Abstract

We present a method to fabricate fiber Bragg gratings with adjustable refractive index contrast by using the standard phase mask technique. A theoretical analysis of the diffracted field from the phase mask is performed by considering the effect of the spatial coherence of the incident UV beam. The numerical results show that the grating index contrast decreases as the separation between the fiber and the phase mask increases. Strong gratings with various index contrasts have been inscribed in hydrogen-loaded single mode fibers at different writing distances, and the measured index contrast values are in good agreement with the simulation results. Furthermore, thermal decay tests on the gratings demonstrate that the thermal stability of the grating reflectivity is improved for those gratings fabricated at larger separations between the fiber and the phase mask. These results suggest a one-step process to fabricate gratings with an enhanced thermal stability.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73-80 (1994).
    [CrossRef]
  2. S. Kannan, J. Guo, and P. J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478-1483 (1997).
    [CrossRef]
  3. S. Baker, H. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470-1477 (1997).
    [CrossRef]
  4. S. Ishikawa, A. Inoue, M. Harumoto, T. Enomoto, and H. Kanamori, “Adequate aging condition for fiber Bragg grating based on simple power low model,” in Proceedings of the OFC (1998), pp. 183-184.
  5. J. Rathje, M. Kristensen, and J. E. Pederson, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88, 1050-1055 (2000).
    [CrossRef]
  6. N. K. Viswanathan and D. L. LaBrake, “Accelerated-aging studies of chirped Bragg gratings written in deuterium-loaded germano-silicate fibers,” J. Lightwave Technol. 22, 1990-2000 (2004).
    [CrossRef]
  7. E. Salik, D. S. Starodubov, V. Grubsky, and J. Feinberg, “Thermally stable gratings in optical fibers without temperature annealing,” in Proceedings of the OFC (1999), pp. 56-58.
  8. Q. Wang, A. Hidayat, P. Niay, and M. Douay, “Influence of blanket postexposure on the thermal stability of the spectral characteristics of gratings written in a telecommunication fiber using light at 193 nm,” J. Lightwave Technol. 18, 1078-1083 (2000).
    [CrossRef]
  9. M. Aslund and J. Canning, “Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber,” Opt. Lett. 25, 692-694 (2000).
    [CrossRef]
  10. L. Xiong and J. Albert, “Thermal stability of excimer laser-written fiber Bragg gratings as a function of fiber/phase mask distance,” Proc. SPIE 6796, 67961B (2007).
    [CrossRef]
  11. J. Mills, C. J. Hillman, B. Blott, and W. Brocklesby, “Imaging of free-space interference patterns used to manufacture fiber Bragg gratings,” Appl. Opt. 39, 6128-6135 (2000).
    [CrossRef]
  12. D. Park and M. Kim, “Simple analysis of the energy density distribution of the diffracted ultraviolet beam from a fiber Bragg grating phase mask,” Opt. Lett. 29, 1849-1851 (2004).
    [CrossRef] [PubMed]
  13. Z. Hegedus, “Contact printing of Bragg gratings in optical fibers: rigorous diffraction analysis,” Appl. Opt. 36, 247-252 (1997).
    [CrossRef] [PubMed]
  14. P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327-334 (1995).
    [CrossRef]
  15. T. Kajava, A. Hakola, H. Elfstrom, J. Simonen, P. Paakkonen, and J. Turunen, “Flat-top profile of an excimer-laser beam generated using beam-splitter gratings,” Opt. Commun. 268, 289-293 (2006).
    [CrossRef]
  16. Y. Cai and S. He, “Partially coherent flattened Gaussian beam and its paraxial propagation properties,” J. Opt. Soc. Am. A 23, 2623-2628 (2006).
    [CrossRef]
  17. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  18. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

2007 (1)

L. Xiong and J. Albert, “Thermal stability of excimer laser-written fiber Bragg gratings as a function of fiber/phase mask distance,” Proc. SPIE 6796, 67961B (2007).
[CrossRef]

2006 (2)

T. Kajava, A. Hakola, H. Elfstrom, J. Simonen, P. Paakkonen, and J. Turunen, “Flat-top profile of an excimer-laser beam generated using beam-splitter gratings,” Opt. Commun. 268, 289-293 (2006).
[CrossRef]

Y. Cai and S. He, “Partially coherent flattened Gaussian beam and its paraxial propagation properties,” J. Opt. Soc. Am. A 23, 2623-2628 (2006).
[CrossRef]

2004 (2)

2000 (4)

1997 (3)

S. Kannan, J. Guo, and P. J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478-1483 (1997).
[CrossRef]

S. Baker, H. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470-1477 (1997).
[CrossRef]

Z. Hegedus, “Contact printing of Bragg gratings in optical fibers: rigorous diffraction analysis,” Appl. Opt. 36, 247-252 (1997).
[CrossRef] [PubMed]

1995 (1)

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327-334 (1995).
[CrossRef]

1994 (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

Albert, J.

