Abstract

We propose and demonstrate a kind of low-loss plasmonic superlattice with a few coupled resonant cavities to realize dual-channel broadband slow surface plasmon polaritons (SPPs) around two telecom wavelengths of 1550 nm and 1310 nm. The dual-channel slow SPPs result from the introduction of two kinds of coupled cavities into the superlattices. Theoretical analysis is confirmed by the finite-difference time domain (FDTD) numerical simulations. Our structures offer another avenue for researchers to explore novel slow SPP technologies and thereby may inspire further exploration of advanced photonic devices for next-generation telecommunication, optical data processing, and on-chip integration.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65-71 (2007).
    [CrossRef]
  2. C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
    [CrossRef] [PubMed]
  3. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22, 1062-1074 (2005).
    [CrossRef]
  4. M. T. Hill, H. J. S. Dorren, T. D. Vries, X. J. M. Leijtens, J. H. D. Bensten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206-209 (2004).
    [CrossRef] [PubMed]
  5. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
    [CrossRef]
  6. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
    [CrossRef] [PubMed]
  7. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
    [CrossRef] [PubMed]
  8. T. Schneider, “Time delay limits of stimulated-Brillouin-scattering-based slow light systems,” Opt. Lett. 33, 1398-1400 (2008).
    [CrossRef] [PubMed]
  9. Y. Okawachi, M. Foster, J. Sharping, A. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express 14, 2317-2322 (2006).
    [CrossRef] [PubMed]
  10. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465-473 (2008).
    [CrossRef]
  11. Y. H. Ye, J. Ding, D. Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled-resonator optical waveguides,” Phys. Rev. E 69, 056604 (2004).
    [CrossRef]
  12. M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88, 241103 (2006).
    [CrossRef]
  13. J. K. S. Poon, L. Zhu, G. Derose, and A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides,” Opt. Lett. 31, 456-458 (2006).
    [CrossRef] [PubMed]
  14. Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406-410 (2007).
    [CrossRef]
  15. M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1, 573-576 (2007).
    [CrossRef]
  16. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
    [CrossRef] [PubMed]
  17. G. W. Wood and P. G. Kik, “Simultaneous excitation of fast and slow surface plasmon polaritons in a high dielectric contrast system,” Appl. Phys. Lett. 92, 133101 (2008).
    [CrossRef]
  18. Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett. 90, 201906 (2007).
    [CrossRef]
  19. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  20. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006).
    [CrossRef] [PubMed]
  21. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
    [CrossRef] [PubMed]
  22. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005).
    [CrossRef] [PubMed]
  23. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic hraded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
    [CrossRef] [PubMed]
  24. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow' storage of light in metamaterials,” Nature 450, 397-401 (2007).
    [CrossRef] [PubMed]
  25. Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow' trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
    [CrossRef] [PubMed]
  26. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, 1999).
  27. P. Yeh, A. Yariv, and C. S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423-437 (1977).
    [CrossRef]
  28. W. Lin, Y. Gu, and G. P. Wang, “Zener tunneling in plasmonic metal gap waveguide superlattices,” Appl. Phys. Lett. 93, 133118 (2008).
    [CrossRef]
  29. I. P. Kaminow, W. L. Mammel, and H. P. Weber, “Metal-clad optical waveguides: analytical and experimental study,” Appl. Opt. 13, 396-405 (1974).
    [CrossRef] [PubMed]
  30. X. Wang and K. Kempa, “Negative refraction and subwavelength lensing in a polaritonic crystal,” Phys. Rev. B 71, 233101 (2005).
    [CrossRef]
  31. L. Brillouin, Wave Propagation and Group Velocity (Academic, 1960).
  32. R. W. Boyd and D. J. Gauthier, in Progress in Optics, E.Wolf, ed. (Elsevier, 2002), Vol. 43, pp. 497-530.
    [CrossRef]

2009

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow' trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef] [PubMed]

2008

W. Lin, Y. Gu, and G. P. Wang, “Zener tunneling in plasmonic metal gap waveguide superlattices,” Appl. Phys. Lett. 93, 133118 (2008).
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic hraded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

