L. Wu, J. F. Zhang, and L. Li, “Modulational instability and bright solitary wave solution for Bose-Einstein condensates with time-dependent scattering length and harmonic potential,” New J. Phys. 9, 69-69 (2007).

[CrossRef]

H. F. Zhang, J. F. Wang, L. Li, S. T. Jia, and G. S. Zhou, “Generation and propagation of subpicosecond pulse train,” Chin. Phys. 16, 449-455 (2007).

[CrossRef]

S. A. Ponomarenko and G. P. Agrawal, “Interactions of chirped and chirp-free similaritons in optical fiber amplifiers,” Opt. Express 15, 2963-2973 (2007).

[CrossRef]
[PubMed]

V. N. Serkin, A. Hasegawa, and T. L. Belyaeva, “Nonautonomous solitons in external pontentials,” Phys. Rev. Lett. 98, 074102 (2007).

[CrossRef]
[PubMed]

S. A. Ponomarenko and G. P. Agrawal, “Optical similaritons in nonlinear waveguides,” Opt. Lett. 32, 1659-1661 (2007).

[CrossRef]
[PubMed]

H. M. Li and F. Q. Song, “Novel exact self-similar solitary waves in graded-index media with Kerr nonlinearity,” Opt. Commun. 277, 174-180 (2007).

[CrossRef]

G. Y. Yang, R. Y. Hao, L. Li, Z. H. Li, and G. S. Zhou, “Cascade compression induced by nonlinear barriers in propagation of optical solitons,” Opt. Commun. 260, 282-287 (2006).

[CrossRef]

S. A. Ponomarenko and G. P. Agrawal, “Do solitonlike self-similar waves exist in nonlinear optical media?” Phys. Rev. Lett. 97, 013901 (2006).

[CrossRef]
[PubMed]

J. F. Wang, L. Li, Z. H. Li, G. S. Zhou, D. Mihalache, and B. A. Malomed, “Generation, compression and propagation of pulse trains under higher-order effects,” Opt. Commun. 263, 328-336 (2006).

[CrossRef]

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact solutions of the generalized nonlinear-Schrödinger equation with distributed coefficients,” Phys. Rev. E 71, 056619 (2005).

[CrossRef]

L. Y. Wang, L. Li, Z. H. Li, G. S. Zhou, and D. Mihalache, “Generation, compression, and propagation of pulse trains in the nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. E 72, 036614 (2005).

[CrossRef]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).

[CrossRef]
[PubMed]

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. Lett. 90, 113902 (2003).

[CrossRef]
[PubMed]

V. N. Serkin and A. Hasegawa, “Exactly integrable nonlinear Schrödinger equation models with varying dispersion, nonlinearity and gain: Application for soliton dispersion managements,” IEEE J. Sel. Top. Quantum Electron. 8, 418-431 (2002).

[CrossRef]

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, “Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers,” J. Opt. Soc. Am. B 19, 461-469 (2002).

[CrossRef]

V. N. Serkin, M. Matsumoto, and T. L. Belyaeva, “Bright and dark solitary nonlinear Bloch waves in dispersion managed fiber systems and soliton lasers,” Opt. Commun. 196, 159-171 (2001).

[CrossRef]

V. N. Serkin, V. M. Chapela, J. Persino, and T. L. Belyaeva, “Nonlinear tunneling of temporal and spatial optical solitons through organic thin films and polymeric waveguides,” Opt. Commun. 192, 237-244 (2001).

[CrossRef]

V. N. Serkin and T. L. Belyaeva, “High-energy optical Schrödinger solitons,” JETP Lett. 74, 573-577 (2001).

[CrossRef]

V. N. Serkin and A. Hasegawa, “Novel soliton solutions of the nonlinear Schrödinger equation model,” Phys. Rev. Lett. 85, 4502-4505 (2000).

[CrossRef]
[PubMed]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010-6013 (2000).

[CrossRef]
[PubMed]

A. C. Newell, “Nonlinear tunneling,” J. Math. Phys. 19, 1126-1133 (1978).

[CrossRef]

S. A. Ponomarenko and G. P. Agrawal, “Interactions of chirped and chirp-free similaritons in optical fiber amplifiers,” Opt. Express 15, 2963-2973 (2007).

[CrossRef]
[PubMed]

S. A. Ponomarenko and G. P. Agrawal, “Optical similaritons in nonlinear waveguides,” Opt. Lett. 32, 1659-1661 (2007).

[CrossRef]
[PubMed]

S. A. Ponomarenko and G. P. Agrawal, “Do solitonlike self-similar waves exist in nonlinear optical media?” Phys. Rev. Lett. 97, 013901 (2006).

