Abstract

We analyze a silicon/III–V hybrid semiconductor waveguide structure for laser oscillation. We show that, by optimally designing and controlling the resonant supermode behavior in such structures, the modal gain can be enhanced five times compared with that of the existing silicon evanescent laser, while maintaining efficient coupling to outside silicon waveguide circuits.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Z. Chen, A. Ghaffari, H. Wang, H. Morkoc, and A. Yariv, “Continuous-wave operation of extremely low-threshold GaAs/AlGaAs broad-area injection lasers on (100) Si substrates at room temperature,” Opt. Lett. 12, 812-813 (1987).
    [CrossRef] [PubMed]
  2. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269-5273 (2004).
    [CrossRef] [PubMed]
  3. H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725-728 (2005).
    [CrossRef] [PubMed]
  4. H. S. Rong, S. B. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170-174 (2008).
    [CrossRef]
  5. S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887-891 (2005).
    [CrossRef] [PubMed]
  6. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203-9210 (2006).
    [CrossRef] [PubMed]
  7. A. Yariv and X. K. Sun, “Supermode Si/III-V hybrid lasers, optical amplifiers and modulators: a proposal and analysis,” Opt. Express 15, 9147-9151 (2007).
    [CrossRef] [PubMed]
  8. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997), pp. 526-531.
  9. D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8, 118-131 (2002).
    [CrossRef]

2008

H. S. Rong, S. B. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170-174 (2008).
[CrossRef]

2007

2006

2005

H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887-891 (2005).
[CrossRef] [PubMed]

2004

2002

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8, 118-131 (2002).
[CrossRef]

1987

Bowers, J. E.

Boyraz, O.

Chen, H. Z.

Cloutier, S. G.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887-891 (2005).
[CrossRef] [PubMed]

Cohen, O.

H. S. Rong, S. B. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170-174 (2008).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203-9210 (2006).
[CrossRef] [PubMed]

H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Fang, A.

H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Fang, A. W.

Ghaffari, A.

Hak, D.

H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Hjort, K.

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8, 118-131 (2002).
[CrossRef]

Jalali, B.

Jones, R.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203-9210 (2006).
[CrossRef] [PubMed]

H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Kossyrev, P. A.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887-891 (2005).
[CrossRef] [PubMed]

Lee, M.

H. S. Rong, S. B. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170-174 (2008).
[CrossRef]

Liu, A. S.

H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Morkoc, H.

Paniccia, M.

H. S. Rong, S. B. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170-174 (2008).
[CrossRef]

H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Paniccia, M. J.

Park, H.

Pasquariello, D.

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8, 118-131 (2002).
[CrossRef]

Raday, O.

H. S. Rong, S. B. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170-174 (2008).
[CrossRef]

Rong, H. S.

H. S. Rong, S. B. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170-174 (2008).
[CrossRef]

H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Sih, V.

H. S. Rong, S. B. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170-174 (2008).
[CrossRef]

Sun, X. K.

Wang, H.

Xu, J.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887-891 (2005).
[CrossRef] [PubMed]

Xu, S. B.

H. S. Rong, S. B. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170-174 (2008).
[CrossRef]

Yariv, A.

IEEE J. Sel. Top. Quantum Electron.

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8, 118-131 (2002).
[CrossRef]

Nat. Mater.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887-891 (2005).
[CrossRef] [PubMed]

Nat. Photonics

H. S. Rong, S. B. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170-174 (2008).
[CrossRef]

Nature

H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Other

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997), pp. 526-531.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Top) Side view of the proposed hybrid laser and the evolution of the lasing supermode inside the hybrid waveguide resonator. (Bottom) Adiabatic widening of the silicon waveguide causes the supermode power to transfer from the upper amplifying III–V section to the lower silicon waveguide.

Fig. 2
Fig. 2

(a) Refractive index profile of the III–V waveguide. (b) Fundamental mode of the III–V waveguide. (c) Refractive index profile of the Si waveguide. (d) Fundamental mode of the Si waveguide. (e) Refractive index profile of the coupled system. (f) Even supermode of the coupled system (at the phase-matching point). (g) Odd supermode of the coupled system (at the phase-matching point).

Fig. 3
Fig. 3

(a) Confinement factors in the active region ( Γ act ) and in the Si waveguide ( Γ Si ) as a function of Si waveguide width W. (b) Confinement factors in the III–V waveguide ( Γ III V ) and in the Si waveguide ( Γ Si ) and the mismatch parameter δ as a function of Si waveguide width W.

Fig. 4
Fig. 4

Normalized output power from the Si waveguide at the end of the taper as a function of the taper length L.

Fig. 5
Fig. 5

Confinement factors in the III–V waveguide ( Γ III V ) and in the Si waveguide ( Γ Si ) and the mismatch parameter δ as a function of the offset of the Si waveguide from the center (at the phase-matching point).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δ = ( β b + M b ) ( β a + M a ) 2 ,
κ = ( κ a b κ b a ) 1 2 ,
κ a b = ω ε 0 4 [ n c 2 ( x , y ) n b 2 ( x , y ) ] ξ ( a ) ( x , y ) ξ ( b ) ( x , y ) d x d y ,
κ b a = ω ε 0 4 [ n c 2 ( x , y ) n a 2 ( x , y ) ] ξ ( a ) ( x , y ) ξ ( b ) ( x , y ) d x d y .

Metrics