Abstract

Full 3D numerical modeling is undertaken on light-emitting diode structures with patterned surfaces represented by regular, pseudorandomly disordered, and uniformly distributed random arrays of square holes to investigate both grating and random scattering phenomena. Unlike typical roughened surface LEDs, no recycling mirror is present below the source, enabling straightforward implementation in existing device designs. The period or feature width of the arrays is varied and the output emission intensity calculated. A maximum enhancement factor of 2 is seen for both a disordered pattern with an array period of 1.7μm and pattern depth of 0.4μm and a particular random pattern with a feature width of 0.85μm and depth of 0.4μm. The enhancement is believed to be due to mitigation of both total internal reflection and Fresnel reflection phenomena at the semiconductor–air interface.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. N. Carr and G. E. Pittman, “One-watt GaAsp-n junction infrared source,” Appl. Phys. Lett. 3, 173-175 (1963).
    [CrossRef]
  2. E. F. Schubert, Light-Emitting Diodes (Cambridge U. Press, 2005).
  3. T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-Electronics (Butterworth, 1973).
  4. N. K. Patel, S. Cinà, and J. H. Burroughes, “High-efficiency organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 346-361 (2002).
    [CrossRef]
  5. K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 321-332 (2002).
    [CrossRef]
  6. G. R. Nash, N. T. Gordon, T. Ashley, M. T. Emeny, and T. M. Burke, “Large-area IR negative luminescent devices,” IEE Proc.: Optoelectron. 150, 371-375 (2003).
    [CrossRef]
  7. G. R. Nash, T. Ashley, N. T. Gordon, C. L. Jones, C. D. Maxey, and R. A. Catchpole, “Micromachined optical concentrators for IR negative luminescent devices,” J. Mod. Opt. 49, 811-820 (2002).
    [CrossRef]
  8. W. W. Bewley, M. J. Jurkovic, C. L. Felix, J. R. Lindle, I. Vurgaftman, J. R. Meyer, E. H. Aifer, J. H. Butler, S. P. Tobin, P. W. Norton, and M. A. Hutchins, “HgCdTe photodetectors with negative luminescent efficiencies >80%,” Appl. Phys. Lett. 78, 3082-3084 (2001).
    [CrossRef]
  9. L. Shterengas, G. Belenky, M. V. Kisin, and D. Donetsky, “High power 2.4μm heavily strained type-I quantum well GaSb-based diode lasers with more than 1W of continuous wave output power and a maximum power-conversion efficiency of 17.5%,” Appl. Phys. Lett. 90, 011119 (2007).
    [CrossRef]
  10. T. K. Gaylord, W. E. Baird, and M. G. Moharam, “Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings,” Appl. Opt. 25, 4562-4567 (1986).
    [CrossRef] [PubMed]
  11. A. O. Dirisu, G. Silva, Z. Liu, C. F. Gmachl, F. J. Towner, J. Bruno, and D. L. Sivco, “Reduction of facet reflectivity of quantum-cascade lasers with subwavelength gratings,” IEEE Photonics Technol. Lett. 19, 221-223 (2007).
    [CrossRef]
  12. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emtting diodes,” Appl. Phys. Lett. 63, 2174-2176 (1993).
    [CrossRef]
  13. H. W. Deckman, C. B. Roxlo, and E. Yablonovitch, “Maximum statistical increase of optical absorption in textured semiconductor films,” Opt. Lett. 8, 491-493 (1983).
    [CrossRef] [PubMed]
  14. R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Döhler, and P. Heremans, “Light extraction mechanisms in high-efficiency surface-textured light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 248-255 (2002).
    [CrossRef]
  15. S. J. Lee, “Analysis of light-emitting diodes by Monte Carlo photon simulation,” Appl. Opt. 40, 1427-1437 (2001).
    [CrossRef]
  16. A. Sentenac and J.-J. Greffet, “Mean-field theory of light scattering by one-dimensional rough surfaces,” J. Opt. Soc. Am. A 15, 528-532 (1998).
    [CrossRef]
  17. S. Riyopoulos, “Supercritical angle transmission through quasi-random sub-wavelength-feature interfaces: integral approach via effective surface currents,” J. Opt. Soc. Am. A 22, 2859-2871 (2005).
    [CrossRef]
  18. M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Calculation of losses in 2-D photonic crystal membrane waveguides using the 3-D FDTD method,” IEEE Photonics Technol. Lett. 17, 58-60 (2005).
    [CrossRef]
  19. Y.-L. D. Ho, T. Cao, P. S. Ivanov, M. J. Cryan, I. J. Craddock, C. J. Railton, and J. G. Rarity, “Three-dimensional FDTD simulation of micro-pillar microcavity geometries suitable for efficient single-photon sources,” IEEE J. Quantum Electron. 43, 462-472 (2007).
    [CrossRef]
  20. Condor high throughput computing cluster, http://www.cs.wisc.edu/condor/.
  21. M. K. Haigh, G. R. Nash, S. J. Smith, L. Buckle, M. T. Emeny, and T. Ashley, “Mid-infrared AlxIn1−xSb light-emitting diodes,” Appl. Phys. Lett. 90, 231116 (2007).
    [CrossRef]