T. Schneider, “Time delay limits of stimulated-Brillouin-scattering-based slow light systems,” Opt. Lett. 33, 1398-1400 (2008).
[CrossRef] [PubMed]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465-473 (2008).
[CrossRef]

G. W. Wood and P. G. Kik, “Simultaneous excitation of fast and slow surface plasmon polaritons in a high dielectric contrast system,” Appl. Phys. Lett. 92, 133101 (2008).
[CrossRef]

2007

Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett. 90, 201906 (2007).
[CrossRef]

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406-410 (2007).
[CrossRef]

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1, 573-576 (2007).
[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65-71 (2007).
[CrossRef]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow' storage of light in metamaterials,” Nature 450, 397-401 (2007).
[CrossRef] [PubMed]

2006

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Y. Okawachi, M. Foster, J. Sharping, A. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express 14, 2317-2322 (2006).
[CrossRef] [PubMed]

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88, 241103 (2006).
[CrossRef]

J. K. S. Poon, L. Zhu, G. Derose, and A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides,” Opt. Lett. 31, 456-458 (2006).
[CrossRef] [PubMed]

2005

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22, 1062-1074 (2005).
[CrossRef]

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

X. Wang and K. Kempa, “Negative refraction and subwavelength lensing in a polaritonic crystal,” Phys. Rev. B 71, 233101 (2005).
[CrossRef]

2004

M. T. Hill, H. J. S. Dorren, T. D. Vries, X. J. M. Leijtens, J. H. D. Bensten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Y. H. Ye, J. Ding, D. Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled-resonator optical waveguides,” Phys. Rev. E 69, 056604 (2004).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

2002

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

2001

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

1999

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

1977

1974

Andreani, L. C.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88, 241103 (2006).
[CrossRef]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465-473 (2008).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Bartoli, F. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow' trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic hraded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

Behroozi, C.

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Bensten, J. H. D.

M. T. Hill, H. J. S. Dorren, T. D. Vries, X. J. M. Leijtens, J. H. D. Bensten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Bertolotti, J.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88, 241103 (2006).
[CrossRef]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Binsma, H.

M. T. Hill, H. J. S. Dorren, T. D. Vries, X. J. M. Leijtens, J. H. D. Bensten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow' storage of light in metamaterials,” Nature 450, 397-401 (2007).
[CrossRef] [PubMed]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, 1999).

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

R. W. Boyd and D. J. Gauthier, in Progress in Optics, E.Wolf, ed. (Elsevier, 2002), Vol. 43, pp. 497-530.
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Brillouin, L.

L. Brillouin, Wave Propagation and Group Velocity (Academic, 1960).

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Derose, G.

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Ding, J.

Y. H. Ye, J. Ding, D. Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled-resonator optical waveguides,” Phys. Rev. E 69, 056604 (2004).
[CrossRef]

Ding, Y. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow' trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic hraded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

Dong, P.

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406-410 (2007).
[CrossRef]

Dorren, H. J. S.

M. T. Hill, H. J. S. Dorren, T. D. Vries, X. J. M. Leijtens, J. H. D. Bensten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Dutton, Z.

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Foster, M.

Fu, Z.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic hraded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

Gaeta, A.

Galli, M.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88, 241103 (2006).
[CrossRef]

Gan, Q.

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow' trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic hraded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

Gauthier, D. J.

R. W. Boyd and D. J. Gauthier, in Progress in Optics, E.Wolf, ed. (Elsevier, 2002), Vol. 43, pp. 497-530.
[CrossRef]

Ghulinyan, M.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88, 241103 (2006).
[CrossRef]

Gottardo, S.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88, 241103 (2006).
[CrossRef]

Gu, Y.

W. Lin, Y. Gu, and G. P. Wang, “Zener tunneling in plasmonic metal gap waveguide superlattices,” Appl. Phys. Lett. 93, 133118 (2008).
[CrossRef]

Ham, B. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Hamann, H. F.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Hau, L.

