Abstract

An analytical description connected with a numerical calculation of the propagation of self-trapped laser beams in a polymethylmethacrylate matrix containing phenanthrenequinone molecules is presented. A theoretical model for the spatial distribution of boundary optical waves is developed in dependence on characteristic beam parameters.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. (Bellingham) 32, 1839-1847 (1993).
    [CrossRef]
  2. K. Curtis and D. Psaltis, “Characterization of the DuPont photopolymers for three-dimensional holographic storage,” Appl. Opt. 33, 5396-5399 (1994).
    [CrossRef] [PubMed]
  3. S. Piazzolla and B. K. Jenkins, “First-harmonic diffusion model for holographic grating formation in photopolymers,” J. Opt. Soc. Am. B 17, 1147-1157 (2000).
    [CrossRef]
  4. A. Sato, M. Stepanovic, and R. K. Kostuk, “Holographic edge-illuminated polymer Bragg gratings for dense wavelength division optical filters at 1550 nm,” Appl. Opt. 42, 778-784 (2003).
    [CrossRef] [PubMed]
  5. A. Sato and R. K. Kostuk, “Holographic grating for dense wavelength division optical filters at 1550 nm using phenanthrenequinone doped poly(methyl methacrylate),” Proc. SPIE 5216, 44-52 (2003).
    [CrossRef]
  6. B. L. Booth, “Photopolymer material for holography,” Appl. Opt. 14, 593-601 (1975).
    [CrossRef] [PubMed]
  7. U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in glass-like polymer material,” Appl. Phys. B 82, 299-302 (2006).
    [CrossRef]
  8. L. P. Krul, V. Yu. Matusevich, D. Hoff, R. Kowarschik, Yu. I. Matusevich, G. V. Butovskaya, and E. A. Murashko, “Modified polymethylmethacrylate as a base for optical recording media,” Opt. Express 15, 8543-8549 (2007).
    [CrossRef] [PubMed]
  9. U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenantrenequinone-PMMA media,” J. Opt. A, Pure Appl. Opt. 10, 085302 (2008).
    [CrossRef]
  10. V. Matusevich, A. Matusevich, R. Kowarschik, Yu. I. Matusevich, and L. P. Krul, “Holographic volume absorption grating in glass-like polymer recording material,” Opt. Express 16, 1552-1558 (2008).
    [CrossRef] [PubMed]
  11. E. Tolstik, O. Kashin, A. Matusevich, V. Matusevich, and R. Kowarschik, “Non-local response in the glass-like polymer storage materials based on poly(methylmethacrylate) with distributed phenantrenequinone,” Opt. Express 16, 11253-11258 (2008).
    [CrossRef] [PubMed]
  12. E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Yu. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784-786 (2009).
    [CrossRef]
  13. A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21, 24-26 (1996).
    [CrossRef] [PubMed]
  14. T. M. Monro, L. Poladian, and C. Sterke, “Numerically efficient modal decomposition approach to self-writing processes,” J. Opt. Soc. Am. A 14, 2180-2189 (1997).
    [CrossRef]
  15. A. Yariv and P. Yen, Optical Waves in Crystals, Wiley Series on Pure and Applied Optics (Wiley, 1984).
  16. E. Tomita, N. Kawahara, A. Nishiyama, and M. Shigenaga, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: application to an actual engine,” Meas. Sci. Technol. 14, 1357-1363 (2003).
    [CrossRef]
  17. G. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  18. R. Taha and M. J. Ablowitz, “Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation,” J. Comput. Phys. 55, 203-230 (1984).
    [CrossRef]
  19. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108-1114 (2000).
    [CrossRef]
  20. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
  21. D. N. Marmysh, U. V. Mahilny, and E. A. Tolstik, “Transformation of the holographic gratings in polymeric layers containing phenanthrenequinone,” Izv. Ross. Akad. Nauk, Ser. Fiz. 70, 1796-1799 (2006) [D. N. Marmysh, U. V. Mahilny, and E. A. Tolstik, Bull. Russ. Acad. Sci. Phys. 70, 1796-1799 (2006) (in Russian)].
  22. D. Kühlke, Optik: Grundlagen und Anwendungen (Freiburger Graphische Betriebe, 1998).

