Abstract

We propose a two-step quantum key distribution protocol using frequency and polarization hyperentangled photons. In this protocol, key information is encoded by unitary operations on the hyperentangled photons, and the hyperentangled photons are sent in two steps. We also designed a state measurement device and analyzed the security of the protocol.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, 1984), pp. 175-179.
  2. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121-3124 (1992).
    [CrossRef] [PubMed]
  3. D. Bruß, “Optimal eavesdropping in quantum cryptography with six states,” Phys. Rev. Lett. 81, 3018-3021 (1998).
    [CrossRef]
  4. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-195 (2002).
    [CrossRef]
  5. Y. S. Zhang, C. F. Li, and G. C. Guo, “Quantum key distribution via quantum encryption,” Phys. Rev. A 64, 024302 (2001).
    [CrossRef]
  6. P. Xue, C. F. Li, and G. C. Guo, “Conditional efficient multiuser quantum cryptography network,” Phys. Rev. A 65, 022317 (2002).
    [CrossRef]
  7. H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050-2056 (1999).
    [CrossRef] [PubMed]
  8. A. K. Ekert, “Quantum cryptography based on Bell's theorem,” Phys. Rev. Lett. 67, 661-663 (1991).
    [CrossRef] [PubMed]
  9. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell's theorem,” Phys. Rev. Lett. 68, 557-559 (1992).
    [CrossRef] [PubMed]
  10. F. G. Deng and G. L. Long, “Controlled order rearrangement encryption for quantum key distribution,” Phys. Rev. A 68, 042315 (2003).
    [CrossRef]
  11. W. Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
    [CrossRef] [PubMed]
  12. H. K. Lo, X. F. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
    [CrossRef] [PubMed]
  13. X. F. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
    [CrossRef]
  14. Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).
    [CrossRef] [PubMed]
  15. X. B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
    [CrossRef] [PubMed]
  16. G. L. Long, F. G. Deng, C. Wang, X. H. Li, K. Wen, and W. Y. Wang, “Quantum secure direct communication and deterministic secure quantum communication,” Fron. Phys. China 2, 251272 (2007).
    [CrossRef]
  17. W. Y. Wang, C. Wang, G. Y. Zhang, and G. L. Long, “Arbitrarily long distance quantum communication using inspection and power insertion,” Chin. Sci. Bull. 54, 158-162 (2009).
    [CrossRef]
  18. R. Prevedel, M. Aspelmeyer, C. Brukner, A. Zeilinger, and T. D. Jennewein, “Photonic entanglement as a resource in quantum computation and quantum communication,” J. Opt. Soc. Am. B 24, 241-248 (2007).
  19. G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
    [CrossRef]
  20. F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
    [CrossRef]
  21. Q. Y. Cai and B. W. Li, “Deterministic secure communication without using entanglement,” Chin. Phys. Lett. 21, 601-603 (2004).
    [CrossRef]
  22. F. L. Yan and X. Zhang, “A scheme for secure direct communication using EPR pairs and teleportation,” Euro. Phys. J. B 41, 75-78 (2004).
    [CrossRef]
  23. Z. J. Zhang, Z. X. Man, and Y. Li, “Improving Wójcik's eavesdropping attack on the ping-pong protocol,” Phys. Lett. A 333, 46-50 (2004).
    [CrossRef]
  24. Z. X. Man, Z. J. Zhang, and Y. Li, “Quantum dialogue revisited,” Chin. Phys. Lett. 22, 22-24 (2005).
    [CrossRef]
  25. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
    [CrossRef]
  26. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881-2884 (1992).
    [CrossRef] [PubMed]
  27. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656-4659 (1996).
    [CrossRef] [PubMed]
  28. S. L. Braunstein and H. J. Kimble, “Dense coding for continuous variables,” Phys. Rev. A 61, 042302 (2000).
    [CrossRef]
  29. J. Zhang and K. C. Peng, “Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state,” Phys. Rev. A 62, 064302 (2000).
    [CrossRef]
  30. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337-4341 (1995).
    [CrossRef] [PubMed]
  31. M. Ravaro, Y. Seurin, S. Ducci, G. Leo, V. Berger, A. De Rossi, and G. Assanto, “Nonlinear AlGaAs waveguide for the generation of counterpropagating twin photons in the telecom range,” J. Appl. Phys. 98, 063103 (2005).
    [CrossRef]
  32. S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
    [CrossRef]
  33. M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
    [CrossRef]
  34. L. Aolita and S. P. Walborn, “Quantum communication without alignment using multiple-qubit single-photon states,” Phys. Rev. Lett. 98, 100501 (2007).
    [CrossRef] [PubMed]
  35. L. Xiao, C. Wang, W. Zhang, Y. D. Huang, J. D. Peng, and G. L. Long, “Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs,” Phys. Rev. A 77, 042315 (2008).
    [CrossRef]
  36. H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fiber,” New J. Phys. 7, 232 (2005).
    [CrossRef]
  37. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
    [CrossRef]
  38. Y. H. Kim, S. P. Kulik, and Y. H. Shih, “Quantum teleportation of a polarization state with a complete bell state measurement,” Phys. Rev. Lett. 86, 1370-1373 (2001).
    [CrossRef] [PubMed]
  39. G. L. Long, “The general quantum interference principle and the duality computer,” Commun. Theor. Phys. 45, 825-844 (2006).
    [CrossRef]
  40. Y. Liu, W. H. Zhang, C. L. Zhang, and G. L. Long, “Quantum computation with nonlinear optics,” Commun. Theor. Phys. 49, 107-110 (2008).
    [CrossRef]
  41. H. P. Yuen, “Quantum bit commitment and unconditional security,” arXiv:quant-ph/0207089v3 (2002).
  42. H. P. Yuen, “How unconditionally secure quantum bit commitment is possible,” arXiv:quant-ph/0109055v2 (2001).
  43. C. A. Fuchs, N. Gisin, R. B. Griffiths, C. S. Niu, and A. Peres, “Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy,” Phys. Rev. A 56, 1163-1172 (1997).
    [CrossRef]
  44. I. P. Degiovanni, I. Ruo Berchera, S. Castelletto, and M. L. Rastello, “Quantum dense key distribution,” Phys. Rev. A 69, 032310 (2004).
    [CrossRef]
  45. I. P. Degiovanni, I. Ruo Berchera, S. Castelletto, and M. L. Rastello, “Reply to “Comment on 'Quantum dense key distribution'”,” Phys. Rev. A 71, 016302 (2005).
    [CrossRef]
  46. F. G. Deng and G. L. Long, “Bidirectional quantum key distribution protocol with practical faint laser pulses,” Phys. Rev. A 70, 012311 (2004).
    [CrossRef]

