Abstract

We present an extended study of an ultrahigh-repetition-rate Raman fiber laser passively mode-locked through dissipative four-wave mixing. We demonstrate mode locking at 100 and 160GHz repetition rates, corresponding to harmonic frequencies more than 400,000 times the cavity resonance frequency. By varying the output coupling ratio we are able to change the threshold and slope efficiency of the laser. The maximum average output power achieved was 926mW, a further twofold increase of the output power reported previously for this type of laser. Further numerical analysis reveals that the main factor limiting the pulse quality of our setup is supermode noise. Subsequently, we experimentally investigate the use of all-fiber subcavity Fabry–Perot filters to reduce the noise and demonstrate a significant improvement in the laser operation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. P. Ippen, “Principles of passive mode locking,” Appl. Phys. B B58, 159-170 (1994).
    [CrossRef]
  2. C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, “Low-threshold self-induced modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train,” Opt. Lett. 27, 915-917 (2002).
    [CrossRef]
  3. S. Zhang, F. Li, X. Dong, P. Shum, X. Yang, X. Zhou, Y. Gong, and C. Lu, “Passive mode locking at harmonics of the free spectral range of the intracavity filter in a fiber ring laser,” Opt. Lett. 30, 2852-2854 (2005).
    [CrossRef]
  4. D. Panasenko, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18, 853-855 (2006).
    [CrossRef]
  5. S. Coen and M. Haelterman, “Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity,” Opt. Lett. 26, 39-41 (2001).
    [CrossRef]
  6. P. Honzatko, P. Peterka, and J. Kanka, “Modulational-instability sigma-resonator fiber laser,” Opt. Lett. 26, 810-812 (2001).
    [CrossRef]
  7. P. Franco, F. Fontana, I. Cristiani, M. Midrio, and M. Romagnoli, “Self-induced modulational-instability laser,” Opt. Lett. 20, 2009-2011 (1995).
    [CrossRef]
  8. E. Yoshida and M. Nakazawa, “Low-threshold 115-GHz continuous-wave modulational-instability erbium-doped fiber laser,” Opt. Lett. 22, 1409-1411 (1997).
    [CrossRef]
  9. D. A. Chestnut and J. R. Taylor, “Wavelength-versatile subpicosecond pulsed lasers using Raman gain in figure-of-eight fiber geometries,” Opt. Lett. 30, 2982-2984 (2005).
    [CrossRef]
  10. M. Nakazawa, K. Tamura, and E. Yoshida, “Supermode noise suppression in a harmonically modelocked fibre laser by selfphase modulation and spectral filtering,” Electron. Lett. 32, 461-463 (1996).
    [CrossRef]
  11. L. Yuhua, L. Caiyun, W. Jian, W. Boyu, and G. Yizhi, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett. 10, 1250-1252 (1998).
    [CrossRef]
  12. Y. Ding, Y. Wang, Z. G. Li, L. Tan, and S. Li, “Pulse amplitude equalization in a harmonically mode-locked fiber laser using a dispersion imbalanced nonlinear loop mirror,” Opt. Commun. 225, 363-369 (2003).
    [CrossRef]
  13. O. Pottiez, O. Deparis, M. Haelterman, R. Kiyan, P. Emplit, P. Megret, and M. Blondel, “Experimental study of supermode noise of harmonically mode-locked erbium-doped fibre lasers with composite cavity,” Opt. Commun. 202, 161-167 (2002).
    [CrossRef]
  14. K. K. Gupta, N. Onodera, M. Hyodo, M. Watanabe, and J. Ravikumar, “Evaluation of amplitude-stabilized optical pulse trains from rational harmonically mode-locked fiber ring lasers,” J. Lightwave Technol. 22, 1935-1945 (2004).
    [CrossRef]
  15. G.-R. Lin, M.-C. Wu, and Y.-C. Chang, “Suppression of phase and supermode noise in a harmonic mode-locked erbium-doped fiber laser with a semiconductor-optical-amplifier-based high-pass filter,” Opt. Lett. 30, 1834-1836 (2005).
    [CrossRef]
  16. X. Shan and D. M. Spirit, “Novel method to suppress noise in harmonically modelocked erbium fibre lasers,” Electron. Lett. 29, 979-981 (1993).
    [CrossRef]
  17. J. Schroder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100GHz repetition rate,” Opt. Lett. 31, 3489-3491 (2006).
    [CrossRef]
  18. M. Quiroga-Teixeiro, C. Balslev Clausen, M. P. Sorensen, P. L. Christiansen, and P. A. Andrekson, “Passive mode locking by dissipative four-wave mixing,” J. Opt. Soc. Am. B 15, 1315-1321 (1998).
    [CrossRef]
  19. T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, “Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser,” Electron. Lett. 37, 881-882 (2001).
    [CrossRef]
  20. M. Nakazawa, K. Suzuki, and H. A. Haus, “The modulational instability laser. I. Experiment,” IEEE J. Quantum Electron. 25, 2036-2044 (1989).
    [CrossRef]
  21. T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: Normal dispersion and dark-pulse train generation,” Opt. Lett. 27, 482-484 (2002).
    [CrossRef]
  22. Y.-G. Han, T. V. A. Tran, and S. B. Lee, “Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber,” Opt. Lett. 31, 697-699 (2006).
    [CrossRef]
  23. Redfern Optical Components Pty Ltd, Suite 102, National Innovation Centre, Australian Technology Park, Eveleigh NSW 1430 Sydney Australia, enquiry@redferncomponets.com.
  24. D. Zhao, Y. Lai, X. Shu, L. Zhang, and I. Bennion, “Supermode-noise suppression using a nonlinear Fabry-Perot filter in a harmonically mode-locked fiber ring laser,” Appl. Phys. Lett. 81, 4520-4522 (2002).
    [CrossRef]
  25. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