2009 (1)

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Yu. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784-786 (2009).
[CrossRef]

2008 (3)

2007 (1)

2006 (2)

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in glass-like polymer material,” Appl. Phys. B 82, 299-302 (2006).
[CrossRef]

D. N. Marmysh, U. V. Mahilny, and E. A. Tolstik, “Transformation of the holographic gratings in polymeric layers containing phenanthrenequinone,” Izv. Ross. Akad. Nauk, Ser. Fiz. 70, 1796-1799 (2006) [D. N. Marmysh, U. V. Mahilny, and E. A. Tolstik, Bull. Russ. Acad. Sci. Phys. 70, 1796-1799 (2006) (in Russian)].

D. N. Marmysh, U. V. Mahilny, and E. A. Tolstik, “Transformation of the holographic gratings in polymeric layers containing phenanthrenequinone,” Izv. Ross. Akad. Nauk, Ser. Fiz. 70, 1796-1799 (2006) [D. N. Marmysh, U. V. Mahilny, and E. A. Tolstik, Bull. Russ. Acad. Sci. Phys. 70, 1796-1799 (2006) (in Russian)].

2003 (3)

A. Sato, M. Stepanovic, and R. K. Kostuk, “Holographic edge-illuminated polymer Bragg gratings for dense wavelength division optical filters at 1550 nm,” Appl. Opt. 42, 778-784 (2003).
[CrossRef] [PubMed]

A. Sato and R. K. Kostuk, “Holographic grating for dense wavelength division optical filters at 1550 nm using phenanthrenequinone doped poly(methyl methacrylate),” Proc. SPIE 5216, 44-52 (2003).
[CrossRef]

E. Tomita, N. Kawahara, A. Nishiyama, and M. Shigenaga, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: application to an actual engine,” Meas. Sci. Technol. 14, 1357-1363 (2003).
[CrossRef]

2000 (2)

1997 (1)

1996 (1)

1994 (1)

1993 (1)

U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. (Bellingham) 32, 1839-1847 (1993).
[CrossRef]

1984 (1)

R. Taha and M. J. Ablowitz, “Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation,” J. Comput. Phys. 55, 203-230 (1984).
[CrossRef]

1975 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Ablowitz, M. J.

R. Taha and M. J. Ablowitz, “Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation,” J. Comput. Phys. 55, 203-230 (1984).
[CrossRef]

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Booth, B. L.

Butovskaya, G. V.

Caulfield, H. J.

U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. (Bellingham) 32, 1839-1847 (1993).
[CrossRef]

Curtis, K.

Hoff, D.

Jenkins, B. K.

Kashin, O.

Kawahara, N.

E. Tomita, N. Kawahara, A. Nishiyama, and M. Shigenaga, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: application to an actual engine,” Meas. Sci. Technol. 14, 1357-1363 (2003).
[CrossRef]

Kewitsch, A. S.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Kostuk, R. K.

A. Sato and R. K. Kostuk, “Holographic grating for dense wavelength division optical filters at 1550 nm using phenanthrenequinone doped poly(methyl methacrylate),” Proc. SPIE 5216, 44-52 (2003).
[CrossRef]

A. Sato, M. Stepanovic, and R. K. Kostuk, “Holographic edge-illuminated polymer Bragg gratings for dense wavelength division optical filters at 1550 nm,” Appl. Opt. 42, 778-784 (2003).
[CrossRef] [PubMed]

Kowarschik, R.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Yu. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784-786 (2009).
[CrossRef]

V. Matusevich, A. Matusevich, R. Kowarschik, Yu. I. Matusevich, and L. P. Krul, “Holographic volume absorption grating in glass-like polymer recording material,” Opt. Express 16, 1552-1558 (2008).
[CrossRef] [PubMed]

E. Tolstik, O. Kashin, A. Matusevich, V. Matusevich, and R. Kowarschik, “Non-local response in the glass-like polymer storage materials based on poly(methylmethacrylate) with distributed phenantrenequinone,” Opt. Express 16, 11253-11258 (2008).
[CrossRef] [PubMed]

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenantrenequinone-PMMA media,” J. Opt. A, Pure Appl. Opt. 10, 085302 (2008).
[CrossRef]

L. P. Krul, V. Yu. Matusevich, D. Hoff, R. Kowarschik, Yu. I. Matusevich, G. V. Butovskaya, and E. A. Murashko, “Modified polymethylmethacrylate as a base for optical recording media,” Opt. Express 15, 8543-8549 (2007).
[CrossRef] [PubMed]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in glass-like polymer material,” Appl. Phys. B 82, 299-302 (2006).
[CrossRef]

Krul, L. P.