2009 (1)

W. Y. Wang, C. Wang, G. Y. Zhang, and G. L. Long, “Arbitrarily long distance quantum communication using inspection and power insertion,” Chin. Sci. Bull. 54, 158-162 (2009).
[CrossRef]

2008 (2)

L. Xiao, C. Wang, W. Zhang, Y. D. Huang, J. D. Peng, and G. L. Long, “Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs,” Phys. Rev. A 77, 042315 (2008).
[CrossRef]

Y. Liu, W. H. Zhang, C. L. Zhang, and G. L. Long, “Quantum computation with nonlinear optics,” Commun. Theor. Phys. 49, 107-110 (2008).
[CrossRef]

2007 (3)

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

L. Aolita and S. P. Walborn, “Quantum communication without alignment using multiple-qubit single-photon states,” Phys. Rev. Lett. 98, 100501 (2007).
[CrossRef] [PubMed]

G. L. Long, F. G. Deng, C. Wang, X. H. Li, K. Wen, and W. Y. Wang, “Quantum secure direct communication and deterministic secure quantum communication,” Fron. Phys. China 2, 251272 (2007).
[CrossRef]

2006 (3)

Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[CrossRef]

G. L. Long, “The general quantum interference principle and the duality computer,” Commun. Theor. Phys. 45, 825-844 (2006).
[CrossRef]

2005 (8)

I. P. Degiovanni, I. Ruo Berchera, S. Castelletto, and M. L. Rastello, “Reply to “Comment on 'Quantum dense key distribution'”,” Phys. Rev. A 71, 016302 (2005).
[CrossRef]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fiber,” New J. Phys. 7, 232 (2005).
[CrossRef]

M. Ravaro, Y. Seurin, S. Ducci, G. Leo, V. Berger, A. De Rossi, and G. Assanto, “Nonlinear AlGaAs waveguide for the generation of counterpropagating twin photons in the telecom range,” J. Appl. Phys. 98, 063103 (2005).
[CrossRef]

Z. X. Man, Z. J. Zhang, and Y. Li, “Quantum dialogue revisited,” Chin. Phys. Lett. 22, 22-24 (2005).
[CrossRef]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[CrossRef]

X. B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[CrossRef] [PubMed]

H. K. Lo, X. F. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

X. F. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[CrossRef]

2004 (5)

Q. Y. Cai and B. W. Li, “Deterministic secure communication without using entanglement,” Chin. Phys. Lett. 21, 601-603 (2004).
[CrossRef]

F. L. Yan and X. Zhang, “A scheme for secure direct communication using EPR pairs and teleportation,” Euro. Phys. J. B 41, 75-78 (2004).
[CrossRef]

Z. J. Zhang, Z. X. Man, and Y. Li, “Improving Wójcik's eavesdropping attack on the ping-pong protocol,” Phys. Lett. A 333, 46-50 (2004).
[CrossRef]

F. G. Deng and G. L. Long, “Bidirectional quantum key distribution protocol with practical faint laser pulses,” Phys. Rev. A 70, 012311 (2004).
[CrossRef]

I. P. Degiovanni, I. Ruo Berchera, S. Castelletto, and M. L. Rastello, “Quantum dense key distribution,” Phys. Rev. A 69, 032310 (2004).
[CrossRef]

2003 (4)

F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
[CrossRef]

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[CrossRef]

F. G. Deng and G. L. Long, “Controlled order rearrangement encryption for quantum key distribution,” Phys. Rev. A 68, 042315 (2003).
[CrossRef]

W. Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
[CrossRef] [PubMed]