L. Xiong and J. Albert, “Thermal stability of excimer laser-written fiber Bragg gratings as a function of fiber/phase mask distance,” Proc. SPIE 6796, 67961B (2007).
[CrossRef]

Aslund, M.

Baker, S.

S. Baker, H. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470-1477 (1997).
[CrossRef]

Baker, V.

S. Baker, H. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470-1477 (1997).
[CrossRef]

Blott, B.

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

Brocklesby, W.

Cai, Y.

Canning, J.

Douay, M.

Dyer, P. E.

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327-334 (1995).
[CrossRef]

Elfstrom, H.

T. Kajava, A. Hakola, H. Elfstrom, J. Simonen, P. Paakkonen, and J. Turunen, “Flat-top profile of an excimer-laser beam generated using beam-splitter gratings,” Opt. Commun. 268, 289-293 (2006).
[CrossRef]

Enomoto, T.

S. Ishikawa, A. Inoue, M. Harumoto, T. Enomoto, and H. Kanamori, “Adequate aging condition for fiber Bragg grating based on simple power low model,” in Proceedings of the OFC (1998), pp. 183-184.

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

Farley, R. J.

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327-334 (1995).
[CrossRef]

Feinberg, J.

E. Salik, D. S. Starodubov, V. Grubsky, and J. Feinberg, “Thermally stable gratings in optical fibers without temperature annealing,” in Proceedings of the OFC (1999), pp. 56-58.

Giedl, R.

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327-334 (1995).
[CrossRef]

Goodchild, D.

S. Baker, H. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470-1477 (1997).
[CrossRef]

Grubsky, V.

E. Salik, D. S. Starodubov, V. Grubsky, and J. Feinberg, “Thermally stable gratings in optical fibers without temperature annealing,” in Proceedings of the OFC (1999), pp. 56-58.

Guo, J.

S. Kannan, J. Guo, and P. J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478-1483 (1997).
[CrossRef]

Hakola, A.

T. Kajava, A. Hakola, H. Elfstrom, J. Simonen, P. Paakkonen, and J. Turunen, “Flat-top profile of an excimer-laser beam generated using beam-splitter gratings,” Opt. Commun. 268, 289-293 (2006).
[CrossRef]

Harumoto, M.

S. Ishikawa, A. Inoue, M. Harumoto, T. Enomoto, and H. Kanamori, “Adequate aging condition for fiber Bragg grating based on simple power low model,” in Proceedings of the OFC (1998), pp. 183-184.

He, S.

Hegedus, Z.

Hidayat, A.

Hillman, C. J.

Inoue, A.

S. Ishikawa, A. Inoue, M. Harumoto, T. Enomoto, and H. Kanamori, “Adequate aging condition for fiber Bragg grating based on simple power low model,” in Proceedings of the OFC (1998), pp. 183-184.

Ishikawa, S.

S. Ishikawa, A. Inoue, M. Harumoto, T. Enomoto, and H. Kanamori, “Adequate aging condition for fiber Bragg grating based on simple power low model,” in Proceedings of the OFC (1998), pp. 183-184.

Kajava, T.

T. Kajava, A. Hakola, H. Elfstrom, J. Simonen, P. Paakkonen, and J. Turunen, “Flat-top profile of an excimer-laser beam generated using beam-splitter gratings,” Opt. Commun. 268, 289-293 (2006).
[CrossRef]

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Kanamori, H.

S. Ishikawa, A. Inoue, M. Harumoto, T. Enomoto, and H. Kanamori, “Adequate aging condition for fiber Bragg grating based on simple power low model,” in Proceedings of the OFC (1998), pp. 183-184.

Kannan, S.

S. Kannan, J. Guo, and P. J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478-1483 (1997).
[CrossRef]

Kim, M.

Kristensen, M.

J. Rathje, M. Kristensen, and J. E. Pederson, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88, 1050-1055 (2000).
[CrossRef]

LaBrake, D. L.

Lemaire, P. J.

S. Kannan, J. Guo, and P. J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478-1483 (1997).
[CrossRef]

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

Mills, J.

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

Niay, P.

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Paakkonen, P.

T. Kajava, A. Hakola, H. Elfstrom, J. Simonen, P. Paakkonen, and J. Turunen, “Flat-top profile of an excimer-laser beam generated using beam-splitter gratings,” Opt. Commun. 268, 289-293 (2006).
[CrossRef]

Park, D.

Pederson, J. E.

J. Rathje, M. Kristensen, and J. E. Pederson, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88, 1050-1055 (2000).
[CrossRef]

Rathje, J.

J. Rathje, M. Kristensen, and J. E. Pederson, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88, 1050-1055 (2000).
[CrossRef]

Rourke, H.

S. Baker, H. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470-1477 (1997).
[CrossRef]

Salik, E.

E. Salik, D. S. Starodubov, V. Grubsky, and J. Feinberg, “Thermally stable gratings in optical fibers without temperature annealing,” in Proceedings of the OFC (1999), pp. 56-58.

Simonen, J.