[CrossRef]
[PubMed]

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

D. Anderson, M. Lisak, B. Malomed, and M. Quiroga-Teixeiro, “Tunneling of an optical soliton through a fiber junction,” J. Opt. Soc. Am. B 11, 2380-2384 (1994).

[CrossRef]

D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave-breaking-free pulses in nonlinear-optical fibers,” J. Opt. Soc. Am. B 10, 1185-1190 (1993).

[CrossRef]

G. I. Barenblatt, Scaling, Self-Similarity and Intermediate Asymptotics (Cambridge U. Press, 1996).

V. N. Serkin, A. Hasegawa, and T. L. Belyaeva, “Nonautonomous solitons in external pontentials,” Phys. Rev. Lett. 98, 074102 (2007).

[CrossRef]
[PubMed]

V. N. Serkin, V. M. Chapela, J. Persino, and T. L. Belyaeva, “Nonlinear tunneling of temporal and spatial optical solitons through organic thin films and polymeric waveguides,” Opt. Commun. 192, 237-244 (2001).

[CrossRef]

V. N. Serkin and T. L. Belyaeva, “High-energy optical Schrödinger solitons,” JETP Lett. 74, 573-577 (2001).

[CrossRef]

V. N. Serkin, M. Matsumoto, and T. L. Belyaeva, “Bright and dark solitary nonlinear Bloch waves in dispersion managed fiber systems and soliton lasers,” Opt. Commun. 196, 159-171 (2001).

[CrossRef]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).

[CrossRef]
[PubMed]

V. N. Serkin, V. M. Chapela, J. Persino, and T. L. Belyaeva, “Nonlinear tunneling of temporal and spatial optical solitons through organic thin films and polymeric waveguides,” Opt. Commun. 192, 237-244 (2001).

[CrossRef]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).

[CrossRef]
[PubMed]

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, “Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers,” J. Opt. Soc. Am. B 19, 461-469 (2002).

[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010-6013 (2000).

[CrossRef]
[PubMed]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010-6013 (2000).

[CrossRef]
[PubMed]

G. Y. Yang, R. Y. Hao, L. Li, Z. H. Li, and G. S. Zhou, “Cascade compression induced by nonlinear barriers in propagation of optical solitons,” Opt. Commun. 260, 282-287 (2006).

[CrossRef]

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact solutions of the generalized nonlinear-Schrödinger equation with distributed coefficients,” Phys. Rev. E 71, 056619 (2005).

[CrossRef]

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. Lett. 90, 113902 (2003).

[CrossRef]
[PubMed]

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, “Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers,” J. Opt. Soc. Am. B 19, 461-469 (2002).

[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010-6013 (2000).

[CrossRef]
[PubMed]

V. N. Serkin, A. Hasegawa, and T. L. Belyaeva, “Nonautonomous solitons in external pontentials,” Phys. Rev. Lett. 98, 074102 (2007).

[CrossRef]
[PubMed]

V. N. Serkin and A. Hasegawa, “Exactly integrable nonlinear Schrödinger equation models with varying dispersion, nonlinearity and gain: Application for soliton dispersion managements,” IEEE J. Sel. Top. Quantum Electron. 8, 418-431 (2002).

[CrossRef]

V. N. Serkin and A. Hasegawa, “Novel soliton solutions of the nonlinear Schrödinger equation model,” Phys. Rev. Lett. 85, 4502-4505 (2000).

[CrossRef]
[PubMed]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).

[CrossRef]
[PubMed]

H. F. Zhang, J. F. Wang, L. Li, S. T. Jia, and G. S. Zhou, “Generation and propagation of subpicosecond pulse train,” Chin. Phys. 16, 449-455 (2007).

[CrossRef]

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact solutions of the generalized nonlinear-Schrödinger equation with distributed coefficients,” Phys. Rev. E 71, 056619 (2005).

[CrossRef]

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. Lett. 90, 113902 (2003).

[CrossRef]
[PubMed]

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, “Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers,” J. Opt. Soc. Am. B 19, 461-469 (2002).

[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010-6013 (2000).

[CrossRef]
[PubMed]

H. M. Li and F. Q. Song, “Novel exact self-similar solitary waves in graded-index media with Kerr nonlinearity,” Opt. Commun. 277, 174-180 (2007).

[CrossRef]

L. Wu, J. F. Zhang, L. Li, Q. Tian, and K. Porsezian, “Similaritons in nonlinear optical systems,” Opt. Express 16, 6352-6360 (2008).