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Hemmer, P. R.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Hess, O.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow' storage of light in metamaterials,” Nature 450, 397-401 (2007).
[CrossRef] [PubMed]

Hill, M. T.

M. T. Hill, H. J. S. Dorren, T. D. Vries, X. J. M. Leijtens, J. H. D. Bensten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Hong, C. S.

Ibanescu, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Jeong, D. Y.

Y. H. Ye, J. Ding, D. Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled-resonator optical waveguides,” Phys. Rev. E 69, 056604 (2004).
[CrossRef]

Joannopoulos, J. D.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Kaminow, I. P.

Karalis, A.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Kempa, K.

X. Wang and K. Kempa, “Negative refraction and subwavelength lensing in a polaritonic crystal,” Phys. Rev. B 71, 233101 (2005).
[CrossRef]

Khoe, G. D.

M. T. Hill, H. J. S. Dorren, T. D. Vries, X. J. M. Leijtens, J. H. D. Bensten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Khoo, I. C.

Y. H. Ye, J. Ding, D. Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled-resonator optical waveguides,” Phys. Rev. E 69, 056604 (2004).
[CrossRef]

Khurgin, J. B.

Kik, P. G.

G. W. Wood and P. G. Kik, “Simultaneous excitation of fast and slow surface plasmon polaritons in a high dielectric contrast system,” Appl. Phys. Lett. 92, 133101 (2008).
[CrossRef]

Kuipers, L.

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1, 573-576 (2007).
[CrossRef]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Leijtens, X. J. M.

M. T. Hill, H. J. S. Dorren, T. D. Vries, X. J. M. Leijtens, J. H. D. Bensten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Lidorikis, E.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Lin, W.

W. Lin, Y. Gu, and G. P. Wang, “Zener tunneling in plasmonic metal gap waveguide superlattices,” Appl. Phys. Lett. 93, 133118 (2008).
[CrossRef]

Lipson, M.

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406-410 (2007).
[CrossRef]

Y. Okawachi, M. Foster, J. Sharping, A. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express 14, 2317-2322 (2006).
[CrossRef] [PubMed]

Liu, C.

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

Mammel, W. L.

Marabelli, F.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88, 241103 (2006).
[CrossRef]

McNab, S. J.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

O'Boyle, M.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Oei, Y. S.

M. T. Hill, H. J. S. Dorren, T. D. Vries, X. J. M. Leijtens, J. H. D. Bensten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Okawachi, Y.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Pavesi, L.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88, 241103 (2006).
[CrossRef]

Poon, J. K. S.

Qiu, M.

Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett. 90, 201906 (2007).
[CrossRef]

Ruan, Z.

Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett. 90, 201906 (2007).
[CrossRef]

Sandtke, M.

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1, 573-576 (2007).
[CrossRef]

Schneider, T.

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65-71 (2007).
[CrossRef]

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Sharping, J.

Smalbrugge, B.

M. T. Hill, H. J. S. Dorren, T. D. Vries, X. J. M. Leijtens, J. H. D. Bensten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Smit, M. K.

M. T. Hill, H. J. S. Dorren, T. D. Vries, X. J. M. Leijtens, J. H. D. Bensten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Soljacic, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Toninelli, C.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88, 241103 (2006).
[CrossRef]

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow' storage of light in metamaterials,” Nature 450, 397-401 (2007).
[CrossRef] [PubMed]

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65-71 (2007).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Vries, T. D.

M. T. Hill, H. J. S. Dorren, T. D. Vries, X. J. M. Leijtens, J. H. D. Bensten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Wang, G. P.

W. Lin, Y. Gu, and G. P. Wang, “Zener tunneling in plasmonic metal gap waveguide superlattices,” Appl. Phys. Lett. 93, 133118 (2008).
[CrossRef]

Wang, X.

X. Wang and K. Kempa, “Negative refraction and subwavelength lensing in a polaritonic crystal,” Phys. Rev. B 71, 233101 (2005).
[CrossRef]

Weber, H. P.

Wiersma, D. S.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88, 241103 (2006).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, 1999).

Wood, G. W.