Kühlke, D.

D. Kühlke, Optik: Grundlagen und Anwendungen (Freiburger Graphische Betriebe, 1998).

Lawrence, J. R.

Mahilny, U. V.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Yu. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784-786 (2009).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenantrenequinone-PMMA media,” J. Opt. A, Pure Appl. Opt. 10, 085302 (2008).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in glass-like polymer material,” Appl. Phys. B 82, 299-302 (2006).
[CrossRef]

D. N. Marmysh, U. V. Mahilny, and E. A. Tolstik, “Transformation of the holographic gratings in polymeric layers containing phenanthrenequinone,” Izv. Ross. Akad. Nauk, Ser. Fiz. 70, 1796-1799 (2006) [D. N. Marmysh, U. V. Mahilny, and E. A. Tolstik, Bull. Russ. Acad. Sci. Phys. 70, 1796-1799 (2006) (in Russian)].

D. N. Marmysh, U. V. Mahilny, and E. A. Tolstik, “Transformation of the holographic gratings in polymeric layers containing phenanthrenequinone,” Izv. Ross. Akad. Nauk, Ser. Fiz. 70, 1796-1799 (2006) [D. N. Marmysh, U. V. Mahilny, and E. A. Tolstik, Bull. Russ. Acad. Sci. Phys. 70, 1796-1799 (2006) (in Russian)].

Marmysh, D. N.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Yu. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784-786 (2009).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenantrenequinone-PMMA media,” J. Opt. A, Pure Appl. Opt. 10, 085302 (2008).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in glass-like polymer material,” Appl. Phys. B 82, 299-302 (2006).
[CrossRef]

D. N. Marmysh, U. V. Mahilny, and E. A. Tolstik, “Transformation of the holographic gratings in polymeric layers containing phenanthrenequinone,” Izv. Ross. Akad. Nauk, Ser. Fiz. 70, 1796-1799 (2006) [D. N. Marmysh, U. V. Mahilny, and E. A. Tolstik, Bull. Russ. Acad. Sci. Phys. 70, 1796-1799 (2006) (in Russian)].

D. N. Marmysh, U. V. Mahilny, and E. A. Tolstik, “Transformation of the holographic gratings in polymeric layers containing phenanthrenequinone,” Izv. Ross. Akad. Nauk, Ser. Fiz. 70, 1796-1799 (2006) [D. N. Marmysh, U. V. Mahilny, and E. A. Tolstik, Bull. Russ. Acad. Sci. Phys. 70, 1796-1799 (2006) (in Russian)].

Matusevich, A.

Matusevich, V.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Yu. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784-786 (2009).
[CrossRef]

V. Matusevich, A. Matusevich, R. Kowarschik, Yu. I. Matusevich, and L. P. Krul, “Holographic volume absorption grating in glass-like polymer recording material,” Opt. Express 16, 1552-1558 (2008).
[CrossRef] [PubMed]

E. Tolstik, O. Kashin, A. Matusevich, V. Matusevich, and R. Kowarschik, “Non-local response in the glass-like polymer storage materials based on poly(methylmethacrylate) with distributed phenantrenequinone,” Opt. Express 16, 11253-11258 (2008).
[CrossRef] [PubMed]

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenantrenequinone-PMMA media,” J. Opt. A, Pure Appl. Opt. 10, 085302 (2008).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in glass-like polymer material,” Appl. Phys. B 82, 299-302 (2006).
[CrossRef]

Matusevich, V. Yu.

Matusevich, Yu. I.

Mirsalehi, M. M.

U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. (Bellingham) 32, 1839-1847 (1993).
[CrossRef]

Monro, T. M.

