Abstract

A 6.4at.% Tm3+-doped BaGd2(MoO4)4 cleavage crystal was grown by the Czochralski method. Detailed spectral properties of this crystal were investigated, including the polarized absorption and emission spectra and the fluorescence decay. The maximum absorption cross section of the pump band is 3.5cm×1020cm at 798nm with a bandwidth of 8nm, which means that this crystal is suitable for laser diode pumping. The Judd–Ofelt theory was used to calculate the radiative transition probabilities between multiplets. Pumped by a Ti:sapphire laser, the 2.0μm quasi-cw laser operation was performed using a cleaved 1.1mm thick wafer of this crystal in a hemispherical cavity. The achieved highest slope efficiency was 51% with a 6.7% output coupler and the corresponding threshold was 31mW. The results show that a Tm3+:BaGd2(MoO4)4 crystal is a promising candidate for 2.0μm microchip lasers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Wenk, S. Furst, V. Danicke, and D. T. Kunde, “Design and technical concept of a Tm laser scalpel for clinical investigation based on a 60W, 1.92 μm Tm fiber laser system,” in Advances in Medical Engineering, T.M.Buzug, ed. (Springer, 2007), pp. 447-452.
    [CrossRef]
  2. F. J. McAleavey, J. O'Gorman, J. F. Donegan, J. Hegarty, and G. Maze, “Extremely high sensitivity gas detection at 2.3 μm using a grazing incidence Tm3+ fiber laser cavity,” Sens. Actuators A 87, 107-112 (2001).
    [CrossRef]
  3. T. J. Carrig, “Novel pulsed solid-state sources for laser remote sensing,” Proc. SPIE 5620, 187-198 (2004).
    [CrossRef]
  4. T. Thevar and N. P. Barnes, “Diode-pumped, continuous-wave Tm:YAlO3 laser,” Appl. Opt. 45, 3352-3355 (2006).
    [CrossRef] [PubMed]
  5. S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm: YLF lasers,” Appl. Phys. B 84, 389-393 (2006).
    [CrossRef]
  6. P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 629-635 (2000).
    [CrossRef]
  7. G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, and M. Tonelli, “Widely tunable 1.94-μmTm:BaY2F8 laser,” Opt. Lett. 30, 854-856 (2005).
    [CrossRef] [PubMed]
  8. A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorge, “Spectroscopy and cw operation of a 1.85 μmTm:KY3F10 laser,” Appl. Phys. B 72, 909-912 (2001).
    [CrossRef]
  9. V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244-1251 (2004).
    [CrossRef]
  10. A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86, 287-292 (2007).
    [CrossRef]
  11. J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. JoseValle, M. Galan, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494-2502 (2006).
    [CrossRef]
  12. X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008-1015 (2006).
    [CrossRef]
  13. C. Li, J. Song, D. Y. Shen, N. S. Kim, K. Ueda, Y. J. Huo, S. F. He, and Y. H. Cao, “Diode-pumped high-efficiency Tm:YAG lasers,” Opt. Express 4, 12-18 (1999).
    [CrossRef] [PubMed]
  14. R. Moncorge, N. Garnier, P. Kerbrat, C. Wyon, and C. Borel, “Spectroscopic investigation and two-micron laser performance of Tm3+:CaYAlO4 single crystals,” Opt. Commun. 141, 29-34 (1997).
    [CrossRef]
  15. H. Saito, S. Chaddha, R. S. F. Chang, and N. Djeu, “Efficient 1.94-μmTm3+ laser in YVO4 host,” Opt. Lett. 17, 189-191 (1992).
    [CrossRef] [PubMed]
  16. Y. Urata and S. Wada, “808-nm diode-pumped continuous-wave Tm:GdVO4 laser at room temperature,” Appl. Opt. 44, 3087-3092 (2005).
    [CrossRef] [PubMed]
  17. X. Mateos, J. Liu, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous-wave and tunable laser operation of Tm:LuVO4 near 1.9 μm under Ti: sapphire and diode laser pumping,” Phys. Status Solidi A 203, R19-R21 (2006).
    [CrossRef]
  18. G. L. Bourdet and G. Lescroart, “Theoretical modelling of mode formation in Tm3+:YVO4 microchip lasers,” Opt. Commun. 150, 136-140 (1998).
    [CrossRef]
  19. G. L. Bourdet and G. Lescroart, “Theoretical modelling and design of a Tm:YVO4 microchip laser,” Opt. Commun. 149, 404-414 (1998).
    [CrossRef]
  20. G. L. Bourdet, G. Lescroart, and R. Muller, “Spectral characteristics of 2 μm microchip Tm:YVO4 and Tm,Ho: YLF lasers,” Opt. Commun. 150, 141-146 (1998).
    [CrossRef]
  21. J. J. Zayhowski, J. Harrison, C. Dill, and J. Ochoa, “Tm-YVO4 microchip laser,” Appl. Opt. 34, 435-437 (1995).
    [CrossRef] [PubMed]
