Abstract

We present the design and optimization of a wide-angle and broadband operational polarization beam splitter by simultaneously satisfying a high reflection of the transverse magnetic (TM) wave and high transmission of the transverse electric (TE) wave using coupled plasmonic waveguides. The finite-difference time-domain (FDTD) method is used in the optimization process where various structural parameters are scanned, and design maps applicable to most III-V material systems are established. Wide-angle operation of over 0° to 70° and ultrabroadband operation over 500nm with insertion loss less than 1.0dB are predicted. The extinction ratio is better than 17dB, and it is realizable on a chip as small as 0.1×2μm2.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Wei and W. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett. 6, 245-248 (1994).
    [CrossRef]
  2. J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. H. Woo, S. H. Kim and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett. 15, 72-74 (2003).
    [CrossRef]
  3. L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder interferometer polarization splitter in InGaAsP-InP,” IEEE Photon. Technol. Lett. 6, 402-405 (1994).
    [CrossRef]
  4. W. N. Ye, D. X. Xu, S. Janz, P. Waldron, P. Cheben, and N. G. Tarr, “Passive broadband silicon-on-insulator polarization splitter,” Opt. Lett. 32, 1492-1494 (2007).
    [CrossRef] [PubMed]
  5. S. H. Kim, G. P. Nordin, J. B. Cai, and J. H. Jiang, “Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure,” Opt. Lett. 28, 2384-2386 (2003).
    [CrossRef] [PubMed]
  6. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
    [CrossRef]
  7. X. Y. Ao, L. Liu, L. Wosinski, and S. L. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
    [CrossRef]
  8. L. B. Zhou and W. Liu, “Broadband polarizing beam splitter with an embedded metal-wire nanograting,” Opt. Lett. 30, 1434-1436 (2005).
    [CrossRef] [PubMed]
  9. Z. Y. Yang and Y. F. Lu, “Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions,” Opt. Express 15, 9510-9519 (2007).
    [CrossRef] [PubMed]
  10. H. J. Juretschke, “Comment on 'Microscopic approach to reflection, transmission, and the Ewald-Ossen extinction theorem',” Am. J. Phys. 67, 929-930 (1999).
    [CrossRef]
  11. C. Y. Tai, S. H. Chang, and T. C. Chiu, “Design and analysis of an ultra-compact and ultrawideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photonics Technol. Lett. 19, 1448-1450 (2007).
    [CrossRef]
  12. R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, “A frequency dependent finite-difference time domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222-227 (1990).
    [CrossRef]
  13. M. A. Ordal, R. J. Bell, R. W. Alexander, Jr., L. L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, W,” Appl. Opt. 24, 4493 (1985).
    [CrossRef] [PubMed]
  14. S. I. Hosain, J. -P. Meunier, and Z. H. Wang, “Coupling efficiency of butt-joined planar waveguides with simultaneous tilt and transverse offset,” J. Lightwave Technol. 14, 901-907 (1996).
    [CrossRef]
  15. R. G. Hunsperger, Integrated Optics: Theory and Technology, 5th ed. (Springer, 2002), Chap. 4.

2007 (3)

2006 (1)

X. Y. Ao, L. Liu, L. Wosinski, and S. L. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

2005 (2)

L. B. Zhou and W. Liu, “Broadband polarizing beam splitter with an embedded metal-wire nanograting,” Opt. Lett. 30, 1434-1436 (2005).
[CrossRef] [PubMed]

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
[CrossRef]

2003 (2)

S. H. Kim, G. P. Nordin, J. B. Cai, and J. H. Jiang, “Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure,” Opt. Lett. 28, 2384-2386 (2003).
[CrossRef] [PubMed]

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. H. Woo, S. H. Kim and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett. 15, 72-74 (2003).
[CrossRef]

1999 (1)

H. J. Juretschke, “Comment on 'Microscopic approach to reflection, transmission, and the Ewald-Ossen extinction theorem',” Am. J. Phys. 67, 929-930 (1999).
[CrossRef]

1996 (1)

S. I. Hosain, J. -P. Meunier, and Z. H. Wang, “Coupling efficiency of butt-joined planar waveguides with simultaneous tilt and transverse offset,” J. Lightwave Technol. 14, 901-907 (1996).
[CrossRef]

1994 (2)

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder interferometer polarization splitter in InGaAsP-InP,” IEEE Photon. Technol. Lett. 6, 402-405 (1994).
[CrossRef]

P. Wei and W. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett. 6, 245-248 (1994).
[CrossRef]

1990 (1)

R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, “A frequency dependent finite-difference time domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222-227 (1990).
[CrossRef]

1985 (1)

Alexander, R. W.