Murashko, E. A.

Nishiyama, A.

E. Tomita, N. Kawahara, A. Nishiyama, and M. Shigenaga, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: application to an actual engine,” Meas. Sci. Technol. 14, 1357-1363 (2003).
[CrossRef]

Piazzolla, S.

Poladian, L.

Psaltis, D.

Rhee, U. S.

U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. (Bellingham) 32, 1839-1847 (1993).
[CrossRef]

Sato, A.

A. Sato, M. Stepanovic, and R. K. Kostuk, “Holographic edge-illuminated polymer Bragg gratings for dense wavelength division optical filters at 1550 nm,” Appl. Opt. 42, 778-784 (2003).
[CrossRef] [PubMed]

A. Sato and R. K. Kostuk, “Holographic grating for dense wavelength division optical filters at 1550 nm using phenanthrenequinone doped poly(methyl methacrylate),” Proc. SPIE 5216, 44-52 (2003).
[CrossRef]

Shamir, J.

U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. (Bellingham) 32, 1839-1847 (1993).
[CrossRef]

Sheridan, J. T.

Shigenaga, M.

E. Tomita, N. Kawahara, A. Nishiyama, and M. Shigenaga, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: application to an actual engine,” Meas. Sci. Technol. 14, 1357-1363 (2003).
[CrossRef]

Stankevich, A. I.

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in glass-like polymer material,” Appl. Phys. B 82, 299-302 (2006).
[CrossRef]

Stepanovic, M.

Sterke, C.

Taha, R.

R. Taha and M. J. Ablowitz, “Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation,” J. Comput. Phys. 55, 203-230 (1984).
[CrossRef]

Tolstik, A. L.

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenantrenequinone-PMMA media,” J. Opt. A, Pure Appl. Opt. 10, 085302 (2008).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in glass-like polymer material,” Appl. Phys. B 82, 299-302 (2006).
[CrossRef]

Tolstik, E.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Yu. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784-786 (2009).
[CrossRef]

E. Tolstik, O. Kashin, A. Matusevich, V. Matusevich, and R. Kowarschik, “Non-local response in the glass-like polymer storage materials based on poly(methylmethacrylate) with distributed phenantrenequinone,” Opt. Express 16, 11253-11258 (2008).
[CrossRef] [PubMed]

Tolstik, E. A.

D. N. Marmysh, U. V. Mahilny, and E. A. Tolstik, “Transformation of the holographic gratings in polymeric layers containing phenanthrenequinone,” Izv. Ross. Akad. Nauk, Ser. Fiz. 70, 1796-1799 (2006) [D. N. Marmysh, U. V. Mahilny, and E. A. Tolstik, Bull. Russ. Acad. Sci. Phys. 70, 1796-1799 (2006) (in Russian)].

D. N. Marmysh, U. V. Mahilny, and E. A. Tolstik, “Transformation of the holographic gratings in polymeric layers containing phenanthrenequinone,” Izv. Ross. Akad. Nauk, Ser. Fiz. 70, 1796-1799 (2006) [D. N. Marmysh, U. V. Mahilny, and E. A. Tolstik, Bull. Russ. Acad. Sci. Phys. 70, 1796-1799 (2006) (in Russian)].

Tomita, E.

E. Tomita, N. Kawahara, A. Nishiyama, and M. Shigenaga, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: application to an actual engine,” Meas. Sci. Technol. 14, 1357-1363 (2003).
[CrossRef]

Vikram, C. S.

U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. (Bellingham) 32, 1839-1847 (1993).
[CrossRef]

Winkler, A.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Yu. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784-786 (2009).
[CrossRef]

Yariv, A.

Yen, P.

A. Yariv and P. Yen, Optical Waves in Crystals, Wiley Series on Pure and Applied Optics (Wiley, 1984).

Appl. Opt. (3)

Appl. Phys. B (1)

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in glass-like polymer material,” Appl. Phys. B 82, 299-302 (2006).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

IEEE Photon. Technol. Lett. (1)

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Yu. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photon. Technol. Lett. 21, 784-786 (2009).
[CrossRef]

Izv. Ross. Akad. Nauk, Ser. Fiz. (1)

D. N. Marmysh, U. V. Mahilny, and E. A. Tolstik, “Transformation of the holographic gratings in polymeric layers containing phenanthrenequinone,” Izv. Ross. Akad. Nauk, Ser. Fiz. 70, 1796-1799 (2006) [D. N. Marmysh, U. V. Mahilny, and E. A. Tolstik, Bull. Russ. Acad. Sci. Phys. 70, 1796-1799 (2006) (in Russian)].