T. Kajava, A. Hakola, H. Elfstrom, J. Simonen, P. Paakkonen, and J. Turunen, “Flat-top profile of an excimer-laser beam generated using beam-splitter gratings,” Opt. Commun. 268, 289-293 (2006).
[CrossRef]

Starodubov, D. S.

E. Salik, D. S. Starodubov, V. Grubsky, and J. Feinberg, “Thermally stable gratings in optical fibers without temperature annealing,” in Proceedings of the OFC (1999), pp. 56-58.

Turunen, J.

T. Kajava, A. Hakola, H. Elfstrom, J. Simonen, P. Paakkonen, and J. Turunen, “Flat-top profile of an excimer-laser beam generated using beam-splitter gratings,” Opt. Commun. 268, 289-293 (2006).
[CrossRef]

Viswanathan, N. K.

Wang, Q.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

Xiong, L.

L. Xiong and J. Albert, “Thermal stability of excimer laser-written fiber Bragg gratings as a function of fiber/phase mask distance,” Proc. SPIE 6796, 67961B (2007).
[CrossRef]

Appl. Opt. (2)

J. Appl. Phys. (2)

J. Rathje, M. Kristensen, and J. E. Pederson, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88, 1050-1055 (2000).
[CrossRef]

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

J. Lightwave Technol. (4)

S. Kannan, J. Guo, and P. J. Lemaire, “Thermal stability analysis of UV-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478-1483 (1997).
[CrossRef]

S. Baker, H. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470-1477 (1997).
[CrossRef]

Q. Wang, A. Hidayat, P. Niay, and M. Douay, “Influence of blanket postexposure on the thermal stability of the spectral characteristics of gratings written in a telecommunication fiber using light at 193 nm,” J. Lightwave Technol. 18, 1078-1083 (2000).
[CrossRef]

N. K. Viswanathan and D. L. LaBrake, “Accelerated-aging studies of chirped Bragg gratings written in deuterium-loaded germano-silicate fibers,” J. Lightwave Technol. 22, 1990-2000 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327-334 (1995).
[CrossRef]

T. Kajava, A. Hakola, H. Elfstrom, J. Simonen, P. Paakkonen, and J. Turunen, “Flat-top profile of an excimer-laser beam generated using beam-splitter gratings,” Opt. Commun. 268, 289-293 (2006).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

L. Xiong and J. Albert, “Thermal stability of excimer laser-written fiber Bragg gratings as a function of fiber/phase mask distance,” Proc. SPIE 6796, 67961B (2007).
[CrossRef]

Other (4)

E. Salik, D. S. Starodubov, V. Grubsky, and J. Feinberg, “Thermally stable gratings in optical fibers without temperature annealing,” in Proceedings of the OFC (1999), pp. 56-58.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

S. Ishikawa, A. Inoue, M. Harumoto, T. Enomoto, and H. Kanamori, “Adequate aging condition for fiber Bragg grating based on simple power low model,” in Proceedings of the OFC (1998), pp. 183-184.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of FBG fabrication system.

Fig. 2
Fig. 2

Change in grating UV-induced index change versus the UV exposure time for gratings written at fiber core to phase mask distances of 162.5, 662.5, and 1062.5 μ m . The mean refractive index changes of gratings are represented by closed symbols, and the refractive index modulation amplitudes are represented by open symbols.

Fig. 3
Fig. 3

Geometry of the irradiation, showing the origin of the three beams that interfere at point ( x , z ) behind the phase mask.

Fig. 4
Fig. 4

Field intensity distribution behind the phase mask for a partially coherent incident beam with x and z axes parallel and normal to the phase mask surface.

Fig. 5
Fig. 5

2D field intensity distribution behind the phase mask at various writing distances from the phase mask: (a) ideal two-beam interference (used for comparison), (b) z = 152 172 μ m , (c) z = 652 672 μ m , and (d) z = 1052 1072 μ m .

Fig. 6
Fig. 6

Experimental FBG index contrast as a function of the distance between the phase mask and the fiber core (diamonds). The simulation (curve) is fitted to the experimental data by optimizing σ x .

Fig. 7
Fig. 7

Thermal decay of gratings as a function of annealing time at temperatures of (a) 300 ° C (the inset shows the thermal decay curves with a linear time scale), (b) 250 ° C , (c) 200 ° C .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( x , z ) = I 1 + I 1 + I 0 + 2 I 1 I 1 j ( P 1 , P 1 ) cos ( 2 k x 1 x ) + 2 I 1 I 0 j ( P 1 , P 0 ) cos [ k x 1 x + ( k z 1 k ) z ] + 2 I 1 I 0 j ( P 1 , P 0 ) cos [ k x 1 x + ( k z 1 k ) z ] ,
j ( P 1 , P 1 ) = exp [ ( x 1 x 1 ) 2 / 2 σ x 2 ] = exp [ ( 2 z   tan   θ ) 2 / 2 σ x 2 ] ,
j ( P 1 , P 0 ) = j ( P 1 , P 0 ) = exp [ ( x 1 x 0 ) 2 / 2 σ x 2 ] = exp [ ( z   tan   θ ) 2 / 2 σ x 2 ] ,

Metrics