ω = Γ 0 τ { 1 + P 2 π J ( P , I ) } + a β 2 π τ b 1 Q ( b , P , I ) ,
J ( P , I ) = 0 π 2 + 2 I + I 2 2 ( 1 + I ) cos ( ω ) 1 + P 2 + σ 2 2 σ ( 1 + P ) cos ( ω ) + 2 P cos ( 2 ω ) d ω ,
Q ( b , P , I ) = 0 π 2 [ 1 cos ( ω ) ] sinc 2 ( ω 2 ) ω b 1 + P 2 + σ 2 2 σ ( 1 P ) cos ( ω ) 2 P cos ( 2 ω ) d ω .

Metrics