[CrossRef]
[PubMed]

H. F. Zhang, J. F. Wang, L. Li, S. T. Jia, and G. S. Zhou, “Generation and propagation of subpicosecond pulse train,” Chin. Phys. 16, 449-455 (2007).

[CrossRef]

L. Wu, J. F. Zhang, and L. Li, “Modulational instability and bright solitary wave solution for Bose-Einstein condensates with time-dependent scattering length and harmonic potential,” New J. Phys. 9, 69-69 (2007).

[CrossRef]

G. Y. Yang, R. Y. Hao, L. Li, Z. H. Li, and G. S. Zhou, “Cascade compression induced by nonlinear barriers in propagation of optical solitons,” Opt. Commun. 260, 282-287 (2006).

[CrossRef]

J. F. Wang, L. Li, Z. H. Li, G. S. Zhou, D. Mihalache, and B. A. Malomed, “Generation, compression and propagation of pulse trains under higher-order effects,” Opt. Commun. 263, 328-336 (2006).

[CrossRef]

L. Y. Wang, L. Li, Z. H. Li, G. S. Zhou, and D. Mihalache, “Generation, compression, and propagation of pulse trains in the nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. E 72, 036614 (2005).

[CrossRef]

J. F. Wang, L. Li, Z. H. Li, G. S. Zhou, D. Mihalache, and B. A. Malomed, “Generation, compression and propagation of pulse trains under higher-order effects,” Opt. Commun. 263, 328-336 (2006).

[CrossRef]

G. Y. Yang, R. Y. Hao, L. Li, Z. H. Li, and G. S. Zhou, “Cascade compression induced by nonlinear barriers in propagation of optical solitons,” Opt. Commun. 260, 282-287 (2006).

[CrossRef]

L. Y. Wang, L. Li, Z. H. Li, G. S. Zhou, and D. Mihalache, “Generation, compression, and propagation of pulse trains in the nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. E 72, 036614 (2005).

[CrossRef]

D. Anderson, M. Lisak, B. Malomed, and M. Quiroga-Teixeiro, “Tunneling of an optical soliton through a fiber junction,” J. Opt. Soc. Am. B 11, 2380-2384 (1994).

[CrossRef]

D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave-breaking-free pulses in nonlinear-optical fibers,” J. Opt. Soc. Am. B 10, 1185-1190 (1993).

[CrossRef]

J. F. Wang, L. Li, Z. H. Li, G. S. Zhou, D. Mihalache, and B. A. Malomed, “Generation, compression and propagation of pulse trains under higher-order effects,” Opt. Commun. 263, 328-336 (2006).

[CrossRef]

V. N. Serkin, M. Matsumoto, and T. L. Belyaeva, “Bright and dark solitary nonlinear Bloch waves in dispersion managed fiber systems and soliton lasers,” Opt. Commun. 196, 159-171 (2001).

[CrossRef]

J. F. Wang, L. Li, Z. H. Li, G. S. Zhou, D. Mihalache, and B. A. Malomed, “Generation, compression and propagation of pulse trains under higher-order effects,” Opt. Commun. 263, 328-336 (2006).

[CrossRef]

L. Y. Wang, L. Li, Z. H. Li, G. S. Zhou, and D. Mihalache, “Generation, compression, and propagation of pulse trains in the nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. E 72, 036614 (2005).

[CrossRef]

A. C. Newell, “Nonlinear tunneling,” J. Math. Phys. 19, 1126-1133 (1978).

[CrossRef]

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact solutions of the generalized nonlinear-Schrödinger equation with distributed coefficients,” Phys. Rev. E 71, 056619 (2005).

[CrossRef]

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. Lett. 90, 113902 (2003).

[CrossRef]
[PubMed]

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, “Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers,” J. Opt. Soc. Am. B 19, 461-469 (2002).

[CrossRef]

V. N. Serkin, V. M. Chapela, J. Persino, and T. L. Belyaeva, “Nonlinear tunneling of temporal and spatial optical solitons through organic thin films and polymeric waveguides,” Opt. Commun. 192, 237-244 (2001).

[CrossRef]

V. N. Serkin, A. Hasegawa, and T. L. Belyaeva, “Nonautonomous solitons in external pontentials,” Phys. Rev. Lett. 98, 074102 (2007).