Ao, X. Y.

X. Y. Ao, L. Liu, L. Wosinski, and S. L. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Bell, R. J.

Cai, J. B.

Chang, S. H.

C. Y. Tai, S. H. Chang, and T. C. Chiu, “Design and analysis of an ultra-compact and ultrawideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photonics Technol. Lett. 19, 1448-1450 (2007).
[CrossRef]

Cheben, P.

Chiu, T. C.

C. Y. Tai, S. H. Chang, and T. C. Chiu, “Design and analysis of an ultra-compact and ultrawideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photonics Technol. Lett. 19, 1448-1450 (2007).
[CrossRef]

de Vreede, A. H.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder interferometer polarization splitter in InGaAsP-InP,” IEEE Photon. Technol. Lett. 6, 402-405 (1994).
[CrossRef]

Fallahi, M.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
[CrossRef]

Groen, F. H.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder interferometer polarization splitter in InGaAsP-InP,” IEEE Photon. Technol. Lett. 6, 402-405 (1994).
[CrossRef]

He, S. L.

X. Y. Ao, L. Liu, L. Wosinski, and S. L. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Hong, J. M.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. H. Woo, S. H. Kim and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett. 15, 72-74 (2003).
[CrossRef]

Hosain, S. I.

S. I. Hosain, J. -P. Meunier, and Z. H. Wang, “Coupling efficiency of butt-joined planar waveguides with simultaneous tilt and transverse offset,” J. Lightwave Technol. 14, 901-907 (1996).
[CrossRef]

Hunsberger, F. P.

R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, “A frequency dependent finite-difference time domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222-227 (1990).
[CrossRef]

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics: Theory and Technology, 5th ed. (Springer, 2002), Chap. 4.

Janz, S.

Jeong, J. W.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. H. Woo, S. H. Kim and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett. 15, 72-74 (2003).
[CrossRef]

Jiang, J. H.

Juretschke, H. J.

H. J. Juretschke, “Comment on 'Microscopic approach to reflection, transmission, and the Ewald-Ossen extinction theorem',” Am. J. Phys. 67, 929-930 (1999).
[CrossRef]

Kim, S. H.

S. H. Kim, G. P. Nordin, J. B. Cai, and J. H. Jiang, “Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure,” Opt. Lett. 28, 2384-2386 (2003).
[CrossRef] [PubMed]

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. H. Woo, S. H. Kim and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett. 15, 72-74 (2003).
[CrossRef]

Kunz, K.

R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, “A frequency dependent finite-difference time domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222-227 (1990).
[CrossRef]

Lee, E. H.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. H. Woo, S. H. Kim and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett. 15, 72-74 (2003).
[CrossRef]

Lee, S. G.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. H. Woo, S. H. Kim and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett. 15, 72-74 (2003).
[CrossRef]

Liu, L.

X. Y. Ao, L. Liu, L. Wosinski, and S. L. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Liu, T.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
[CrossRef]

Liu, W.

Long, L. L. L.

Lu, Y. F.

Luebbers, R.

R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, “A frequency dependent finite-difference time domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222-227 (1990).
[CrossRef]

Mansuripur, M.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
[CrossRef]

Metaal, E. G.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder interferometer polarization splitter in InGaAsP-InP,” IEEE Photon. Technol. Lett. 6, 402-405 (1994).
[CrossRef]

Meunier, J. -P.

S. I. Hosain, J. -P. Meunier, and Z. H. Wang, “Coupling efficiency of butt-joined planar waveguides with simultaneous tilt and transverse offset,” J. Lightwave Technol. 14, 901-907 (1996).
[CrossRef]

Moloney, J. V.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
[CrossRef]

Nordin, G. P.

O, B.-H.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. H. Woo, S. H. Kim and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett. 15, 72-74 (2003).
[CrossRef]

Ordal, M. A.

Park, S. G.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. H. Woo, S. H. Kim and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett. 15, 72-74 (2003).
[CrossRef]

Park, S. R.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. H. Woo, S. H. Kim and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett. 15, 72-74 (2003).
[CrossRef]

Querry, M. R.

Ryu, H. H.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. H. Woo, S. H. Kim and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett. 15, 72-74 (2003).
[CrossRef]

Schneider, M.

R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, “A frequency dependent finite-difference time domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222-227 (1990).
[CrossRef]

Smit, M. K.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder interferometer polarization splitter in InGaAsP-InP,” IEEE Photon. Technol. Lett. 6, 402-405 (1994).
[CrossRef]

Soldano, L. B.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder interferometer polarization splitter in InGaAsP-InP,” IEEE Photon. Technol. Lett. 6, 402-405 (1994).
[CrossRef]

Standler, R.