  22. E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, “Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,” J. Phys. Chem. Solids 58, 587-595 (1997).
    [CrossRef]
  23. L. D. Merkle, J. B. Gruber, M. D. Seltzer, S. B. Stevens, and T. H. Allik, “Spectroscopic analysis of Tm3+-NaLa(MoO4)2,” J. Appl. Phys. 72, 4269-4274 (1992).
    [CrossRef]
  24. L. Macalik, “Comparison of the spectroscopic and crystallographic data of Tm3+ in the different hosts: KLn(MO4)2 where Ln=Y, La, Lu, and M=Mo,W,” J. Alloys Compd. 341, 226-232 (2002).
    [CrossRef]
  25. V. V. Vakulyuk, A. A. Evdokimov, and G. P. Khomchenko, “The BaMoO4-Ln2(MoO4)3 systems (Ln=Nd,Sm,Yb),” Russ. J. Inorg. Chem. 27, 1016-1019 (1982).
  26. H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Polarized spectral properties and laser demonstration of Nd3+:BaGd2(MoO4)4 cleavage crystal,” J. Opt. Soc. Am. B 24, 2659-2665 (2007).
    [CrossRef]
  27. H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101, 063109 (2007).
    [CrossRef]
  28. Y. Wei, C. Tu, H. Wang, F. Yang, G. Jia, Z. You, J. Li, Z. Zhu, and Y. Wang, “Thermal and optical properties of Tm3+:NaLa(WO4)2 crystal,” Appl. Phys. B 86, 529-535 (2007).
    [CrossRef]
  29. X. Lu, Z. Y. You, J. F. Li, Z. J. Zhu, G. H. Jia, B. C. Wu, and C. Y. Tu, “Optical spectra of Tm3+ doped NaBi(WO4)2,” Opt. Mater. 29, 849-853 (2007).
    [CrossRef]
  30. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750-761 (1962).
    [CrossRef]
  31. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511-520 (1962).
    [CrossRef]
  32. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 15, 4412-4423 (1968).
    [CrossRef]
  33. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772-2787 (1998).
    [CrossRef]
  34. Y. J. Chen, X. Q. Lin, Z. D. Luo, and Y. D. Huang, “Polarized spectral analysis of Nd3+ ions in LaB3O6 biaxial crystal,” Chem. Phys. Lett. 397, 282-287 (2004).
    [CrossRef]
  35. N. F. Fedorov, V. V. Ipatov, and G. I. Rozhnovskaya, “Phase equilibria in the BaMoO4-Ln2(MoO4)3 systems (Ln=Nd or Gd),” Russ. J. Inorg. Chem. 27, 1019-1022 (1982).
  36. H. Dai and O. M. Stafsudd, “Polarized absorption-spectrum and intensity analysis of trivalent neodymium in sodium beta alumina,” J. Phys. Chem. Solids 52, 367-379 (1991).
    [CrossRef]
  37. T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307-314 (1999).
    [CrossRef]
  38. F. Guell, “1.48 and 1.84 μm thulium emissions in monoclinic KGd(WO4)2 single crystals,” J. Appl. Phys. 95, 919-923 (2004).
    [CrossRef]
  39. M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978-1989 (1965).
    [CrossRef]
  40. M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779-784 (1967).
    [CrossRef]
  41. A. I. Burshtein, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882-885 (1972).
  42. I. R. Martin, V. D. Rodriguez, U. R. Rodriguez-Mendoza, V. Lavin, E. Montoya, and D. Jaque, “Energy transfer with migration. Generalization of the Yokota-Tanimoto model for any kind of multipole interaction,” J. Chem. Phys. 111, 1191-1194 (1999).
    [CrossRef]
  43. F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91, 624-632 (2002).
    [CrossRef]
  44. A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. M. Tkachuk, “Energy-transfer processes in Yb: Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280-5292 (2000).
    [CrossRef]
  45. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954-A957 (1964).
    [CrossRef]
  46. L. Macalik, J. Hanuza, D. Jaque, and J. G. Sole, “Spectroscopic characterisation of the Tm3+ doped KLa(WO4)2 single crystals,” Opt. Mater. 28, 980-987 (2006).
    [CrossRef]
  47. K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+-YVO4 crystal as an efficient diode pumped laser source near 2000-nm,” J. Appl. Phys. 73, 3149-3152 (1993).
    [CrossRef]
  48. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-levels lasers,” Phys. Lett. 20, 277-278 (1966).
    [CrossRef]
  49. Y. J. Chen, X. H. Gong, Y. F. Lin, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Continuous-wave laser characteristics of a Nd3+:LaB3O6 cleavage microchip and the influence of thermal effects,” Appl. Opt. 45, 8338-8345 (2006).
    [CrossRef] [PubMed]
  50. V. Lupei, N. Pavel, and T. Taira, “Efficient laser emission in concentrated Nd laser materials under pumping to the emitting level,” IEEE J. Quantum Electron. 38, 240-245 (2002).
    [CrossRef]