2006

2005

2004

2003

Y. Ding, Y. Wang, Z. G. Li, L. Tan, and S. Li, “Pulse amplitude equalization in a harmonically mode-locked fiber laser using a dispersion imbalanced nonlinear loop mirror,” Opt. Commun. 225, 363-369 (2003).
[CrossRef]

2002

O. Pottiez, O. Deparis, M. Haelterman, R. Kiyan, P. Emplit, P. Megret, and M. Blondel, “Experimental study of supermode noise of harmonically mode-locked erbium-doped fibre lasers with composite cavity,” Opt. Commun. 202, 161-167 (2002).
[CrossRef]

D. Zhao, Y. Lai, X. Shu, L. Zhang, and I. Bennion, “Supermode-noise suppression using a nonlinear Fabry-Perot filter in a harmonically mode-locked fiber ring laser,” Appl. Phys. Lett. 81, 4520-4522 (2002).
[CrossRef]

T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: Normal dispersion and dark-pulse train generation,” Opt. Lett. 27, 482-484 (2002).
[CrossRef]

C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, “Low-threshold self-induced modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train,” Opt. Lett. 27, 915-917 (2002).
[CrossRef]

2001

1998

L. Yuhua, L. Caiyun, W. Jian, W. Boyu, and G. Yizhi, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett. 10, 1250-1252 (1998).
[CrossRef]

M. Quiroga-Teixeiro, C. Balslev Clausen, M. P. Sorensen, P. L. Christiansen, and P. A. Andrekson, “Passive mode locking by dissipative four-wave mixing,” J. Opt. Soc. Am. B 15, 1315-1321 (1998).
[CrossRef]

1997

1996

M. Nakazawa, K. Tamura, and E. Yoshida, “Supermode noise suppression in a harmonically modelocked fibre laser by selfphase modulation and spectral filtering,” Electron. Lett. 32, 461-463 (1996).
[CrossRef]

1995

1994

E. P. Ippen, “Principles of passive mode locking,” Appl. Phys. B B58, 159-170 (1994).
[CrossRef]

1993

X. Shan and D. M. Spirit, “Novel method to suppress noise in harmonically modelocked erbium fibre lasers,” Electron. Lett. 29, 979-981 (1993).
[CrossRef]

1989

M. Nakazawa, K. Suzuki, and H. A. Haus, “The modulational instability laser. I. Experiment,” IEEE J. Quantum Electron. 25, 2036-2044 (1989).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Andrekson, P. A.

Balslev Clausen, C.

Bennion, I.

D. Zhao, Y. Lai, X. Shu, L. Zhang, and I. Bennion, “Supermode-noise suppression using a nonlinear Fabry-Perot filter in a harmonically mode-locked fiber ring laser,” Appl. Phys. Lett. 81, 4520-4522 (2002).
[CrossRef]

Blondel, M.