R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, “A frequency dependent finite-difference time domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222-227 (1990).
[CrossRef]

Tai, C. Y.

C. Y. Tai, S. H. Chang, and T. C. Chiu, “Design and analysis of an ultra-compact and ultrawideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photonics Technol. Lett. 19, 1448-1450 (2007).
[CrossRef]

Tarr, N. G.

Verbeek, B. H.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder interferometer polarization splitter in InGaAsP-InP,” IEEE Photon. Technol. Lett. 6, 402-405 (1994).
[CrossRef]

Waldron, P.

Wang, W.

P. Wei and W. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett. 6, 245-248 (1994).
[CrossRef]

Wang, Z. H.

S. I. Hosain, J. -P. Meunier, and Z. H. Wang, “Coupling efficiency of butt-joined planar waveguides with simultaneous tilt and transverse offset,” J. Lightwave Technol. 14, 901-907 (1996).
[CrossRef]

Wei, P.

P. Wei and W. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett. 6, 245-248 (1994).
[CrossRef]

Woo, D. H.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. H. Woo, S. H. Kim and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett. 15, 72-74 (2003).
[CrossRef]

Wosinski, L.

X. Y. Ao, L. Liu, L. Wosinski, and S. L. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Xu, D. X.

Yang, Z. Y.

Ye, W. N.

Zakharian, A. R.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
[CrossRef]

Zhou, L. B.

Am. J. Phys. (1)

H. J. Juretschke, “Comment on 'Microscopic approach to reflection, transmission, and the Ewald-Ossen extinction theorem',” Am. J. Phys. 67, 929-930 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

X. Y. Ao, L. Liu, L. Wosinski, and S. L. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
[CrossRef]

P. Wei and W. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett. 6, 245-248 (1994).
[CrossRef]

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. H. Woo, S. H. Kim and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett. 15, 72-74 (2003).
[CrossRef]

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder interferometer polarization splitter in InGaAsP-InP,” IEEE Photon. Technol. Lett. 6, 402-405 (1994).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

C. Y. Tai, S. H. Chang, and T. C. Chiu, “Design and analysis of an ultra-compact and ultrawideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photonics Technol. Lett. 19, 1448-1450 (2007).
[CrossRef]

IEEE Trans. Electromagn. Compat. (1)

R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, “A frequency dependent finite-difference time domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222-227 (1990).
[CrossRef]

J. Lightwave Technol. (1)

S. I. Hosain, J. -P. Meunier, and Z. H. Wang, “Coupling efficiency of butt-joined planar waveguides with simultaneous tilt and transverse offset,” J. Lightwave Technol. 14, 901-907 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (1)

R. G. Hunsperger, Integrated Optics: Theory and Technology, 5th ed. (Springer, 2002), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Layout of the polarization beam splitter.

Fig. 2
Fig. 2

Extinction ratio of port 2 calculated at various combinations of the cladding index and filling factors.

Fig. 3
Fig. 3

Supermodes of the coupled SPPs for waveguides array with period of 120 nm and 210 nm , respectively.

Fig. 4
Fig. 4

(a) Snapshots of the incident and the reflected field. (b) Reflectance as a function of the upshifted distance.

Fig. 5
Fig. 5

Insertion loss and extinction ratio as a function of the length of gold arrays.

Fig. 6
Fig. 6

Insertion loss and extinction ratio as a function of the length of gold arrays.

Fig. 7
Fig. 7

(a) Snapshot for the incident and the refracted waves. The inset is a magnification of the interface zone. (b) TE transmittance as a function of the downshift distance of the output waveguide P3.

Fig. 8
Fig. 8

Frequency response of the insertion loss and the extinction ratio.

Fig. 9
Fig. 9

(a) Contour map of the extinction ratio for the TE wave as functions of the operation wavelength and the incident angle. (b) Insertion loss for the TE wave as functions of the operation wavelength and the incident angle.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I L 2 = 10 × log ( P 2 TM P 1 TM ) , I L 3 = 10 × log ( P 3 TE P 1 TE ) ,
E R 2 = 10 × log ( P 2 TE P 2 TM ) , E R 3 = 10 × log ( P 3 TM P 3 TE ) ,
η = S ψ 1 ψ 2 d A 2 ,
T ( t ) = exp [ 1 2 ( t t c t w ) 2 ] sin ( ω t ) ,

Metrics