G. W. Wood and P. G. Kik, “Simultaneous excitation of fast and slow surface plasmon polaritons in a high dielectric contrast system,” Appl. Phys. Lett. 92, 133101 (2008).
[CrossRef]

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65-71 (2007).
[CrossRef]

Xu, Q.

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406-410 (2007).
[CrossRef]

Y. Okawachi, M. Foster, J. Sharping, A. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express 14, 2317-2322 (2006).
[CrossRef] [PubMed]

Yariv, A.

Ye, Y. H.

Y. H. Ye, J. Ding, D. Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled-resonator optical waveguides,” Phys. Rev. E 69, 056604 (2004).
[CrossRef]

Yeh, P.

Zhang, Q. M.

Y. H. Ye, J. Ding, D. Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled-resonator optical waveguides,” Phys. Rev. E 69, 056604 (2004).
[CrossRef]

Zhu, L.

Appl. Opt.

Appl. Phys. Lett.

W. Lin, Y. Gu, and G. P. Wang, “Zener tunneling in plasmonic metal gap waveguide superlattices,” Appl. Phys. Lett. 93, 133118 (2008).
[CrossRef]

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88, 241103 (2006).
[CrossRef]

G. W. Wood and P. G. Kik, “Simultaneous excitation of fast and slow surface plasmon polaritons in a high dielectric contrast system,” Appl. Phys. Lett. 92, 133101 (2008).
[CrossRef]

Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett. 90, 201906 (2007).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Nat. Photonics

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65-71 (2007).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465-473 (2008).
[CrossRef]

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1, 573-576 (2007).
[CrossRef]

Nat. Phys.

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406-410 (2007).
[CrossRef]

Nature

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow' storage of light in metamaterials,” Nature 450, 397-401 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

M. T. Hill, H. J. S. Dorren, T. D. Vries, X. J. M. Leijtens, J. H. D. Bensten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

X. Wang and K. Kempa, “Negative refraction and subwavelength lensing in a polaritonic crystal,” Phys. Rev. B 71, 233101 (2005).
[CrossRef]

Phys. Rev. E

Y. H. Ye, J. Ding, D. Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled-resonator optical waveguides,” Phys. Rev. E 69, 056604 (2004).
[CrossRef]

Phys. Rev. Lett.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic hraded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow' trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef] [PubMed]

Science

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Other

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, 1999).

L. Brillouin, Wave Propagation and Group Velocity (Academic, 1960).

R. W. Boyd and D. J. Gauthier, in Progress in Optics, E.Wolf, ed. (Elsevier, 2002), Vol. 43, pp. 497-530.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Scheme of MGW superlattice. (b) Dispersion curve of SPPs in the superlattice. Inset, group velocity v g of SPPs passing through the superlattice with SALs = 2.5 (solid line) and 6.5 (dotted line) port Bragg reflectors, respectively.

Fig. 2
Fig. 2

(a) Scheme of superlattice with two kinds of coupling cavities for dual-channel SPPs. (b) Transmittance (solid line) and group velocity v g (dotted line). Insets, dispersion curves of SPPs passing through the superlattice in the two channels.

Fig. 3
Fig. 3

FDTD simulated time evolution of magnetic field intensity ( | H y | 2 ) of SPPs passing through the superlattice, as the incident pulse is centered at 1550 nm (a), (c) and 1310 nm (b), (d), respectively. (a), (b), gray distributions and (c), (d) intensity profiles. Dotted lines, incident pulse; solid lines, output pulses magnified 11 times.

Fig. 4
Fig. 4

(a) Second and (b) third-order dispersion parameters of SPPs in the plasmonic superlattice around 1550 nm (solid lines) and 1310 nm (dotted lines).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

K L = tan 1 ( t i t r ) ,
v g 1 = d K d ω = ( 1 2 π L ) d [ tan 1 ( t i t r ) ] d f ,
k 2 = d 2 K d ω 2 = ( 1 c ) d n g d ω
k 3 = d 3 K d ω 3 = ( 1 c ) d 2 n g d ω 2 ,

Metrics