2002 (3)

P. Xue, C. F. Li, and G. C. Guo, “Conditional efficient multiuser quantum cryptography network,” Phys. Rev. A 65, 022317 (2002).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
[CrossRef]

2001 (2)

Y. S. Zhang, C. F. Li, and G. C. Guo, “Quantum key distribution via quantum encryption,” Phys. Rev. A 64, 024302 (2001).
[CrossRef]

Y. H. Kim, S. P. Kulik, and Y. H. Shih, “Quantum teleportation of a polarization state with a complete bell state measurement,” Phys. Rev. Lett. 86, 1370-1373 (2001).
[CrossRef] [PubMed]

2000 (2)

S. L. Braunstein and H. J. Kimble, “Dense coding for continuous variables,” Phys. Rev. A 61, 042302 (2000).
[CrossRef]

J. Zhang and K. C. Peng, “Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state,” Phys. Rev. A 62, 064302 (2000).
[CrossRef]

1999 (1)

H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050-2056 (1999).
[CrossRef] [PubMed]

1998 (1)

D. Bruß, “Optimal eavesdropping in quantum cryptography with six states,” Phys. Rev. Lett. 81, 3018-3021 (1998).
[CrossRef]

1997 (1)

C. A. Fuchs, N. Gisin, R. B. Griffiths, C. S. Niu, and A. Peres, “Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy,” Phys. Rev. A 56, 1163-1172 (1997).
[CrossRef]

1996 (1)

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656-4659 (1996).
[CrossRef] [PubMed]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

1992 (3)

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881-2884 (1992).
[CrossRef] [PubMed]

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121-3124 (1992).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell's theorem,” Phys. Rev. Lett. 68, 557-559 (1992).
[CrossRef] [PubMed]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell's theorem,” Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

Aolita, L.

L. Aolita and S. P. Walborn, “Quantum communication without alignment using multiple-qubit single-photon states,” Phys. Rev. Lett. 98, 100501 (2007).
[CrossRef] [PubMed]

Aspelmeyer, M.

R. Prevedel, M. Aspelmeyer, C. Brukner, A. Zeilinger, and T. D. Jennewein, “Photonic entanglement as a resource in quantum computation and quantum communication,” J. Opt. Soc. Am. B 24, 241-248 (2007).

Assanto, G.

M. Ravaro, Y. Seurin, S. Ducci, G. Leo, V. Berger, A. De Rossi, and G. Assanto, “Nonlinear AlGaAs waveguide for the generation of counterpropagating twin photons in the telecom range,” J. Appl. Phys. 98, 063103 (2005).
[CrossRef]

Barbieri, M.

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

Bennett, C. H.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881-2884 (1992).
[CrossRef] [PubMed]

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121-3124 (1992).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell's theorem,” Phys. Rev. Lett. 68, 557-559 (1992).
[CrossRef] [PubMed]

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, 1984), pp. 175-179.

Berger, V.

M. Ravaro, Y. Seurin, S. Ducci, G. Leo, V. Berger, A. De Rossi, and G. Assanto, “Nonlinear AlGaAs waveguide for the generation of counterpropagating twin photons in the telecom range,” J. Appl. Phys. 98, 063103 (2005).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell's theorem,” Phys. Rev. Lett. 68, 557-559 (1992).
[CrossRef] [PubMed]

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, 1984), pp. 175-179.

Braunstein, S. L.

S. L. Braunstein and H. J. Kimble, “Dense coding for continuous variables,” Phys. Rev. A 61, 042302 (2000).
[CrossRef]

Brukner, C.

R. Prevedel, M. Aspelmeyer, C. Brukner, A. Zeilinger, and T. D. Jennewein, “Photonic entanglement as a resource in quantum computation and quantum communication,” J. Opt. Soc. Am. B 24, 241-248 (2007).

Bruß, D.

D. Bruß, “Optimal eavesdropping in quantum cryptography with six states,” Phys. Rev. Lett. 81, 3018-3021 (1998).
[CrossRef]

Cai, Q. Y.

Q. Y. Cai and B. W. Li, “Deterministic secure communication without using entanglement,” Chin. Phys. Lett. 21, 601-603 (2004).
[CrossRef]

Castelletto, S.

I. P. Degiovanni, I. Ruo Berchera, S. Castelletto, and M. L. Rastello, “Reply to “Comment on 'Quantum dense key distribution'”,” Phys. Rev. A 71, 016302 (2005).
[CrossRef]

I. P. Degiovanni, I. Ruo Berchera, S. Castelletto, and M. L. Rastello, “Quantum dense key distribution,” Phys. Rev. A 69, 032310 (2004).
[CrossRef]

Chau, H. F.

H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050-2056 (1999).
[CrossRef] [PubMed]

Chen, K.

H. K. Lo, X. F. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

Cova, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[CrossRef]

De Martini, F.

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

De Rossi, A.

M. Ravaro, Y. Seurin, S. Ducci, G. Leo, V. Berger, A. De Rossi, and G. Assanto, “Nonlinear AlGaAs waveguide for the generation of counterpropagating twin photons in the telecom range,” J. Appl. Phys. 98, 063103 (2005).
[CrossRef]

Degiovanni, I. P.