2007

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86, 287-292 (2007).
[CrossRef]

H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101, 063109 (2007).
[CrossRef]

Y. Wei, C. Tu, H. Wang, F. Yang, G. Jia, Z. You, J. Li, Z. Zhu, and Y. Wang, “Thermal and optical properties of Tm3+:NaLa(WO4)2 crystal,” Appl. Phys. B 86, 529-535 (2007).
[CrossRef]

X. Lu, Z. Y. You, J. F. Li, Z. J. Zhu, G. H. Jia, B. C. Wu, and C. Y. Tu, “Optical spectra of Tm3+ doped NaBi(WO4)2,” Opt. Mater. 29, 849-853 (2007).
[CrossRef]

H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Polarized spectral properties and laser demonstration of Nd3+:BaGd2(MoO4)4 cleavage crystal,” J. Opt. Soc. Am. B 24, 2659-2665 (2007).
[CrossRef]

2006

T. Thevar and N. P. Barnes, “Diode-pumped, continuous-wave Tm:YAlO3 laser,” Appl. Opt. 45, 3352-3355 (2006).
[CrossRef] [PubMed]

Y. J. Chen, X. H. Gong, Y. F. Lin, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Continuous-wave laser characteristics of a Nd3+:LaB3O6 cleavage microchip and the influence of thermal effects,” Appl. Opt. 45, 8338-8345 (2006).
[CrossRef] [PubMed]

J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. JoseValle, M. Galan, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494-2502 (2006).
[CrossRef]

X. Mateos, J. Liu, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous-wave and tunable laser operation of Tm:LuVO4 near 1.9 μm under Ti: sapphire and diode laser pumping,” Phys. Status Solidi A 203, R19-R21 (2006).
[CrossRef]

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm: YLF lasers,” Appl. Phys. B 84, 389-393 (2006).
[CrossRef]

L. Macalik, J. Hanuza, D. Jaque, and J. G. Sole, “Spectroscopic characterisation of the Tm3+ doped KLa(WO4)2 single crystals,” Opt. Mater. 28, 980-987 (2006).
[CrossRef]