O. Pottiez, O. Deparis, M. Haelterman, R. Kiyan, P. Emplit, P. Megret, and M. Blondel, “Experimental study of supermode noise of harmonically mode-locked erbium-doped fibre lasers with composite cavity,” Opt. Commun. 202, 161-167 (2002).
[CrossRef]

Boyu, W.

L. Yuhua, L. Caiyun, W. Jian, W. Boyu, and G. Yizhi, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett. 10, 1250-1252 (1998).
[CrossRef]

Caiyun, L.

L. Yuhua, L. Caiyun, W. Jian, W. Boyu, and G. Yizhi, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett. 10, 1250-1252 (1998).
[CrossRef]

Chang, Y.-C.

Chestnut, D. A.

Christiansen, P. L.

Coen, S.

Cristiani, I.

de Matos, C. J. S.

Deparis, O.

O. Pottiez, O. Deparis, M. Haelterman, R. Kiyan, P. Emplit, P. Megret, and M. Blondel, “Experimental study of supermode noise of harmonically mode-locked erbium-doped fibre lasers with composite cavity,” Opt. Commun. 202, 161-167 (2002).
[CrossRef]

T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, “Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser,” Electron. Lett. 37, 881-882 (2001).
[CrossRef]

Ding, Y.

Y. Ding, Y. Wang, Z. G. Li, L. Tan, and S. Li, “Pulse amplitude equalization in a harmonically mode-locked fiber laser using a dispersion imbalanced nonlinear loop mirror,” Opt. Commun. 225, 363-369 (2003).
[CrossRef]

Dong, X.

Emplit, P.

T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: Normal dispersion and dark-pulse train generation,” Opt. Lett. 27, 482-484 (2002).
[CrossRef]

O. Pottiez, O. Deparis, M. Haelterman, R. Kiyan, P. Emplit, P. Megret, and M. Blondel, “Experimental study of supermode noise of harmonically mode-locked erbium-doped fibre lasers with composite cavity,” Opt. Commun. 202, 161-167 (2002).
[CrossRef]

T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, “Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser,” Electron. Lett. 37, 881-882 (2001).
[CrossRef]

Fontana, F.

Franco, P.

Gong, Y.

Gupta, K. K.

Haelterman, M.

T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: Normal dispersion and dark-pulse train generation,” Opt. Lett. 27, 482-484 (2002).
[CrossRef]

O. Pottiez, O. Deparis, M. Haelterman, R. Kiyan, P. Emplit, P. Megret, and M. Blondel, “Experimental study of supermode noise of harmonically mode-locked erbium-doped fibre lasers with composite cavity,” Opt. Commun. 202, 161-167 (2002).
[CrossRef]

T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, “Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser,” Electron. Lett. 37, 881-882 (2001).
[CrossRef]

S. Coen and M. Haelterman, “Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity,” Opt. Lett. 26, 39-41 (2001).
[CrossRef]

Han, Y.-G.

Haus, H. A.

M. Nakazawa, K. Suzuki, and H. A. Haus, “The modulational instability laser. I. Experiment,” IEEE J. Quantum Electron. 25, 2036-2044 (1989).
[CrossRef]

Honzatko, P.

Hyodo, M.

Ippen, E. P.

E. P. Ippen, “Principles of passive mode locking,” Appl. Phys. B B58, 159-170 (1994).
[CrossRef]

Jian, W.

L. Yuhua, L. Caiyun, W. Jian, W. Boyu, and G. Yizhi, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett. 10, 1250-1252 (1998).
[CrossRef]

Kanka, J.

Kiyan, R.

O. Pottiez, O. Deparis, M. Haelterman, R. Kiyan, P. Emplit, P. Megret, and M. Blondel, “Experimental study of supermode noise of harmonically mode-locked erbium-doped fibre lasers with composite cavity,” Opt. Commun. 202, 161-167 (2002).
[CrossRef]

Lai, Y.

D. Zhao, Y. Lai, X. Shu, L. Zhang, and I. Bennion, “Supermode-noise suppression using a nonlinear Fabry-Perot filter in a harmonically mode-locked fiber ring laser,” Appl. Phys. Lett. 81, 4520-4522 (2002).
[CrossRef]

Lee, S. B.

Li, F.

Li, S.

Y. Ding, Y. Wang, Z. G. Li, L. Tan, and S. Li, “Pulse amplitude equalization in a harmonically mode-locked fiber laser using a dispersion imbalanced nonlinear loop mirror,” Opt. Commun. 225, 363-369 (2003).
[CrossRef]

Li, Z. G.