[CrossRef]
[PubMed]

V. N. Serkin and A. Hasegawa, “Exactly integrable nonlinear Schrödinger equation models with varying dispersion, nonlinearity and gain: Application for soliton dispersion managements,” IEEE J. Sel. Top. Quantum Electron. 8, 418-431 (2002).

[CrossRef]

V. N. Serkin, M. Matsumoto, and T. L. Belyaeva, “Bright and dark solitary nonlinear Bloch waves in dispersion managed fiber systems and soliton lasers,” Opt. Commun. 196, 159-171 (2001).

[CrossRef]

V. N. Serkin and T. L. Belyaeva, “High-energy optical Schrödinger solitons,” JETP Lett. 74, 573-577 (2001).

[CrossRef]

V. N. Serkin, V. M. Chapela, J. Persino, and T. L. Belyaeva, “Nonlinear tunneling of temporal and spatial optical solitons through organic thin films and polymeric waveguides,” Opt. Commun. 192, 237-244 (2001).

[CrossRef]

V. N. Serkin and A. Hasegawa, “Novel soliton solutions of the nonlinear Schrödinger equation model,” Phys. Rev. Lett. 85, 4502-4505 (2000).

[CrossRef]
[PubMed]

H. M. Li and F. Q. Song, “Novel exact self-similar solitary waves in graded-index media with Kerr nonlinearity,” Opt. Commun. 277, 174-180 (2007).

[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010-6013 (2000).

[CrossRef]
[PubMed]

H. F. Zhang, J. F. Wang, L. Li, S. T. Jia, and G. S. Zhou, “Generation and propagation of subpicosecond pulse train,” Chin. Phys. 16, 449-455 (2007).

[CrossRef]

J. F. Wang, L. Li, Z. H. Li, G. S. Zhou, D. Mihalache, and B. A. Malomed, “Generation, compression and propagation of pulse trains under higher-order effects,” Opt. Commun. 263, 328-336 (2006).

[CrossRef]

L. Y. Wang, L. Li, Z. H. Li, G. S. Zhou, and D. Mihalache, “Generation, compression, and propagation of pulse trains in the nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. E 72, 036614 (2005).

[CrossRef]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).

[CrossRef]
[PubMed]

L. Wu, J. F. Zhang, L. Li, Q. Tian, and K. Porsezian, “Similaritons in nonlinear optical systems,” Opt. Express 16, 6352-6360 (2008).

[CrossRef]
[PubMed]

L. Wu, J. F. Zhang, and L. Li, “Modulational instability and bright solitary wave solution for Bose-Einstein condensates with time-dependent scattering length and harmonic potential,” New J. Phys. 9, 69-69 (2007).

[CrossRef]

G. Y. Yang, R. Y. Hao, L. Li, Z. H. Li, and G. S. Zhou, “Cascade compression induced by nonlinear barriers in propagation of optical solitons,” Opt. Commun. 260, 282-287 (2006).

[CrossRef]

H. F. Zhang, J. F. Wang, L. Li, S. T. Jia, and G. S. Zhou, “Generation and propagation of subpicosecond pulse train,” Chin. Phys. 16, 449-455 (2007).

[CrossRef]

L. Wu, J. F. Zhang, L. Li, Q. Tian, and K. Porsezian, “Similaritons in nonlinear optical systems,” Opt. Express 16, 6352-6360 (2008).

[CrossRef]
[PubMed]

L. Wu, J. F. Zhang, and L. Li, “Modulational instability and bright solitary wave solution for Bose-Einstein condensates with time-dependent scattering length and harmonic potential,” New J. Phys. 9, 69-69 (2007).

[CrossRef]

H. F. Zhang, J. F. Wang, L. Li, S. T. Jia, and G. S. Zhou, “Generation and propagation of subpicosecond pulse train,” Chin. Phys. 16, 449-455 (2007).

[CrossRef]

G. Y. Yang, R. Y. Hao, L. Li, Z. H. Li, and G. S. Zhou, “Cascade compression induced by nonlinear barriers in propagation of optical solitons,” Opt. Commun. 260, 282-287 (2006).

[CrossRef]

J. F. Wang, L. Li, Z. H. Li, G. S. Zhou, D. Mihalache, and B. A. Malomed, “Generation, compression and propagation of pulse trains under higher-order effects,” Opt. Commun. 263, 328-336 (2006).

[CrossRef]

L. Y. Wang, L. Li, Z. H. Li, G. S. Zhou, and D. Mihalache, “Generation, compression, and propagation of pulse trains in the nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. E 72, 036614 (2005).