2005

2004

Y. J. Chen, X. Q. Lin, Z. D. Luo, and Y. D. Huang, “Polarized spectral analysis of Nd3+ ions in LaB3O6 biaxial crystal,” Chem. Phys. Lett. 397, 282-287 (2004).
[CrossRef]

F. Guell, “1.48 and 1.84 μm thulium emissions in monoclinic KGd(WO4)2 single crystals,” J. Appl. Phys. 95, 919-923 (2004).
[CrossRef]

T. J. Carrig, “Novel pulsed solid-state sources for laser remote sensing,” Proc. SPIE 5620, 187-198 (2004).
[CrossRef]

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244-1251 (2004).
[CrossRef]

2002

F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91, 624-632 (2002).
[CrossRef]

L. Macalik, “Comparison of the spectroscopic and crystallographic data of Tm3+ in the different hosts: KLn(MO4)2 where Ln=Y, La, Lu, and M=Mo,W,” J. Alloys Compd. 341, 226-232 (2002).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, “Efficient laser emission in concentrated Nd laser materials under pumping to the emitting level,” IEEE J. Quantum Electron. 38, 240-245 (2002).
[CrossRef]

2001

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorge, “Spectroscopy and cw operation of a 1.85 μmTm:KY3F10 laser,” Appl. Phys. B 72, 909-912 (2001).
[CrossRef]

F. J. McAleavey, J. O'Gorman, J. F. Donegan, J. Hegarty, and G. Maze, “Extremely high sensitivity gas detection at 2.3 μm using a grazing incidence Tm3+ fiber laser cavity,” Sens. Actuators A 87, 107-112 (2001).
[CrossRef]

2000

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 629-635 (2000).
[CrossRef]

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. M. Tkachuk, “Energy-transfer processes in Yb: Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280-5292 (2000).
[CrossRef]

1999

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307-314 (1999).
[CrossRef]

I. R. Martin, V. D. Rodriguez, U. R. Rodriguez-Mendoza, V. Lavin, E. Montoya, and D. Jaque, “Energy transfer with migration. Generalization of the Yokota-Tanimoto model for any kind of multipole interaction,” J. Chem. Phys. 111, 1191-1194 (1999).
[CrossRef]

C. Li, J. Song, D. Y. Shen, N. S. Kim, K. Ueda, Y. J. Huo, S. F. He, and Y. H. Cao, “Diode-pumped high-efficiency Tm:YAG lasers,” Opt. Express 4, 12-18 (1999).
[CrossRef] [PubMed]

1998

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772-2787 (1998).
[CrossRef]

G. L. Bourdet and G. Lescroart, “Theoretical modelling of mode formation in Tm3+:YVO4 microchip lasers,” Opt. Commun. 150, 136-140 (1998).
[CrossRef]

G. L. Bourdet and G. Lescroart, “Theoretical modelling and design of a Tm:YVO4 microchip laser,” Opt. Commun. 149, 404-414 (1998).
[CrossRef]

G. L. Bourdet, G. Lescroart, and R. Muller, “Spectral characteristics of 2 μm microchip Tm:YVO4 and Tm,Ho: YLF lasers,” Opt. Commun. 150, 141-146 (1998).
[CrossRef]

1997

R. Moncorge, N. Garnier, P. Kerbrat, C. Wyon, and C. Borel, “Spectroscopic investigation and two-micron laser performance of Tm3+:CaYAlO4 single crystals,” Opt. Commun. 141, 29-34 (1997).
[CrossRef]

E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, “Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,” J. Phys. Chem. Solids 58, 587-595 (1997).
[CrossRef]

1995

1993

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+-YVO4 crystal as an efficient diode pumped laser source near 2000-nm,” J. Appl. Phys. 73, 3149-3152 (1993).
[CrossRef]