2007 (4)

L. Shterengas, G. Belenky, M. V. Kisin, and D. Donetsky, “High power 2.4μm heavily strained type-I quantum well GaSb-based diode lasers with more than 1W of continuous wave output power and a maximum power-conversion efficiency of 17.5%,” Appl. Phys. Lett. 90, 011119 (2007).
[CrossRef]

A. O. Dirisu, G. Silva, Z. Liu, C. F. Gmachl, F. J. Towner, J. Bruno, and D. L. Sivco, “Reduction of facet reflectivity of quantum-cascade lasers with subwavelength gratings,” IEEE Photonics Technol. Lett. 19, 221-223 (2007).
[CrossRef]

Y.-L. D. Ho, T. Cao, P. S. Ivanov, M. J. Cryan, I. J. Craddock, C. J. Railton, and J. G. Rarity, “Three-dimensional FDTD simulation of micro-pillar microcavity geometries suitable for efficient single-photon sources,” IEEE J. Quantum Electron. 43, 462-472 (2007).
[CrossRef]

M. K. Haigh, G. R. Nash, S. J. Smith, L. Buckle, M. T. Emeny, and T. Ashley, “Mid-infrared AlxIn1−xSb light-emitting diodes,” Appl. Phys. Lett. 90, 231116 (2007).
[CrossRef]

2005 (2)

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Calculation of losses in 2-D photonic crystal membrane waveguides using the 3-D FDTD method,” IEEE Photonics Technol. Lett. 17, 58-60 (2005).
[CrossRef]

S. Riyopoulos, “Supercritical angle transmission through quasi-random sub-wavelength-feature interfaces: integral approach via effective surface currents,” J. Opt. Soc. Am. A 22, 2859-2871 (2005).
[CrossRef]

2003 (1)

G. R. Nash, N. T. Gordon, T. Ashley, M. T. Emeny, and T. M. Burke, “Large-area IR negative luminescent devices,” IEE Proc.: Optoelectron. 150, 371-375 (2003).
[CrossRef]

2002 (4)

G. R. Nash, T. Ashley, N. T. Gordon, C. L. Jones, C. D. Maxey, and R. A. Catchpole, “Micromachined optical concentrators for IR negative luminescent devices,” J. Mod. Opt. 49, 811-820 (2002).
[CrossRef]

N. K. Patel, S. Cinà, and J. H. Burroughes, “High-efficiency organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 346-361 (2002).
[CrossRef]

K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 321-332 (2002).
[CrossRef]

R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Döhler, and P. Heremans, “Light extraction mechanisms in high-efficiency surface-textured light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 248-255 (2002).
[CrossRef]

2001 (2)

W. W. Bewley, M. J. Jurkovic, C. L. Felix, J. R. Lindle, I. Vurgaftman, J. R. Meyer, E. H. Aifer, J. H. Butler, S. P. Tobin, P. W. Norton, and M. A. Hutchins, “HgCdTe photodetectors with negative luminescent efficiencies >80%,” Appl. Phys. Lett. 78, 3082-3084 (2001).
[CrossRef]

S. J. Lee, “Analysis of light-emitting diodes by Monte Carlo photon simulation,” Appl. Opt. 40, 1427-1437 (2001).
[CrossRef]

1998 (1)

1993 (1)

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emtting diodes,” Appl. Phys. Lett. 63, 2174-2176 (1993).
[CrossRef]

1986 (1)

1983 (1)

1963 (1)

W. N. Carr and G. E. Pittman, “One-watt GaAsp-n junction infrared source,” Appl. Phys. Lett. 3, 173-175 (1963).
[CrossRef]

Aifer, E. H.