I. P. Degiovanni, I. Ruo Berchera, S. Castelletto, and M. L. Rastello, “Reply to “Comment on 'Quantum dense key distribution'”,” Phys. Rev. A 71, 016302 (2005).
[CrossRef]

I. P. Degiovanni, I. Ruo Berchera, S. Castelletto, and M. L. Rastello, “Quantum dense key distribution,” Phys. Rev. A 69, 032310 (2004).
[CrossRef]

Deng, F. G.

G. L. Long, F. G. Deng, C. Wang, X. H. Li, K. Wen, and W. Y. Wang, “Quantum secure direct communication and deterministic secure quantum communication,” Fron. Phys. China 2, 251272 (2007).
[CrossRef]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[CrossRef]

F. G. Deng and G. L. Long, “Bidirectional quantum key distribution protocol with practical faint laser pulses,” Phys. Rev. A 70, 012311 (2004).
[CrossRef]

F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
[CrossRef]

F. G. Deng and G. L. Long, “Controlled order rearrangement encryption for quantum key distribution,” Phys. Rev. A 68, 042315 (2003).
[CrossRef]

Diamanti, E.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fiber,” New J. Phys. 7, 232 (2005).
[CrossRef]

Ducci, S.

M. Ravaro, Y. Seurin, S. Ducci, G. Leo, V. Berger, A. De Rossi, and G. Assanto, “Nonlinear AlGaAs waveguide for the generation of counterpropagating twin photons in the telecom range,” J. Appl. Phys. 98, 063103 (2005).
[CrossRef]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell's theorem,” Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

Fejer, M. M.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fiber,” New J. Phys. 7, 232 (2005).
[CrossRef]

Fuchs, C. A.

C. A. Fuchs, N. Gisin, R. B. Griffiths, C. S. Niu, and A. Peres, “Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy,” Phys. Rev. A 56, 1163-1172 (1997).
[CrossRef]

Gisin, N.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

C. A. Fuchs, N. Gisin, R. B. Griffiths, C. S. Niu, and A. Peres, “Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy,” Phys. Rev. A 56, 1163-1172 (1997).
[CrossRef]

Griffiths, R. B.

C. A. Fuchs, N. Gisin, R. B. Griffiths, C. S. Niu, and A. Peres, “Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy,” Phys. Rev. A 56, 1163-1172 (1997).
[CrossRef]

Guo, G. C.

P. Xue, C. F. Li, and G. C. Guo, “Conditional efficient multiuser quantum cryptography network,” Phys. Rev. A 65, 022317 (2002).
[CrossRef]

Y. S. Zhang, C. F. Li, and G. C. Guo, “Quantum key distribution via quantum encryption,” Phys. Rev. A 64, 024302 (2001).
[CrossRef]

Honjo, T.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fiber,” New J. Phys. 7, 232 (2005).
[CrossRef]

Huang, Y. D.

L. Xiao, C. Wang, W. Zhang, Y. D. Huang, J. D. Peng, and G. L. Long, “Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs,” Phys. Rev. A 77, 042315 (2008).
[CrossRef]

Hwang, W. Y.

W. Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
[CrossRef] [PubMed]

Inoue, K.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fiber,” New J. Phys. 7, 232 (2005).
[CrossRef]

Jennewein, T. D.

R. Prevedel, M. Aspelmeyer, C. Brukner, A. Zeilinger, and T. D. Jennewein, “Photonic entanglement as a resource in quantum computation and quantum communication,” J. Opt. Soc. Am. B 24, 241-248 (2007).

Kim, Y. H.

Y. H. Kim, S. P. Kulik, and Y. H. Shih, “Quantum teleportation of a polarization state with a complete bell state measurement,” Phys. Rev. Lett. 86, 1370-1373 (2001).
[CrossRef] [PubMed]

Kimble, H. J.

S. L. Braunstein and H. J. Kimble, “Dense coding for continuous variables,” Phys. Rev. A 61, 042302 (2000).
[CrossRef]

Krainer, L.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[CrossRef]

Kulik, S. P.

Y. H. Kim, S. P. Kulik, and Y. H. Shih, “Quantum teleportation of a polarization state with a complete bell state measurement,” Phys. Rev. Lett. 86, 1370-1373 (2001).
[CrossRef] [PubMed]

Kwiat, P. G.

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656-4659 (1996).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Langrock, C.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fiber,” New J. Phys. 7, 232 (2005).
[CrossRef]

Leo, G.

M. Ravaro, Y. Seurin, S. Ducci, G. Leo, V. Berger, A. De Rossi, and G. Assanto, “Nonlinear AlGaAs waveguide for the generation of counterpropagating twin photons in the telecom range,” J. Appl. Phys. 98, 063103 (2005).
[CrossRef]

Li, B. W.

Q. Y. Cai and B. W. Li, “Deterministic secure communication without using entanglement,” Chin. Phys. Lett. 21, 601-603 (2004).
[CrossRef]

Li, C. F.