1992

L. D. Merkle, J. B. Gruber, M. D. Seltzer, S. B. Stevens, and T. H. Allik, “Spectroscopic analysis of Tm3+-NaLa(MoO4)2,” J. Appl. Phys. 72, 4269-4274 (1992).
[CrossRef]

H. Saito, S. Chaddha, R. S. F. Chang, and N. Djeu, “Efficient 1.94-μmTm3+ laser in YVO4 host,” Opt. Lett. 17, 189-191 (1992).
[CrossRef] [PubMed]

1991

H. Dai and O. M. Stafsudd, “Polarized absorption-spectrum and intensity analysis of trivalent neodymium in sodium beta alumina,” J. Phys. Chem. Solids 52, 367-379 (1991).
[CrossRef]

1982

N. F. Fedorov, V. V. Ipatov, and G. I. Rozhnovskaya, “Phase equilibria in the BaMoO4-Ln2(MoO4)3 systems (Ln=Nd or Gd),” Russ. J. Inorg. Chem. 27, 1019-1022 (1982).

V. V. Vakulyuk, A. A. Evdokimov, and G. P. Khomchenko, “The BaMoO4-Ln2(MoO4)3 systems (Ln=Nd,Sm,Yb),” Russ. J. Inorg. Chem. 27, 1016-1019 (1982).

1972

A. I. Burshtein, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882-885 (1972).

1968

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 15, 4412-4423 (1968).
[CrossRef]

1967

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779-784 (1967).
[CrossRef]

1966

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-levels lasers,” Phys. Lett. 20, 277-278 (1966).
[CrossRef]

1965

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978-1989 (1965).
[CrossRef]

1964

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954-A957 (1964).
[CrossRef]

1962

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750-761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511-520 (1962).
[CrossRef]

Aguilo, M.

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244-1251 (2004).
[CrossRef]

Allik, T. H.

L. D. Merkle, J. B. Gruber, M. D. Seltzer, S. B. Stevens, and T. H. Allik, “Spectroscopic analysis of Tm3+-NaLa(MoO4)2,” J. Appl. Phys. 72, 4269-4274 (1992).
[CrossRef]

Barnes, N. P.

T. Thevar and N. P. Barnes, “Diode-pumped, continuous-wave Tm:YAlO3 laser,” Appl. Opt. 45, 3352-3355 (2006).
[CrossRef] [PubMed]

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772-2787 (1998).
[CrossRef]

Basiev, T. T.

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307-314 (1999).
[CrossRef]

Betterton, J. G.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm: YLF lasers,” Appl. Phys. B 84, 389-393 (2006).
[CrossRef]

Bettinelli, M.

E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, “Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,” J. Phys. Chem. Solids 58, 587-595 (1997).
[CrossRef]

Borel, C.

R. Moncorge, N. Garnier, P. Kerbrat, C. Wyon, and C. Borel, “Spectroscopic investigation and two-micron laser performance of Tm3+:CaYAlO4 single crystals,” Opt. Commun. 141, 29-34 (1997).
[CrossRef]

Bourdet, G. L.

G. L. Bourdet and G. Lescroart, “Theoretical modelling of mode formation in Tm3+:YVO4 microchip lasers,” Opt. Commun. 150, 136-140 (1998).
[CrossRef]

G. L. Bourdet, G. Lescroart, and R. Muller, “Spectral characteristics of 2 μm microchip Tm:YVO4 and Tm,Ho: YLF lasers,” Opt. Commun. 150, 141-146 (1998).
[CrossRef]

G. L. Bourdet and G. Lescroart, “Theoretical modelling and design of a Tm:YVO4 microchip laser,” Opt. Commun. 149, 404-414 (1998).
[CrossRef]

Braud, A.

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorge, “Spectroscopy and cw operation of a 1.85 μmTm:KY3F10 laser,” Appl. Phys. B 72, 909-912 (2001).
[CrossRef]

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. M. Tkachuk, “Energy-transfer processes in Yb: Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280-5292 (2000).
[CrossRef]

Budni, P. A.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 629-635 (2000).
[CrossRef]

Burshtein, A. I.

