Abstract

We find that electromagnetic pulses can be greatly delayed in a two-dimensional (2D) meander-line photonic crystal waveguide, which incorporates a row of perfect electric conductor (PEC) slabs and a magnetooptical photonic crystal under a static magnetic field. The electromagnetic pulse has a one-way property with broken time-reversal symmetry and circumvents the PEC slabs to propagate through the waveguide, leading to the considerable increase of propagation path and nearly three-fold enhancement of group delay compared to the straight waveguide.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. F. Krauss, “Why do we need slow light,” Nat. Photonics 2, 448-450 (2008).
    [CrossRef]
  2. A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447-2450 (1995).
    [CrossRef] [PubMed]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
    [CrossRef]
  4. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711-713 (1999).
    [CrossRef]
  5. P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
    [CrossRef]
  6. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
    [CrossRef] [PubMed]
  7. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
    [CrossRef] [PubMed]
  8. M. F. Yanik and S. Fan, “Stopping and storing light coherently,” Phys. Rev. A 71, 013803 (2005).
    [CrossRef]
  9. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
    [CrossRef] [PubMed]
  10. D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398-9408 (2005).
    [CrossRef] [PubMed]
  11. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005).
    [CrossRef] [PubMed]
  12. J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solutions,” Nat. Phys. 2, 775-780 (2006).
    [CrossRef]
  13. M. Povinelli, “Slow light: variable speed limit,” Nat. Phys. 2, 735-736 (2006).
    [CrossRef]
  14. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef] [PubMed]
  15. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
    [CrossRef] [PubMed]
  16. S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834 (2008).
    [CrossRef]
  17. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
    [CrossRef] [PubMed]
  18. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
    [CrossRef] [PubMed]
  19. D. M. Pozar, Microwave Engineering (Wiley, 1998).
  20. J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals Molding the Flow of Light, 2nd. ed. (Princeton Univ. Press, 2008).
  21. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  22. S. Fan, “Sharp asymmetric lineshapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908-910 (2002).
    [CrossRef]

2008

T. F. Krauss, “Why do we need slow light,” Nat. Photonics 2, 448-450 (2008).
[CrossRef]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
[CrossRef] [PubMed]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834 (2008).
[CrossRef]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef] [PubMed]

2006

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solutions,” Nat. Phys. 2, 775-780 (2006).
[CrossRef]

M. Povinelli, “Slow light: variable speed limit,” Nat. Phys. 2, 735-736 (2006).
[CrossRef]

2005

D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398-9408 (2005).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

M. F. Yanik and S. Fan, “Stopping and storing light coherently,” Phys. Rev. A 71, 013803 (2005).
[CrossRef]

2004

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

2003

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

2002

S. Fan, “Sharp asymmetric lineshapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908-910 (2002).
[CrossRef]

2001

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

1999

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711-713 (1999).
[CrossRef]

1995

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

Baba, T.

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Chang-Hasnain, C. J.

P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

Chong, Y. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef] [PubMed]

Chuang, S.-L.

P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

Crankshaw, S.

P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

de Sterke, C. M.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solutions,” Nat. Phys. 2, 775-780 (2006).
[CrossRef]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Eggleton, B. J.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solutions,” Nat. Phys. 2, 775-780 (2006).
[CrossRef]

Fan, S.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, “Stopping and storing light coherently,” Phys. Rev. A 71, 013803 (2005).
[CrossRef]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

S. Fan, “Sharp asymmetric lineshapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908-910 (2002).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

Haldane, F. D. M.

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
[CrossRef] [PubMed]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834 (2008).
[CrossRef]

Hamann, H. F.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Jain, M.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

Joannopoulos, J.

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals Molding the Flow of Light, 2nd. ed. (Princeton Univ. Press, 2008).

Joannopoulos, J. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef] [PubMed]

Johnson, S.

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals Molding the Flow of Light, 2nd. ed. (Princeton Univ. Press, 2008).

Kasapi, A.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

Kim, E.-T.

P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

Krauss, T. F.

T. F. Krauss, “Why do we need slow light,” Nat. Photonics 2, 448-450 (2008).
[CrossRef]

Lee, R. K.

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Littler, I. C. M.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solutions,” Nat. Phys. 2, 775-780 (2006).
[CrossRef]

McNab, S. J.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Meade, R.

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals Molding the Flow of Light, 2nd. ed. (Princeton Univ. Press, 2008).