P. Xue, C. F. Li, and G. C. Guo, “Conditional efficient multiuser quantum cryptography network,” Phys. Rev. A 65, 022317 (2002).
[CrossRef]

Y. S. Zhang, C. F. Li, and G. C. Guo, “Quantum key distribution via quantum encryption,” Phys. Rev. A 64, 024302 (2001).
[CrossRef]

Li, X. H.

G. L. Long, F. G. Deng, C. Wang, X. H. Li, K. Wen, and W. Y. Wang, “Quantum secure direct communication and deterministic secure quantum communication,” Fron. Phys. China 2, 251272 (2007).
[CrossRef]

Li, Y.

Z. X. Man, Z. J. Zhang, and Y. Li, “Quantum dialogue revisited,” Chin. Phys. Lett. 22, 22-24 (2005).
[CrossRef]

Z. J. Zhang, Z. X. Man, and Y. Li, “Improving Wójcik's eavesdropping attack on the ping-pong protocol,” Phys. Lett. A 333, 46-50 (2004).
[CrossRef]

Li, Y. S.

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[CrossRef]

Liu, X. S.

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[CrossRef]

F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
[CrossRef]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
[CrossRef]

Liu, Y.

Y. Liu, W. H. Zhang, C. L. Zhang, and G. L. Long, “Quantum computation with nonlinear optics,” Commun. Theor. Phys. 49, 107-110 (2008).
[CrossRef]

Lo, H. K.

Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

X. F. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[CrossRef]

H. K. Lo, X. F. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050-2056 (1999).
[CrossRef] [PubMed]

Long, G. L.

W. Y. Wang, C. Wang, G. Y. Zhang, and G. L. Long, “Arbitrarily long distance quantum communication using inspection and power insertion,” Chin. Sci. Bull. 54, 158-162 (2009).
[CrossRef]

Y. Liu, W. H. Zhang, C. L. Zhang, and G. L. Long, “Quantum computation with nonlinear optics,” Commun. Theor. Phys. 49, 107-110 (2008).
[CrossRef]

L. Xiao, C. Wang, W. Zhang, Y. D. Huang, J. D. Peng, and G. L. Long, “Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs,” Phys. Rev. A 77, 042315 (2008).
[CrossRef]

G. L. Long, F. G. Deng, C. Wang, X. H. Li, K. Wen, and W. Y. Wang, “Quantum secure direct communication and deterministic secure quantum communication,” Fron. Phys. China 2, 251272 (2007).
[CrossRef]

G. L. Long, “The general quantum interference principle and the duality computer,” Commun. Theor. Phys. 45, 825-844 (2006).
[CrossRef]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[CrossRef]

F. G. Deng and G. L. Long, “Bidirectional quantum key distribution protocol with practical faint laser pulses,” Phys. Rev. A 70, 012311 (2004).
[CrossRef]

F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
[CrossRef]

F. G. Deng and G. L. Long, “Controlled order rearrangement encryption for quantum key distribution,” Phys. Rev. A 68, 042315 (2003).
[CrossRef]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
[CrossRef]

Ma, X. F.

Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

H. K. Lo, X. F. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

X. F. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[CrossRef]

Man, Z. X.

Z. X. Man, Z. J. Zhang, and Y. Li, “Quantum dialogue revisited,” Chin. Phys. Lett. 22, 22-24 (2005).
[CrossRef]

Z. J. Zhang, Z. X. Man, and Y. Li, “Improving Wójcik's eavesdropping attack on the ping-pong protocol,” Phys. Lett. A 333, 46-50 (2004).
[CrossRef]

Mataloni, P.

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

Mattle, K.

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656-4659 (1996).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Mermin, N. D.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell's theorem,” Phys. Rev. Lett. 68, 557-559 (1992).
[CrossRef] [PubMed]

Monken, C. H.

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[CrossRef]

Niu, C. S.

C. A. Fuchs, N. Gisin, R. B. Griffiths, C. S. Niu, and A. Peres, “Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy,” Phys. Rev. A 56, 1163-1172 (1997).
[CrossRef]

Pádua, S.

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[CrossRef]

Peng, J. D.

L. Xiao, C. Wang, W. Zhang, Y. D. Huang, J. D. Peng, and G. L. Long, “Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs,” Phys. Rev. A 77, 042315 (2008).
[CrossRef]

Peng, K. C.

J. Zhang and K. C. Peng, “Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state,” Phys. Rev. A 62, 064302 (2000).
[CrossRef]

Peres, A.

C. A. Fuchs, N. Gisin, R. B. Griffiths, C. S. Niu, and A. Peres, “Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy,” Phys. Rev. A 56, 1163-1172 (1997).
[CrossRef]

Prevedel, R.

R. Prevedel, M. Aspelmeyer, C. Brukner, A. Zeilinger, and T. D. Jennewein, “Photonic entanglement as a resource in quantum computation and quantum communication,” J. Opt. Soc. Am. B 24, 241-248 (2007).

Qi, B.

Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

X. F. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[CrossRef]

Qian, L.

Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

Rastello, M. L.