[CrossRef]

H. F. Zhang, J. F. Wang, L. Li, S. T. Jia, and G. S. Zhou, “Generation and propagation of subpicosecond pulse train,” Chin. Phys. 16, 449-455 (2007).

[CrossRef]

V. N. Serkin and A. Hasegawa, “Exactly integrable nonlinear Schrödinger equation models with varying dispersion, nonlinearity and gain: Application for soliton dispersion managements,” IEEE J. Sel. Top. Quantum Electron. 8, 418-431 (2002).

[CrossRef]

A. C. Newell, “Nonlinear tunneling,” J. Math. Phys. 19, 1126-1133 (1978).

[CrossRef]

D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave-breaking-free pulses in nonlinear-optical fibers,” J. Opt. Soc. Am. B 10, 1185-1190 (1993).

[CrossRef]

D. Anderson, M. Lisak, B. Malomed, and M. Quiroga-Teixeiro, “Tunneling of an optical soliton through a fiber junction,” J. Opt. Soc. Am. B 11, 2380-2384 (1994).

[CrossRef]

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, “Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers,” J. Opt. Soc. Am. B 19, 461-469 (2002).

[CrossRef]

V. N. Serkin and T. L. Belyaeva, “High-energy optical Schrödinger solitons,” JETP Lett. 74, 573-577 (2001).

[CrossRef]

L. Wu, J. F. Zhang, and L. Li, “Modulational instability and bright solitary wave solution for Bose-Einstein condensates with time-dependent scattering length and harmonic potential,” New J. Phys. 9, 69-69 (2007).

[CrossRef]

V. N. Serkin, V. M. Chapela, J. Persino, and T. L. Belyaeva, “Nonlinear tunneling of temporal and spatial optical solitons through organic thin films and polymeric waveguides,” Opt. Commun. 192, 237-244 (2001).

[CrossRef]

G. Y. Yang, R. Y. Hao, L. Li, Z. H. Li, and G. S. Zhou, “Cascade compression induced by nonlinear barriers in propagation of optical solitons,” Opt. Commun. 260, 282-287 (2006).

[CrossRef]

H. M. Li and F. Q. Song, “Novel exact self-similar solitary waves in graded-index media with Kerr nonlinearity,” Opt. Commun. 277, 174-180 (2007).

[CrossRef]

J. F. Wang, L. Li, Z. H. Li, G. S. Zhou, D. Mihalache, and B. A. Malomed, “Generation, compression and propagation of pulse trains under higher-order effects,” Opt. Commun. 263, 328-336 (2006).

[CrossRef]

V. N. Serkin, M. Matsumoto, and T. L. Belyaeva, “Bright and dark solitary nonlinear Bloch waves in dispersion managed fiber systems and soliton lasers,” Opt. Commun. 196, 159-171 (2001).

[CrossRef]

L. Wu, J. F. Zhang, L. Li, Q. Tian, and K. Porsezian, “Similaritons in nonlinear optical systems,” Opt. Express 16, 6352-6360 (2008).

[CrossRef]
[PubMed]

S. A. Ponomarenko and G. P. Agrawal, “Interactions of chirped and chirp-free similaritons in optical fiber amplifiers,” Opt. Express 15, 2963-2973 (2007).

[CrossRef]
[PubMed]

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact solutions of the generalized nonlinear-Schrödinger equation with distributed coefficients,” Phys. Rev. E 71, 056619 (2005).

[CrossRef]

L. Y. Wang, L. Li, Z. H. Li, G. S. Zhou, and D. Mihalache, “Generation, compression, and propagation of pulse trains in the nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. E 72, 036614 (2005).

[CrossRef]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).

[CrossRef]
[PubMed]

V. N. Serkin and A. Hasegawa, “Novel soliton solutions of the nonlinear Schrödinger equation model,” Phys. Rev. Lett. 85, 4502-4505 (2000).

[CrossRef]
[PubMed]

V. N. Serkin, A. Hasegawa, and T. L. Belyaeva, “Nonautonomous solitons in external pontentials,” Phys. Rev. Lett. 98, 074102 (2007).

[CrossRef]
[PubMed]

V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. Lett. 90, 113902 (2003).

[CrossRef]
[PubMed]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010-6013 (2000).

[CrossRef]
[PubMed]

S. A. Ponomarenko and G. P. Agrawal, “Do solitonlike self-similar waves exist in nonlinear optical media?” Phys. Rev. Lett. 97, 013901 (2006).

[CrossRef]
[PubMed]

G. I. Barenblatt, Scaling, Self-Similarity and Intermediate Asymptotics (Cambridge U. Press, 1996).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).