Y. Ding, Y. Wang, Z. G. Li, L. Tan, and S. Li, “Pulse amplitude equalization in a harmonically mode-locked fiber laser using a dispersion imbalanced nonlinear loop mirror,” Opt. Commun. 225, 363-369 (2003).
[CrossRef]

Lin, G.-R.

Lu, C.

Mansuripur, M.

D. Panasenko, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18, 853-855 (2006).
[CrossRef]

Megret, P.

O. Pottiez, O. Deparis, M. Haelterman, R. Kiyan, P. Emplit, P. Megret, and M. Blondel, “Experimental study of supermode noise of harmonically mode-locked erbium-doped fibre lasers with composite cavity,” Opt. Commun. 202, 161-167 (2002).
[CrossRef]

Midrio, M.

Moloney, J. V.

D. Panasenko, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18, 853-855 (2006).
[CrossRef]

Nakazawa, M.

E. Yoshida and M. Nakazawa, “Low-threshold 115-GHz continuous-wave modulational-instability erbium-doped fiber laser,” Opt. Lett. 22, 1409-1411 (1997).
[CrossRef]

M. Nakazawa, K. Tamura, and E. Yoshida, “Supermode noise suppression in a harmonically modelocked fibre laser by selfphase modulation and spectral filtering,” Electron. Lett. 32, 461-463 (1996).
[CrossRef]

M. Nakazawa, K. Suzuki, and H. A. Haus, “The modulational instability laser. I. Experiment,” IEEE J. Quantum Electron. 25, 2036-2044 (1989).
[CrossRef]

Onodera, N.

Panasenko, D.

D. Panasenko, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18, 853-855 (2006).
[CrossRef]

Peterka, P.

Peyghambarian, N.

D. Panasenko, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18, 853-855 (2006).
[CrossRef]

Polynkin, A.

D. Panasenko, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18, 853-855 (2006).
[CrossRef]

Polynkin, P.

D. Panasenko, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18, 853-855 (2006).
[CrossRef]

Pottiez, O.

O. Pottiez, O. Deparis, M. Haelterman, R. Kiyan, P. Emplit, P. Megret, and M. Blondel, “Experimental study of supermode noise of harmonically mode-locked erbium-doped fibre lasers with composite cavity,” Opt. Commun. 202, 161-167 (2002).
[CrossRef]

Quiroga-Teixeiro, M.

Ravikumar, J.

Romagnoli, M.

Schroder, J.

Shan, X.

X. Shan and D. M. Spirit, “Novel method to suppress noise in harmonically modelocked erbium fibre lasers,” Electron. Lett. 29, 979-981 (1993).
[CrossRef]

Shu, X.

D. Zhao, Y. Lai, X. Shu, L. Zhang, and I. Bennion, “Supermode-noise suppression using a nonlinear Fabry-Perot filter in a harmonically mode-locked fiber ring laser,” Appl. Phys. Lett. 81, 4520-4522 (2002).
[CrossRef]

Shum, P.

Sorensen, M. P.

Spirit, D. M.

X. Shan and D. M. Spirit, “Novel method to suppress noise in harmonically modelocked erbium fibre lasers,” Electron. Lett. 29, 979-981 (1993).
[CrossRef]

Suzuki, K.

M. Nakazawa, K. Suzuki, and H. A. Haus, “The modulational instability laser. I. Experiment,” IEEE J. Quantum Electron. 25, 2036-2044 (1989).
[CrossRef]

Sylvestre, T.

Tamura, K.

M. Nakazawa, K. Tamura, and E. Yoshida, “Supermode noise suppression in a harmonically modelocked fibre laser by selfphase modulation and spectral filtering,” Electron. Lett. 32, 461-463 (1996).
[CrossRef]

Tan, L.

Y. Ding, Y. Wang, Z. G. Li, L. Tan, and S. Li, “Pulse amplitude equalization in a harmonically mode-locked fiber laser using a dispersion imbalanced nonlinear loop mirror,” Opt. Commun. 225, 363-369 (2003).
[CrossRef]

Taylor, J. R.

Tran, T. V. A.

Vanholsbeeck, F.

Wang, Y.

Y. Ding, Y. Wang, Z. G. Li, L. Tan, and S. Li, “Pulse amplitude equalization in a harmonically mode-locked fiber laser using a dispersion imbalanced nonlinear loop mirror,” Opt. Commun. 225, 363-369 (2003).
[CrossRef]

Watanabe, M.