I. P. Degiovanni, I. Ruo Berchera, S. Castelletto, and M. L. Rastello, “Reply to “Comment on 'Quantum dense key distribution'”,” Phys. Rev. A 71, 016302 (2005).
[CrossRef]

I. P. Degiovanni, I. Ruo Berchera, S. Castelletto, and M. L. Rastello, “Quantum dense key distribution,” Phys. Rev. A 69, 032310 (2004).
[CrossRef]

Ravaro, M.

M. Ravaro, Y. Seurin, S. Ducci, G. Leo, V. Berger, A. De Rossi, and G. Assanto, “Nonlinear AlGaAs waveguide for the generation of counterpropagating twin photons in the telecom range,” J. Appl. Phys. 98, 063103 (2005).
[CrossRef]

Rech, I.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[CrossRef]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Rochas, A.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[CrossRef]

Ruo Berchera, I.

I. P. Degiovanni, I. Ruo Berchera, S. Castelletto, and M. L. Rastello, “Reply to “Comment on 'Quantum dense key distribution'”,” Phys. Rev. A 71, 016302 (2005).
[CrossRef]

I. P. Degiovanni, I. Ruo Berchera, S. Castelletto, and M. L. Rastello, “Quantum dense key distribution,” Phys. Rev. A 69, 032310 (2004).
[CrossRef]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Seurin, Y.

M. Ravaro, Y. Seurin, S. Ducci, G. Leo, V. Berger, A. De Rossi, and G. Assanto, “Nonlinear AlGaAs waveguide for the generation of counterpropagating twin photons in the telecom range,” J. Appl. Phys. 98, 063103 (2005).
[CrossRef]

Shih, Y. H.

Y. H. Kim, S. P. Kulik, and Y. H. Shih, “Quantum teleportation of a polarization state with a complete bell state measurement,” Phys. Rev. Lett. 86, 1370-1373 (2001).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Takesue, H.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fiber,” New J. Phys. 7, 232 (2005).
[CrossRef]

Tanzilli, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[CrossRef]

Thew, R. T.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Vallone, G.

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

Walborn, S. P.

L. Aolita and S. P. Walborn, “Quantum communication without alignment using multiple-qubit single-photon states,” Phys. Rev. Lett. 98, 100501 (2007).
[CrossRef] [PubMed]

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[CrossRef]

Wang, C.

W. Y. Wang, C. Wang, G. Y. Zhang, and G. L. Long, “Arbitrarily long distance quantum communication using inspection and power insertion,” Chin. Sci. Bull. 54, 158-162 (2009).
[CrossRef]

L. Xiao, C. Wang, W. Zhang, Y. D. Huang, J. D. Peng, and G. L. Long, “Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs,” Phys. Rev. A 77, 042315 (2008).
[CrossRef]

G. L. Long, F. G. Deng, C. Wang, X. H. Li, K. Wen, and W. Y. Wang, “Quantum secure direct communication and deterministic secure quantum communication,” Fron. Phys. China 2, 251272 (2007).
[CrossRef]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[CrossRef]

Wang, W. Y.

W. Y. Wang, C. Wang, G. Y. Zhang, and G. L. Long, “Arbitrarily long distance quantum communication using inspection and power insertion,” Chin. Sci. Bull. 54, 158-162 (2009).
[CrossRef]

G. L. Long, F. G. Deng, C. Wang, X. H. Li, K. Wen, and W. Y. Wang, “Quantum secure direct communication and deterministic secure quantum communication,” Fron. Phys. China 2, 251272 (2007).
[CrossRef]

Wang, X. B.

X. B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[CrossRef] [PubMed]

Weinfurter, H.

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656-4659 (1996).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Wen, K.

G. L. Long, F. G. Deng, C. Wang, X. H. Li, K. Wen, and W. Y. Wang, “Quantum secure direct communication and deterministic secure quantum communication,” Fron. Phys. China 2, 251272 (2007).
[CrossRef]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881-2884 (1992).
[CrossRef] [PubMed]

Xiao, L.

L. Xiao, C. Wang, W. Zhang, Y. D. Huang, J. D. Peng, and G. L. Long, “Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs,” Phys. Rev. A 77, 042315 (2008).
[CrossRef]

Xue, P.

P. Xue, C. F. Li, and G. C. Guo, “Conditional efficient multiuser quantum cryptography network,” Phys. Rev. A 65, 022317 (2002).
[CrossRef]

Yamamoto, Y.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fiber,” New J. Phys. 7, 232 (2005).
[CrossRef]

Yan, F. L.

F. L. Yan and X. Zhang, “A scheme for secure direct communication using EPR pairs and teleportation,” Euro. Phys. J. B 41, 75-78 (2004).
[CrossRef]

Yuen, H. P.

H. P. Yuen, “Quantum bit commitment and unconditional security,” arXiv:quant-ph/0207089v3 (2002).

H. P. Yuen, “How unconditionally secure quantum bit commitment is possible,” arXiv:quant-ph/0109055v2 (2001).

Zbinden, H.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Zeilinger, A.

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656-4659 (1996).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

R. Prevedel, M. Aspelmeyer, C. Brukner, A. Zeilinger, and T. D. Jennewein, “Photonic entanglement as a resource in quantum computation and quantum communication,” J. Opt. Soc. Am. B 24, 241-248 (2007).