W. W. Bewley, M. J. Jurkovic, C. L. Felix, J. R. Lindle, I. Vurgaftman, J. R. Meyer, E. H. Aifer, J. H. Butler, S. P. Tobin, P. W. Norton, and M. A. Hutchins, “HgCdTe photodetectors with negative luminescent efficiencies >80%,” Appl. Phys. Lett. 78, 3082-3084 (2001).
[CrossRef]

Ashley, T.

M. K. Haigh, G. R. Nash, S. J. Smith, L. Buckle, M. T. Emeny, and T. Ashley, “Mid-infrared AlxIn1−xSb light-emitting diodes,” Appl. Phys. Lett. 90, 231116 (2007).
[CrossRef]

G. R. Nash, N. T. Gordon, T. Ashley, M. T. Emeny, and T. M. Burke, “Large-area IR negative luminescent devices,” IEE Proc.: Optoelectron. 150, 371-375 (2003).
[CrossRef]

G. R. Nash, T. Ashley, N. T. Gordon, C. L. Jones, C. D. Maxey, and R. A. Catchpole, “Micromachined optical concentrators for IR negative luminescent devices,” J. Mod. Opt. 49, 811-820 (2002).
[CrossRef]

Baird, W. E.

Belenky, G.

L. Shterengas, G. Belenky, M. V. Kisin, and D. Donetsky, “High power 2.4μm heavily strained type-I quantum well GaSb-based diode lasers with more than 1W of continuous wave output power and a maximum power-conversion efficiency of 17.5%,” Appl. Phys. Lett. 90, 011119 (2007).
[CrossRef]

Bewley, W. W.

W. W. Bewley, M. J. Jurkovic, C. L. Felix, J. R. Lindle, I. Vurgaftman, J. R. Meyer, E. H. Aifer, J. H. Butler, S. P. Tobin, P. W. Norton, and M. A. Hutchins, “HgCdTe photodetectors with negative luminescent efficiencies >80%,” Appl. Phys. Lett. 78, 3082-3084 (2001).
[CrossRef]

Borghs, G.

R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Döhler, and P. Heremans, “Light extraction mechanisms in high-efficiency surface-textured light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 248-255 (2002).
[CrossRef]

Bruno, J.

A. O. Dirisu, G. Silva, Z. Liu, C. F. Gmachl, F. J. Towner, J. Bruno, and D. L. Sivco, “Reduction of facet reflectivity of quantum-cascade lasers with subwavelength gratings,” IEEE Photonics Technol. Lett. 19, 221-223 (2007).
[CrossRef]

Buckle, L.

M. K. Haigh, G. R. Nash, S. J. Smith, L. Buckle, M. T. Emeny, and T. Ashley, “Mid-infrared AlxIn1−xSb light-emitting diodes,” Appl. Phys. Lett. 90, 231116 (2007).
[CrossRef]

Burke, T. M.

G. R. Nash, N. T. Gordon, T. Ashley, M. T. Emeny, and T. M. Burke, “Large-area IR negative luminescent devices,” IEE Proc.: Optoelectron. 150, 371-375 (2003).
[CrossRef]

Burrell, G. J.

T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-Electronics (Butterworth, 1973).

Burroughes, J. H.

N. K. Patel, S. Cinà, and J. H. Burroughes, “High-efficiency organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 346-361 (2002).
[CrossRef]

Butler, J. H.

W. W. Bewley, M. J. Jurkovic, C. L. Felix, J. R. Lindle, I. Vurgaftman, J. R. Meyer, E. H. Aifer, J. H. Butler, S. P. Tobin, P. W. Norton, and M. A. Hutchins, “HgCdTe photodetectors with negative luminescent efficiencies >80%,” Appl. Phys. Lett. 78, 3082-3084 (2001).
[CrossRef]

Caneau, C.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emtting diodes,” Appl. Phys. Lett. 63, 2174-2176 (1993).
[CrossRef]

Cao, T.

Y.-L. D. Ho, T. Cao, P. S. Ivanov, M. J. Cryan, I. J. Craddock, C. J. Railton, and J. G. Rarity, “Three-dimensional FDTD simulation of micro-pillar microcavity geometries suitable for efficient single-photon sources,” IEEE J. Quantum Electron. 43, 462-472 (2007).
[CrossRef]

Carr, W. N.