Wu, M.-C.

Yang, X.

Yizhi, G.

L. Yuhua, L. Caiyun, W. Jian, W. Boyu, and G. Yizhi, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett. 10, 1250-1252 (1998).
[CrossRef]

Yoshida, E.

E. Yoshida and M. Nakazawa, “Low-threshold 115-GHz continuous-wave modulational-instability erbium-doped fiber laser,” Opt. Lett. 22, 1409-1411 (1997).
[CrossRef]

M. Nakazawa, K. Tamura, and E. Yoshida, “Supermode noise suppression in a harmonically modelocked fibre laser by selfphase modulation and spectral filtering,” Electron. Lett. 32, 461-463 (1996).
[CrossRef]

Yuhua, L.

L. Yuhua, L. Caiyun, W. Jian, W. Boyu, and G. Yizhi, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett. 10, 1250-1252 (1998).
[CrossRef]

Zhang, L.

D. Zhao, Y. Lai, X. Shu, L. Zhang, and I. Bennion, “Supermode-noise suppression using a nonlinear Fabry-Perot filter in a harmonically mode-locked fiber ring laser,” Appl. Phys. Lett. 81, 4520-4522 (2002).
[CrossRef]

Zhang, S.

Zhao, D.

D. Zhao, Y. Lai, X. Shu, L. Zhang, and I. Bennion, “Supermode-noise suppression using a nonlinear Fabry-Perot filter in a harmonically mode-locked fiber ring laser,” Appl. Phys. Lett. 81, 4520-4522 (2002).
[CrossRef]

Zhou, X.

Appl. Phys. B

E. P. Ippen, “Principles of passive mode locking,” Appl. Phys. B B58, 159-170 (1994).
[CrossRef]

Appl. Phys. Lett.

D. Zhao, Y. Lai, X. Shu, L. Zhang, and I. Bennion, “Supermode-noise suppression using a nonlinear Fabry-Perot filter in a harmonically mode-locked fiber ring laser,” Appl. Phys. Lett. 81, 4520-4522 (2002).
[CrossRef]

Electron. Lett.

M. Nakazawa, K. Tamura, and E. Yoshida, “Supermode noise suppression in a harmonically modelocked fibre laser by selfphase modulation and spectral filtering,” Electron. Lett. 32, 461-463 (1996).
[CrossRef]

X. Shan and D. M. Spirit, “Novel method to suppress noise in harmonically modelocked erbium fibre lasers,” Electron. Lett. 29, 979-981 (1993).
[CrossRef]

T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, “Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser,” Electron. Lett. 37, 881-882 (2001).
[CrossRef]

IEEE J. Quantum Electron.

M. Nakazawa, K. Suzuki, and H. A. Haus, “The modulational instability laser. I. Experiment,” IEEE J. Quantum Electron. 25, 2036-2044 (1989).
[CrossRef]

IEEE Photon. Technol. Lett.

L. Yuhua, L. Caiyun, W. Jian, W. Boyu, and G. Yizhi, “Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett. 10, 1250-1252 (1998).
[CrossRef]

D. Panasenko, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18, 853-855 (2006).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Commun.

Y. Ding, Y. Wang, Z. G. Li, L. Tan, and S. Li, “Pulse amplitude equalization in a harmonically mode-locked fiber laser using a dispersion imbalanced nonlinear loop mirror,” Opt. Commun. 225, 363-369 (2003).
[CrossRef]

O. Pottiez, O. Deparis, M. Haelterman, R. Kiyan, P. Emplit, P. Megret, and M. Blondel, “Experimental study of supermode noise of harmonically mode-locked erbium-doped fibre lasers with composite cavity,” Opt. Commun. 202, 161-167 (2002).
[CrossRef]

Opt. Lett.