Zeller, S. C.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[CrossRef]

Zhang, C. L.

Y. Liu, W. H. Zhang, C. L. Zhang, and G. L. Long, “Quantum computation with nonlinear optics,” Commun. Theor. Phys. 49, 107-110 (2008).
[CrossRef]

Zhang, G. Y.

W. Y. Wang, C. Wang, G. Y. Zhang, and G. L. Long, “Arbitrarily long distance quantum communication using inspection and power insertion,” Chin. Sci. Bull. 54, 158-162 (2009).
[CrossRef]

Zhang, J.

J. Zhang and K. C. Peng, “Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state,” Phys. Rev. A 62, 064302 (2000).
[CrossRef]

Zhang, W.

L. Xiao, C. Wang, W. Zhang, Y. D. Huang, J. D. Peng, and G. L. Long, “Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs,” Phys. Rev. A 77, 042315 (2008).
[CrossRef]

Zhang, W. H.

Y. Liu, W. H. Zhang, C. L. Zhang, and G. L. Long, “Quantum computation with nonlinear optics,” Commun. Theor. Phys. 49, 107-110 (2008).
[CrossRef]

Zhang, X.

F. L. Yan and X. Zhang, “A scheme for secure direct communication using EPR pairs and teleportation,” Euro. Phys. J. B 41, 75-78 (2004).
[CrossRef]

Zhang, Y. S.

Y. S. Zhang, C. F. Li, and G. C. Guo, “Quantum key distribution via quantum encryption,” Phys. Rev. A 64, 024302 (2001).
[CrossRef]

Zhang, Z. J.

Z. X. Man, Z. J. Zhang, and Y. Li, “Quantum dialogue revisited,” Chin. Phys. Lett. 22, 22-24 (2005).
[CrossRef]

Z. J. Zhang, Z. X. Man, and Y. Li, “Improving Wójcik's eavesdropping attack on the ping-pong protocol,” Phys. Lett. A 333, 46-50 (2004).
[CrossRef]

Zhao, Y.

Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

X. F. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[CrossRef]

Chin. Phys. Lett. (2)

Z. X. Man, Z. J. Zhang, and Y. Li, “Quantum dialogue revisited,” Chin. Phys. Lett. 22, 22-24 (2005).
[CrossRef]

Q. Y. Cai and B. W. Li, “Deterministic secure communication without using entanglement,” Chin. Phys. Lett. 21, 601-603 (2004).
[CrossRef]

Chin. Sci. Bull. (1)

W. Y. Wang, C. Wang, G. Y. Zhang, and G. L. Long, “Arbitrarily long distance quantum communication using inspection and power insertion,” Chin. Sci. Bull. 54, 158-162 (2009).
[CrossRef]

Commun. Theor. Phys. (2)

G. L. Long, “The general quantum interference principle and the duality computer,” Commun. Theor. Phys. 45, 825-844 (2006).
[CrossRef]

Y. Liu, W. H. Zhang, C. L. Zhang, and G. L. Long, “Quantum computation with nonlinear optics,” Commun. Theor. Phys. 49, 107-110 (2008).
[CrossRef]

Euro. Phys. J. B (1)

F. L. Yan and X. Zhang, “A scheme for secure direct communication using EPR pairs and teleportation,” Euro. Phys. J. B 41, 75-78 (2004).
[CrossRef]

Fron. Phys. China (1)

G. L. Long, F. G. Deng, C. Wang, X. H. Li, K. Wen, and W. Y. Wang, “Quantum secure direct communication and deterministic secure quantum communication,” Fron. Phys. China 2, 251272 (2007).
[CrossRef]

J. Appl. Phys. (1)

M. Ravaro, Y. Seurin, S. Ducci, G. Leo, V. Berger, A. De Rossi, and G. Assanto, “Nonlinear AlGaAs waveguide for the generation of counterpropagating twin photons in the telecom range,” J. Appl. Phys. 98, 063103 (2005).
[CrossRef]

New J. Phys. (2)

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fiber,” New J. Phys. 7, 232 (2005).
[CrossRef]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[CrossRef]

Phys. Lett. A (1)

Z. J. Zhang, Z. X. Man, and Y. Li, “Improving Wójcik's eavesdropping attack on the ping-pong protocol,” Phys. Lett. A 333, 46-50 (2004).
[CrossRef]

Phys. Rev. A (16)

S. L. Braunstein and H. J. Kimble, “Dense coding for continuous variables,” Phys. Rev. A 61, 042302 (2000).
[CrossRef]

J. Zhang and K. C. Peng, “Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state,” Phys. Rev. A 62, 064302 (2000).
[CrossRef]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[CrossRef]

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[CrossRef]

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

X. F. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[CrossRef]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
[CrossRef]

F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
[CrossRef]

Y. S. Zhang, C. F. Li, and G. C. Guo, “Quantum key distribution via quantum encryption,” Phys. Rev. A 64, 024302 (2001).
[CrossRef]

P. Xue, C. F. Li, and G. C. Guo, “Conditional efficient multiuser quantum cryptography network,” Phys. Rev. A 65, 022317 (2002).
[CrossRef]