W. N. Carr and G. E. Pittman, “One-watt GaAsp-n junction infrared source,” Appl. Phys. Lett. 3, 173-175 (1963).
[CrossRef]

Catchpole, R. A.

G. R. Nash, T. Ashley, N. T. Gordon, C. L. Jones, C. D. Maxey, and R. A. Catchpole, “Micromachined optical concentrators for IR negative luminescent devices,” J. Mod. Opt. 49, 811-820 (2002).
[CrossRef]

Cinà, S.

N. K. Patel, S. Cinà, and J. H. Burroughes, “High-efficiency organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 346-361 (2002).
[CrossRef]

Craddock, I. J.

Y.-L. D. Ho, T. Cao, P. S. Ivanov, M. J. Cryan, I. J. Craddock, C. J. Railton, and J. G. Rarity, “Three-dimensional FDTD simulation of micro-pillar microcavity geometries suitable for efficient single-photon sources,” IEEE J. Quantum Electron. 43, 462-472 (2007).
[CrossRef]

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Calculation of losses in 2-D photonic crystal membrane waveguides using the 3-D FDTD method,” IEEE Photonics Technol. Lett. 17, 58-60 (2005).
[CrossRef]

Cryan, M. J.

Y.-L. D. Ho, T. Cao, P. S. Ivanov, M. J. Cryan, I. J. Craddock, C. J. Railton, and J. G. Rarity, “Three-dimensional FDTD simulation of micro-pillar microcavity geometries suitable for efficient single-photon sources,” IEEE J. Quantum Electron. 43, 462-472 (2007).
[CrossRef]

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Calculation of losses in 2-D photonic crystal membrane waveguides using the 3-D FDTD method,” IEEE Photonics Technol. Lett. 17, 58-60 (2005).
[CrossRef]

Deckman, H. W.

Dirisu, A. O.

A. O. Dirisu, G. Silva, Z. Liu, C. F. Gmachl, F. J. Towner, J. Bruno, and D. L. Sivco, “Reduction of facet reflectivity of quantum-cascade lasers with subwavelength gratings,” IEEE Photonics Technol. Lett. 19, 221-223 (2007).
[CrossRef]

Döhler, G. H.

R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Döhler, and P. Heremans, “Light extraction mechanisms in high-efficiency surface-textured light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 248-255 (2002).
[CrossRef]

Donetsky, D.

L. Shterengas, G. Belenky, M. V. Kisin, and D. Donetsky, “High power 2.4μm heavily strained type-I quantum well GaSb-based diode lasers with more than 1W of continuous wave output power and a maximum power-conversion efficiency of 17.5%,” Appl. Phys. Lett. 90, 011119 (2007).
[CrossRef]

Dutta, B.

R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Döhler, and P. Heremans, “Light extraction mechanisms in high-efficiency surface-textured light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 248-255 (2002).
[CrossRef]

Ellis, B.

T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-Electronics (Butterworth, 1973).

Emeny, M. T.

M. K. Haigh, G. R. Nash, S. J. Smith, L. Buckle, M. T. Emeny, and T. Ashley, “Mid-infrared AlxIn1−xSb light-emitting diodes,” Appl. Phys. Lett. 90, 231116 (2007).
[CrossRef]

G. R. Nash, N. T. Gordon, T. Ashley, M. T. Emeny, and T. M. Burke, “Large-area IR negative luminescent devices,” IEE Proc.: Optoelectron. 150, 371-375 (2003).
[CrossRef]

Felix, C. L.

W. W. Bewley, M. J. Jurkovic, C. L. Felix, J. R. Lindle, I. Vurgaftman, J. R. Meyer, E. H. Aifer, J. H. Butler, S. P. Tobin, P. W. Norton, and M. A. Hutchins, “HgCdTe photodetectors with negative luminescent efficiencies >80%,” Appl. Phys. Lett. 78, 3082-3084 (2001).
[CrossRef]

Gaylord, T. K.

Gmachl, C. F.

A. O. Dirisu, G. Silva, Z. Liu, C. F. Gmachl, F. J. Towner, J. Bruno, and D. L. Sivco, “Reduction of facet reflectivity of quantum-cascade lasers with subwavelength gratings,” IEEE Photonics Technol. Lett. 19, 221-223 (2007).
[CrossRef]

Gmitter, T. J.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emtting diodes,” Appl. Phys. Lett. 63, 2174-2176 (1993).
[CrossRef]

Gordon, N. T.