Moewe, M.

P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

Mok, J. T.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solutions,” Nat. Phys. 2, 775-780 (2006).
[CrossRef]

Mori, D.

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

O'Boyle, M.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Palinginis, P.

P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

Povinelli, M.

M. Povinelli, “Slow light: variable speed limit,” Nat. Phys. 2, 735-736 (2006).
[CrossRef]

Pozar, D. M.

D. M. Pozar, Microwave Engineering (Wiley, 1998).

Raghu, S.

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
[CrossRef] [PubMed]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834 (2008).
[CrossRef]

Scherer, A.

Sedgwick, F.

P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Soljacic, M.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef] [PubMed]

Suh, W.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Veronis, G.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef] [PubMed]

Vlasov, Y. A.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Wang, H.

P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

Wang, Z.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

Winn, J.

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals Molding the Flow of Light, 2nd. ed. (Princeton Univ. Press, 2008).

Xu, Y.

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Yanik, M. F.

M. F. Yanik and S. Fan, “Stopping and storing light coherently,” Phys. Rev. A 71, 013803 (2005).
[CrossRef]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

Yariv, A.

Yin, G. Y.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Yu, Z.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett.

P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005).
[CrossRef]

S. Fan, “Sharp asymmetric lineshapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908-910 (2002).
[CrossRef]

Nat. Photonics

T. F. Krauss, “Why do we need slow light,” Nat. Photonics 2, 448-450 (2008).
[CrossRef]

Nat. Phys.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solutions,” Nat. Phys. 2, 775-780 (2006).
[CrossRef]

M. Povinelli, “Slow light: variable speed limit,” Nat. Phys. 2, 735-736 (2006).
[CrossRef]

Nature

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. A

M. F. Yanik and S. Fan, “Stopping and storing light coherently,” Phys. Rev. A 71, 013803 (2005).
[CrossRef]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834 (2008).
[CrossRef]

Phys. Rev. Lett.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

Science

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Other

D. M. Pozar, Microwave Engineering (Wiley, 1998).

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals Molding the Flow of Light, 2nd. ed. (Princeton Univ. Press, 2008).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) One-way waveguide structure formed at the interface between a square lattice tilted 45° of silica rods and a square lattice magnetized ( + Z ) YIG rods in the air. E z is plotted at t = 65 ( a c ) . The central frequency of the Gaussian source is 0.55 ( 2 π c a ) and the width is 0.1 ( 2 π c a ) . (Upper and lower blue) curves and red (center) curve represent positive and negative field values, respectively. (b) Projected band diagram showing the normalized frequencies versus normalized wave-vectors for the structure. (c) The + X direction (monitor B) and the X direction (monitor A) transmission spectra.

Fig. 2
Fig. 2

(a) Left side is the supercell of meander-line waveguide formed by periodically inserting the PEC slabs to the one-way straight waveguide, and the right side is its band diagram. The group velocities and the normalized GVD parameters of the one-way modes for the straight waveguide and the meander-line waveguide versus normalized frequencies are plotted in (b) and (c), respectively.

Fig. 3
Fig. 3

One-way meander-line waveguide including (a) three PEC slabs with smooth surface, (b) three PEC slabs with rough surface by adopting a uniform random number with range from −0.02 to 0.02 on the left and right interfaces of the three PEC slabs. E z are both plotted at t = 300 ( a c ) . (c) Calculated fluxes of the pulse at monitor A and monitor B.

Fig. 4
Fig. 4

(a) Line defects are introduced to the upper cladding of the meander-line one-way waveguide. E z is plotted at t = 320 ( a c ) . (b) Calculated fluxes of the pulse with a carrier frequency 0.56 ( 2 π c a ) and width 0.02 ( 2 π c a ) at monitor A and monitor B.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

μ = ( μ i κ 0 i κ μ 0 0 0 μ 0 ) .
T slab = ( e j δ 0 0 0 ) ,
T slab = e j δ .
T slabs = Π i T slab , i = e j i δ i .
( Δ φ ) slabs = i δ i = ω i ( slab , i d l v i ¯ ) ,
( Δ φ ) slabs = ω ( i slab , i d l ) v ¯ .
( Δ t ) slabs = d ( Δ φ ) slabs d ω = ( i slab , i d l ) v ¯ .
D = 2 π c λ 2 d 2 k d ω 2 .

Metrics