F. G. Deng and G. L. Long, “Controlled order rearrangement encryption for quantum key distribution,” Phys. Rev. A 68, 042315 (2003).
[CrossRef]

L. Xiao, C. Wang, W. Zhang, Y. D. Huang, J. D. Peng, and G. L. Long, “Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs,” Phys. Rev. A 77, 042315 (2008).
[CrossRef]

C. A. Fuchs, N. Gisin, R. B. Griffiths, C. S. Niu, and A. Peres, “Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy,” Phys. Rev. A 56, 1163-1172 (1997).
[CrossRef]

I. P. Degiovanni, I. Ruo Berchera, S. Castelletto, and M. L. Rastello, “Quantum dense key distribution,” Phys. Rev. A 69, 032310 (2004).
[CrossRef]

I. P. Degiovanni, I. Ruo Berchera, S. Castelletto, and M. L. Rastello, “Reply to “Comment on 'Quantum dense key distribution'”,” Phys. Rev. A 71, 016302 (2005).
[CrossRef]

F. G. Deng and G. L. Long, “Bidirectional quantum key distribution protocol with practical faint laser pulses,” Phys. Rev. A 70, 012311 (2004).
[CrossRef]

Phys. Rev. Lett. (13)

Y. H. Kim, S. P. Kulik, and Y. H. Shih, “Quantum teleportation of a polarization state with a complete bell state measurement,” Phys. Rev. Lett. 86, 1370-1373 (2001).
[CrossRef] [PubMed]

W. Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
[CrossRef] [PubMed]

H. K. Lo, X. F. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

A. K. Ekert, “Quantum cryptography based on Bell's theorem,” Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell's theorem,” Phys. Rev. Lett. 68, 557-559 (1992).
[CrossRef] [PubMed]

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121-3124 (1992).
[CrossRef] [PubMed]

D. Bruß, “Optimal eavesdropping in quantum cryptography with six states,” Phys. Rev. Lett. 81, 3018-3021 (1998).
[CrossRef]

Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

X. B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[CrossRef] [PubMed]

L. Aolita and S. P. Walborn, “Quantum communication without alignment using multiple-qubit single-photon states,” Phys. Rev. Lett. 98, 100501 (2007).
[CrossRef] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881-2884 (1992).
[CrossRef] [PubMed]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656-4659 (1996).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Science (1)

H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050-2056 (1999).
[CrossRef] [PubMed]

Other (4)

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, 1984), pp. 175-179.

R. Prevedel, M. Aspelmeyer, C. Brukner, A. Zeilinger, and T. D. Jennewein, “Photonic entanglement as a resource in quantum computation and quantum communication,” J. Opt. Soc. Am. B 24, 241-248 (2007).

H. P. Yuen, “Quantum bit commitment and unconditional security,” arXiv:quant-ph/0207089v3 (2002).

H. P. Yuen, “How unconditionally secure quantum bit commitment is possible,” arXiv:quant-ph/0109055v2 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Bell state measurement device. Wave-conv describes the wavelength conversion process. Qs are the quarter-wave plates.

Fig. 2
Fig. 2

Eve’s information using eavesdropping on each qubit.

Tables (2)

Tables Icon

Table 1 Correspondence between Unitary Operations and States

Tables Icon

Table 2 Correspondence between Ports, Detectors, and the Bell States

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

| ent = η 1 | η 1 | 2 + | η 2 | 2 | ω s , H | ω i , V + η 2 | η 1 | 2 + | η 2 | 2 | ω s , V | ω i , H ,
| Ψ a b + = 1 2 ( | H , ω s | V , ω i + | V , ω s | H , ω i ) .
| Φ a b ± = 1 2 ( | H , ω s | H , ω i ± | V , ω s | V , ω i ) ,
| Ψ a b ± = 1 2 ( | H , ω s | V , ω i ± | V , ω s | H , ω i ) ,
| Γ a b ± = 1 2 ( | V , ω s | H , ω i ± | H , ω s | V , ω i ) ,
| Υ a b ± = 1 2 ( | V , ω s | V , ω i ± | H , ω s | H , ω i ) .
| H ( V ) , ω s , | H ( V ) , ω s | H ( V ) , ω ,
| H ( V ) , ω i , | H ( V ) , ω i | H ( V ) , ω .
J ̂ b E | 0 , ω b | e E 1 , ω = | 0 , ω b | 0 E 1 , ω ,
J ̂ b E | 1 , ω b | e E 1 , ω = cos φ | 1 , ω b | ξ E 1 , ω + sin φ | 0 , ω b | ξ E 1 , ω ,
K ̂ a E | 0 , ω a | e E 2 , ω = | 0 , ω a | 0 E 2 , ω ,
K ̂ a E | 1 , ω a | e E 2 , ω = cos φ | 1 , ω a | ξ E 2 , ω + sin φ | 0 , ω a | ξ E 2 , ω ,
I E = S [ Tr b ( ρ b E b ) ] = i = 1 4 λ i Log 2 λ i ,
I E = 1 2 [ ( 1 + cos 2 φ ) log 2 ( 1 + cos 2 φ 2 ) sin 2 φ log 2 sin 2 φ 2 ] .

Metrics