G. R. Nash, N. T. Gordon, T. Ashley, M. T. Emeny, and T. M. Burke, “Large-area IR negative luminescent devices,” IEE Proc.: Optoelectron. 150, 371-375 (2003).
[CrossRef]

G. R. Nash, T. Ashley, N. T. Gordon, C. L. Jones, C. D. Maxey, and R. A. Catchpole, “Micromachined optical concentrators for IR negative luminescent devices,” J. Mod. Opt. 49, 811-820 (2002).
[CrossRef]

Greffet, J.-J.

Haigh, M. K.

M. K. Haigh, G. R. Nash, S. J. Smith, L. Buckle, M. T. Emeny, and T. Ashley, “Mid-infrared AlxIn1−xSb light-emitting diodes,” Appl. Phys. Lett. 90, 231116 (2007).
[CrossRef]

Heremans, P.

R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Döhler, and P. Heremans, “Light extraction mechanisms in high-efficiency surface-textured light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 248-255 (2002).
[CrossRef]

Ho, Y.-L. D.

Y.-L. D. Ho, T. Cao, P. S. Ivanov, M. J. Cryan, I. J. Craddock, C. J. Railton, and J. G. Rarity, “Three-dimensional FDTD simulation of micro-pillar microcavity geometries suitable for efficient single-photon sources,” IEEE J. Quantum Electron. 43, 462-472 (2007).
[CrossRef]

Hutchins, M. A.

W. W. Bewley, M. J. Jurkovic, C. L. Felix, J. R. Lindle, I. Vurgaftman, J. R. Meyer, E. H. Aifer, J. H. Butler, S. P. Tobin, P. W. Norton, and M. A. Hutchins, “HgCdTe photodetectors with negative luminescent efficiencies >80%,” Appl. Phys. Lett. 78, 3082-3084 (2001).
[CrossRef]

Ivanov, P. S.

Y.-L. D. Ho, T. Cao, P. S. Ivanov, M. J. Cryan, I. J. Craddock, C. J. Railton, and J. G. Rarity, “Three-dimensional FDTD simulation of micro-pillar microcavity geometries suitable for efficient single-photon sources,” IEEE J. Quantum Electron. 43, 462-472 (2007).
[CrossRef]

Jaeger, A.

K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 321-332 (2002).
[CrossRef]

Jones, C. L.

G. R. Nash, T. Ashley, N. T. Gordon, C. L. Jones, C. D. Maxey, and R. A. Catchpole, “Micromachined optical concentrators for IR negative luminescent devices,” J. Mod. Opt. 49, 811-820 (2002).
[CrossRef]

Jurkovic, M. J.

W. W. Bewley, M. J. Jurkovic, C. L. Felix, J. R. Lindle, I. Vurgaftman, J. R. Meyer, E. H. Aifer, J. H. Butler, S. P. Tobin, P. W. Norton, and M. A. Hutchins, “HgCdTe photodetectors with negative luminescent efficiencies >80%,” Appl. Phys. Lett. 78, 3082-3084 (2001).
[CrossRef]

Kisin, M. V.

L. Shterengas, G. Belenky, M. V. Kisin, and D. Donetsky, “High power 2.4μm heavily strained type-I quantum well GaSb-based diode lasers with more than 1W of continuous wave output power and a maximum power-conversion efficiency of 17.5%,” Appl. Phys. Lett. 90, 011119 (2007).
[CrossRef]

Knobloch, A.

R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Döhler, and P. Heremans, “Light extraction mechanisms in high-efficiency surface-textured light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 248-255 (2002).
[CrossRef]

Lee, S. J.

Linder, N.

K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 321-332 (2002).
[CrossRef]

Lindle, J. R.

W. W. Bewley, M. J. Jurkovic, C. L. Felix, J. R. Lindle, I. Vurgaftman, J. R. Meyer, E. H. Aifer, J. H. Butler, S. P. Tobin, P. W. Norton, and M. A. Hutchins, “HgCdTe photodetectors with negative luminescent efficiencies >80%,” Appl. Phys. Lett. 78, 3082-3084 (2001).
[CrossRef]

Liu, Z.

A. O. Dirisu, G. Silva, Z. Liu, C. F. Gmachl, F. J. Towner, J. Bruno, and D. L. Sivco, “Reduction of facet reflectivity of quantum-cascade lasers with subwavelength gratings,” IEEE Photonics Technol. Lett. 19, 221-223 (2007).
[CrossRef]

Maxey, C. D.