E. Yoshida and M. Nakazawa, “Low-threshold 115-GHz continuous-wave modulational-instability erbium-doped fiber laser,” Opt. Lett. 22, 1409-1411 (1997).
[CrossRef]

S. Coen and M. Haelterman, “Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity,” Opt. Lett. 26, 39-41 (2001).
[CrossRef]

P. Honzatko, P. Peterka, and J. Kanka, “Modulational-instability sigma-resonator fiber laser,” Opt. Lett. 26, 810-812 (2001).
[CrossRef]

T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: Normal dispersion and dark-pulse train generation,” Opt. Lett. 27, 482-484 (2002).
[CrossRef]

C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, “Low-threshold self-induced modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train,” Opt. Lett. 27, 915-917 (2002).
[CrossRef]

G.-R. Lin, M.-C. Wu, and Y.-C. Chang, “Suppression of phase and supermode noise in a harmonic mode-locked erbium-doped fiber laser with a semiconductor-optical-amplifier-based high-pass filter,” Opt. Lett. 30, 1834-1836 (2005).
[CrossRef]

S. Zhang, F. Li, X. Dong, P. Shum, X. Yang, X. Zhou, Y. Gong, and C. Lu, “Passive mode locking at harmonics of the free spectral range of the intracavity filter in a fiber ring laser,” Opt. Lett. 30, 2852-2854 (2005).
[CrossRef]

D. A. Chestnut and J. R. Taylor, “Wavelength-versatile subpicosecond pulsed lasers using Raman gain in figure-of-eight fiber geometries,” Opt. Lett. 30, 2982-2984 (2005).
[CrossRef]

Y.-G. Han, T. V. A. Tran, and S. B. Lee, “Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber,” Opt. Lett. 31, 697-699 (2006).
[CrossRef]

J. Schroder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100GHz repetition rate,” Opt. Lett. 31, 3489-3491 (2006).
[CrossRef]

P. Franco, F. Fontana, I. Cristiani, M. Midrio, and M. Romagnoli, “Self-induced modulational-instability laser,” Opt. Lett. 20, 2009-2011 (1995).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Redfern Optical Components Pty Ltd, Suite 102, National Innovation Centre, Australian Technology Park, Eveleigh NSW 1430 Sydney Australia, enquiry@redferncomponets.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup. WDM: Wavelength division multiplexer; RFL: Raman fiber laser; OC: Output coupler; HNLF: Highly nonlinear fiber; FBG: Fiber Bragg grating.

Fig. 2
Fig. 2

Reflection spectrum of the FBG from Redfern Optical Components [23]. The separation of the reflection peaks is 100 GHz with a width of 2 GHz for each peak. The FWHM of the Gaussian envelope is 250 GHz .

Fig. 3
Fig. 3

(a) Output spectrum and (b) autocorrelation of the 100 GHz laser at 1.48 W of pump power. Average output power is 45 mW . The laser is based on the 1 km long HNLF and a 10% output coupler.

Fig. 4
Fig. 4

(a) Output spectrum and (b) autocorrelation of the 100 GHz laser at 2.22 W of pump power. Average output power is 77 mW . The other parameters are the same as those of Fig. 3.

Fig. 5
Fig. 5

(a) Output spectrum and (b) autocorrelation of the 160 GHz laser at 3.2 W of pump power. Average output power is 370 mW . The laser is based on the 500 m long HNLF and a 30% output coupler.

Fig. 6
Fig. 6

Output power of the 160 GHz laser as a function of pump power with (bottom to top) 30%, 50%, and 70% output coupling. The laser is based on the 500 m long HNLF.

Fig. 7
Fig. 7

(a) Section of the autocorrelation and (b) power of the electric field obtained by numerical simulations for parameters similar to that of the 160 GHz laser ( κ = 0.001 , σ = 0 , G = 1 , α = 0.4 , I S = 1 ) .

Fig. 8
Fig. 8

(a) Simulated autocorrelation with low, G = 1 (dashed curve), and high, G = 2 (solid curve), gain. (b) Temporal profile of the optical intensity of the high-gain simulation. All the other parameters are the same as in Fig. 7.

Fig. 9
Fig. 9

RF spectrum of the 10 GHz laser, full spectrum, and close-up around 10 GHz center frequency (inset).

Fig. 10
Fig. 10

Experimental setup including a subcavity for supermode noise reduction.

Fig. 11
Fig. 11

RF spectrum of the compound cavity laser with a 440 cm subcavity.

Fig. 12
Fig. 12

RF spectrum of the laser using two FP filters superposed by the Vernier principle.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

i u z + ( α + i α g ) u t t + i β g u t t t t + κ u 2 u = i γ g u .
z A + i β 2 2 2 t 2 A β 3 6 3 t 3 A = i γ A 2 A + g 1 + Q / I S A l A .
ζ = z L ,
τ = f t ,
U = A P ,
P = 1 γ L ,
ζ U + i κ 2 τ 2 U σ 3 τ 3 U = i U 2 U + G 1 + Q / I S U α U ,

Metrics