J. Comput. Phys. (1)

R. Taha and M. J. Ablowitz, “Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation,” J. Comput. Phys. 55, 203-230 (1984).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenantrenequinone-PMMA media,” J. Opt. A, Pure Appl. Opt. 10, 085302 (2008).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

E. Tomita, N. Kawahara, A. Nishiyama, and M. Shigenaga, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: application to an actual engine,” Meas. Sci. Technol. 14, 1357-1363 (2003).
[CrossRef]

Opt. Eng. (Bellingham) (1)

U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. (Bellingham) 32, 1839-1847 (1993).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (1)

A. Sato and R. K. Kostuk, “Holographic grating for dense wavelength division optical filters at 1550 nm using phenanthrenequinone doped poly(methyl methacrylate),” Proc. SPIE 5216, 44-52 (2003).
[CrossRef]

Other (3)

A. Yariv and P. Yen, Optical Waves in Crystals, Wiley Series on Pure and Applied Optics (Wiley, 1984).

G. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

D. Kühlke, Optik: Grundlagen und Anwendungen (Freiburger Graphische Betriebe, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Propagation of a laser wave in air; (b) propagation of a self-trapped laser beam in a photopolymer.

Fig. 2
Fig. 2

Formation of the self-trapping in a PQ + PMMA polymeric layer in dependence on the recording time (from 30 to 240 s).

Fig. 3
Fig. 3

Refractive index modulation ( Δ n ) in the dependence on illumination time ( t = 30 , 90, and 180 s).

Fig. 4
Fig. 4

Dependence of the maximum value of the amplitude modulation of (a) the refractive index and (b) the output beam radius on the recording time.

Fig. 5
Fig. 5

(a) Evolution of the output beam radius in dependence on the layer length for different illumination times and (b) analogical dependence for the recording time t = 120   s .

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

2 E + K ̂ 2 E = 0 ,
E = 1 2 A ( x , z ) exp ( i k z ) + c .c . ,
2 A x 2 2 i k A z A k 2 + K 2 A i k α A = 0 ,
A z = i 2 k 2 A x 2 + i 2 k A ( k 2 K 2 ) α A 2 .
A = A L + A N L .
A L z = i 2 k 2 A x 2 ,
A N L z = i 2 k A ( k 2 k 0 2 n 2 ( x , z , t ) ) α A 2 .
A N L i = A N L 0 i   exp ( ( i 2 k ( k 2 k 0 2 n 2 ( x , z , t ) ) α 2 ) Δ z ) ,     i = 1 , 2 , ,
A L ( z , x ) = A L ( z , ω x ) exp ( 2 π i ω x x ) d ω x ,
A L i = A L 0 i   exp ( 2 i π 2 ω x 2 Δ z k ) .
I = I 0   exp ( x 2 x 0 2 ) ,
C ( x , z , t ) t = D ( x , t ) [ 2 x 2 C ( x , z , t ) + 2 z 2 C ( x , z , t ) ] ε I ( x , z ) C ( x , z , t ) ,
D ( x , t ) = D 0 ( 1 exp ( l C 0 N ( x , z , t ) ) ) ,
C L ( x , z , t ) t = D ( x , t ) [ 2 x 2 C ( x , z , t ) + 2 z 2 C ( x , z , t ) ] ,
C N L ( x , z , t ) t = ε I ( x , z ) C ( x , z , t ) .
C N L = C 0   exp ( ε I ( x , z ) Δ t ) ,
C L = C 0   exp ( 4 π D ( ω x 2 + ω z 2 ) Δ t ) ,
Δ C = C C 0 .
N ( x , z , t ) t = ε I C ( x , z , t ) .
Δ n = ( n 2 + 2 ) 2 6 n i R i Δ c i ,

Metrics