G. R. Nash, T. Ashley, N. T. Gordon, C. L. Jones, C. D. Maxey, and R. A. Catchpole, “Micromachined optical concentrators for IR negative luminescent devices,” J. Mod. Opt. 49, 811-820 (2002).
[CrossRef]

Meyer, J. R.

W. W. Bewley, M. J. Jurkovic, C. L. Felix, J. R. Lindle, I. Vurgaftman, J. R. Meyer, E. H. Aifer, J. H. Butler, S. P. Tobin, P. W. Norton, and M. A. Hutchins, “HgCdTe photodetectors with negative luminescent efficiencies >80%,” Appl. Phys. Lett. 78, 3082-3084 (2001).
[CrossRef]

Moharam, M. G.

Moss, T. S.

T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-Electronics (Butterworth, 1973).

Nash, G. R.

M. K. Haigh, G. R. Nash, S. J. Smith, L. Buckle, M. T. Emeny, and T. Ashley, “Mid-infrared AlxIn1−xSb light-emitting diodes,” Appl. Phys. Lett. 90, 231116 (2007).
[CrossRef]

G. R. Nash, N. T. Gordon, T. Ashley, M. T. Emeny, and T. M. Burke, “Large-area IR negative luminescent devices,” IEE Proc.: Optoelectron. 150, 371-375 (2003).
[CrossRef]

G. R. Nash, T. Ashley, N. T. Gordon, C. L. Jones, C. D. Maxey, and R. A. Catchpole, “Micromachined optical concentrators for IR negative luminescent devices,” J. Mod. Opt. 49, 811-820 (2002).
[CrossRef]

Norton, P. W.

W. W. Bewley, M. J. Jurkovic, C. L. Felix, J. R. Lindle, I. Vurgaftman, J. R. Meyer, E. H. Aifer, J. H. Butler, S. P. Tobin, P. W. Norton, and M. A. Hutchins, “HgCdTe photodetectors with negative luminescent efficiencies >80%,” Appl. Phys. Lett. 78, 3082-3084 (2001).
[CrossRef]

Patel, N. K.

N. K. Patel, S. Cinà, and J. H. Burroughes, “High-efficiency organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 346-361 (2002).
[CrossRef]

Pittman, G. E.

W. N. Carr and G. E. Pittman, “One-watt GaAsp-n junction infrared source,” Appl. Phys. Lett. 3, 173-175 (1963).
[CrossRef]

Railton, C. J.

Y.-L. D. Ho, T. Cao, P. S. Ivanov, M. J. Cryan, I. J. Craddock, C. J. Railton, and J. G. Rarity, “Three-dimensional FDTD simulation of micro-pillar microcavity geometries suitable for efficient single-photon sources,” IEEE J. Quantum Electron. 43, 462-472 (2007).
[CrossRef]

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Calculation of losses in 2-D photonic crystal membrane waveguides using the 3-D FDTD method,” IEEE Photonics Technol. Lett. 17, 58-60 (2005).
[CrossRef]

Rarity, J. G.

Y.-L. D. Ho, T. Cao, P. S. Ivanov, M. J. Cryan, I. J. Craddock, C. J. Railton, and J. G. Rarity, “Three-dimensional FDTD simulation of micro-pillar microcavity geometries suitable for efficient single-photon sources,” IEEE J. Quantum Electron. 43, 462-472 (2007).
[CrossRef]

Riyopoulos, S.

Rooman, C.

R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Döhler, and P. Heremans, “Light extraction mechanisms in high-efficiency surface-textured light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 248-255 (2002).
[CrossRef]

Rorison, J.

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Calculation of losses in 2-D photonic crystal membrane waveguides using the 3-D FDTD method,” IEEE Photonics Technol. Lett. 17, 58-60 (2005).
[CrossRef]

Roxlo, C. B.

Scherer, A.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emtting diodes,” Appl. Phys. Lett. 63, 2174-2176 (1993).
[CrossRef]

Schnitzer, I.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emtting diodes,” Appl. Phys. Lett. 63, 2174-2176 (1993).
[CrossRef]

Schubert, E. F.

E. F. Schubert, Light-Emitting Diodes (Cambridge U. Press, 2005).

Sentenac, A.

Shterengas, L.

L. Shterengas, G. Belenky, M. V. Kisin, and D. Donetsky, “High power 2.4μm heavily strained type-I quantum well GaSb-based diode lasers with more than 1W of continuous wave output power and a maximum power-conversion efficiency of 17.5%,” Appl. Phys. Lett. 90, 011119 (2007).
[CrossRef]

Silva, G.

A. O. Dirisu, G. Silva, Z. Liu, C. F. Gmachl, F. J. Towner, J. Bruno, and D. L. Sivco, “Reduction of facet reflectivity of quantum-cascade lasers with subwavelength gratings,” IEEE Photonics Technol. Lett. 19, 221-223 (2007).
[CrossRef]

Sivco, D. L.

A. O. Dirisu, G. Silva, Z. Liu, C. F. Gmachl, F. J. Towner, J. Bruno, and D. L. Sivco, “Reduction of facet reflectivity of quantum-cascade lasers with subwavelength gratings,” IEEE Photonics Technol. Lett. 19, 221-223 (2007).
[CrossRef]

Smith, S. J.

M. K. Haigh, G. R. Nash, S. J. Smith, L. Buckle, M. T. Emeny, and T. Ashley, “Mid-infrared AlxIn1−xSb light-emitting diodes,” Appl. Phys. Lett. 90, 231116 (2007).
[CrossRef]

Streubel, K.

K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 321-332 (2002).
[CrossRef]

Tobin, S. P.

W. W. Bewley, M. J. Jurkovic, C. L. Felix, J. R. Lindle, I. Vurgaftman, J. R. Meyer, E. H. Aifer, J. H. Butler, S. P. Tobin, P. W. Norton, and M. A. Hutchins, “HgCdTe photodetectors with negative luminescent efficiencies >80%,” Appl. Phys. Lett. 78, 3082-3084 (2001).
[CrossRef]

Towner, F. J.

A. O. Dirisu, G. Silva, Z. Liu, C. F. Gmachl, F. J. Towner, J. Bruno, and D. L. Sivco, “Reduction of facet reflectivity of quantum-cascade lasers with subwavelength gratings,” IEEE Photonics Technol. Lett. 19, 221-223 (2007).
[CrossRef]

Vurgaftman, I.

W. W. Bewley, M. J. Jurkovic, C. L. Felix, J. R. Lindle, I. Vurgaftman, J. R. Meyer, E. H. Aifer, J. H. Butler, S. P. Tobin, P. W. Norton, and M. A. Hutchins, “HgCdTe photodetectors with negative luminescent efficiencies >80%,” Appl. Phys. Lett. 78, 3082-3084 (2001).
[CrossRef]

Windisch, R.

R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Döhler, and P. Heremans, “Light extraction mechanisms in high-efficiency surface-textured light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 248-255 (2002).
[CrossRef]

Wirth, R.

K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 321-332 (2002).
[CrossRef]

Wong, D. C. L.

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Calculation of losses in 2-D photonic crystal membrane waveguides using the 3-D FDTD method,” IEEE Photonics Technol. Lett. 17, 58-60 (2005).
[CrossRef]

Yablonovitch, E.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emtting diodes,” Appl. Phys. Lett. 63, 2174-2176 (1993).
[CrossRef]

H. W. Deckman, C. B. Roxlo, and E. Yablonovitch, “Maximum statistical increase of optical absorption in textured semiconductor films,” Opt. Lett. 8, 491-493 (1983).
[CrossRef] [PubMed]

Yu, S.

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Calculation of losses in 2-D photonic crystal membrane waveguides using the 3-D FDTD method,” IEEE Photonics Technol. Lett. 17, 58-60 (2005).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (5)

M. K. Haigh, G. R. Nash, S. J. Smith, L. Buckle, M. T. Emeny, and T. Ashley, “Mid-infrared AlxIn1−xSb light-emitting diodes,” Appl. Phys. Lett. 90, 231116 (2007).
[CrossRef]

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emtting diodes,” Appl. Phys. Lett. 63, 2174-2176 (1993).
[CrossRef]

W. N. Carr and G. E. Pittman, “One-watt GaAsp-n junction infrared source,” Appl. Phys. Lett. 3, 173-175 (1963).
[CrossRef]

W. W. Bewley, M. J. Jurkovic, C. L. Felix, J. R. Lindle, I. Vurgaftman, J. R. Meyer, E. H. Aifer, J. H. Butler, S. P. Tobin, P. W. Norton, and M. A. Hutchins, “HgCdTe photodetectors with negative luminescent efficiencies >80%,” Appl. Phys. Lett. 78, 3082-3084 (2001).
[CrossRef]

L. Shterengas, G. Belenky, M. V. Kisin, and D. Donetsky, “High power 2.4μm heavily strained type-I quantum well GaSb-based diode lasers with more than 1W of continuous wave output power and a maximum power-conversion efficiency of 17.5%,” Appl. Phys. Lett. 90, 011119 (2007).
[CrossRef]

IEE Proc.: Optoelectron. (1)

G. R. Nash, N. T. Gordon, T. Ashley, M. T. Emeny, and T. M. Burke, “Large-area IR negative luminescent devices,” IEE Proc.: Optoelectron. 150, 371-375 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y.-L. D. Ho, T. Cao, P. S. Ivanov, M. J. Cryan, I. J. Craddock, C. J. Railton, and J. G. Rarity, “Three-dimensional FDTD simulation of micro-pillar microcavity geometries suitable for efficient single-photon sources,” IEEE J. Quantum Electron. 43, 462-472 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Döhler, and P. Heremans, “Light extraction mechanisms in high-efficiency surface-textured light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 248-255 (2002).
[CrossRef]

N. K. Patel, S. Cinà, and J. H. Burroughes, “High-efficiency organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 346-361 (2002).
[CrossRef]

K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 321-332 (2002).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

A. O. Dirisu, G. Silva, Z. Liu, C. F. Gmachl, F. J. Towner, J. Bruno, and D. L. Sivco, “Reduction of facet reflectivity of quantum-cascade lasers with subwavelength gratings,” IEEE Photonics Technol. Lett. 19, 221-223 (2007).
[CrossRef]

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Calculation of losses in 2-D photonic crystal membrane waveguides using the 3-D FDTD method,” IEEE Photonics Technol. Lett. 17, 58-60 (2005).
[CrossRef]

J. Mod. Opt. (1)

G. R. Nash, T. Ashley, N. T. Gordon, C. L. Jones, C. D. Maxey, and R. A. Catchpole, “Micromachined optical concentrators for IR negative luminescent devices,” J. Mod. Opt. 49, 811-820 (2002).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Lett. (1)

Other (3)

Condor high throughput computing cluster, http://www.cs.wisc.edu/condor/.

E. F. Schubert, Light-Emitting Diodes (Cambridge U. Press, 2005).

T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-Electronics (Butterworth, 1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

3D view of FDTD model illustrating block of dielectric with a disordered array of air holes.

Fig. 2
Fig. 2

Parameters of surface patterns: period p, width w, depth d, standard deviation of offsetting s, and mark-space ratio m ( B A ) .

Fig. 3
Fig. 3

Single disordered pattern with increasing period values with other parameters kept constant. Period values are p = 0.4 , p = 0.9 , p = 1.5 , and p = 2.0 μ m .

Fig. 4
Fig. 4

Four uniformly distributed random patterns.

Fig. 5
Fig. 5

Spectral response on a logarithmic scale for simulations with (a) no surface, (b) surface, and (c) normalized field output intensity.

Fig. 6
Fig. 6

(a) Output intensity normalized to flat surface for a regular pattern (i) and disordered pattern 1 across the sweep of pattern periods at λ 0 = 3.3 μ m and (b) output intensity normalized to flat surface for disordered patterns 2 and 3 across the sweep of pattern periods at λ 0 = 3.3 μ m .

Fig. 7
Fig. 7

Absolute spectral gain for the two periods showing greatest gain in Fig. 6a for the regular and disordered patterns 1 and (b) absolute spectral gain for the two periods showing greatest gain in Fig. 6b for disordered patterns 2 and 3.

Fig. 8
Fig. 8

(a) Normalized output intensities for two uniformly random patterns (i and ii) with varying feature widths and (b) normalized output intensities for two uniformly random patterns (iii and iv) with varying feature widths, together with the mean output intensity from all four uniformly random patterns.

Fig. 9
Fig. 9

2D FDTD model.

Fig. 10
Fig. 10

Normalized output intensity for varying intermediate layer depths and refractive indices.

Tables (1)

Tables Icon

Table 1 Predicted Periods, p, of the Grating at Which Enhanced Emission Should Be Seen for the Ranges of Allowed Incident Wave Vectors k to the Dielectric Interface

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k 0 n sin θ i k 0 ,
k 0 n sin θ i Q k 0 .

Metrics