A. I. Burshtein, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882-885 (1972).

Cano-Torres, J. M.

Cao, Y. H.

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 15, 4412-4423 (1968).
[CrossRef]

Carrig, T. J.

T. J. Carrig, “Novel pulsed solid-state sources for laser remote sensing,” Proc. SPIE 5620, 187-198 (2004).
[CrossRef]

Cavalli, E.

E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, “Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,” J. Phys. Chem. Solids 58, 587-595 (1997).
[CrossRef]

Chaddha, S.

Chang, R. S. F.

Chen, Y. J.

H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Polarized spectral properties and laser demonstration of Nd3+:BaGd2(MoO4)4 cleavage crystal,” J. Opt. Soc. Am. B 24, 2659-2665 (2007).
[CrossRef]

H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101, 063109 (2007).
[CrossRef]

Y. J. Chen, X. H. Gong, Y. F. Lin, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Continuous-wave laser characteristics of a Nd3+:LaB3O6 cleavage microchip and the influence of thermal effects,” Appl. Opt. 45, 8338-8345 (2006).
[CrossRef] [PubMed]

Y. J. Chen, X. Q. Lin, Z. D. Luo, and Y. D. Huang, “Polarized spectral analysis of Nd3+ ions in LaB3O6 biaxial crystal,” Chem. Phys. Lett. 397, 282-287 (2004).
[CrossRef]

Chicklis, E. P.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 629-635 (2000).
[CrossRef]

Clarkson, W. A.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm: YLF lasers,” Appl. Phys. B 84, 389-393 (2006).
[CrossRef]

Clay, R. A.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-levels lasers,” Phys. Lett. 20, 277-278 (1966).
[CrossRef]

Cornacchia, F.

Courrol, L. C.

F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91, 624-632 (2002).
[CrossRef]

Dai, H.

H. Dai and O. M. Stafsudd, “Polarized absorption-spectrum and intensity analysis of trivalent neodymium in sodium beta alumina,” J. Phys. Chem. Solids 52, 367-379 (1991).
[CrossRef]

Danicke, V.

S. Wenk, S. Furst, V. Danicke, and D. T. Kunde, “Design and technical concept of a Tm laser scalpel for clinical investigation based on a 60W, 1.92 μm Tm fiber laser system,” in Advances in Medical Engineering, T.M.Buzug, ed. (Springer, 2007), pp. 447-452.
[CrossRef]

Di Bartolo, B.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772-2787 (1998).
[CrossRef]

Diaz, F.

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244-1251 (2004).
[CrossRef]

Dill, C.

Djeu, N.

Donegan, J. F.

F. J. McAleavey, J. O'Gorman, J. F. Donegan, J. Hegarty, and G. Maze, “Extremely high sensitivity gas detection at 2.3 μm using a grazing incidence Tm3+ fiber laser cavity,” Sens. Actuators A 87, 107-112 (2001).
[CrossRef]

Doualan, J. L.

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorge, “Spectroscopy and cw operation of a 1.85 μmTm:KY3F10 laser,” Appl. Phys. B 72, 909-912 (2001).
[CrossRef]

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. M. Tkachuk, “Energy-transfer processes in Yb: Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280-5292 (2000).
[CrossRef]

Dunina, E. B.

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86, 287-292 (2007).
[CrossRef]

Evdokimov, A. A.

V. V. Vakulyuk, A. A. Evdokimov, and G. P. Khomchenko, “The BaMoO4-Ln2(MoO4)3 systems (Ln=Nd,Sm,Yb),” Russ. J. Inorg. Chem. 27, 1016-1019 (1982).

Fedorov, N. F.

N. F. Fedorov, V. V. Ipatov, and G. I. Rozhnovskaya, “Phase equilibria in the BaMoO4-Ln2(MoO4)3 systems (Ln=Nd or Gd),” Russ. J. Inorg. Chem. 27, 1019-1022 (1982).

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 15, 4412-4423 (1968).
[CrossRef]

Findlay, D.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-levels lasers,” Phys. Lett. 20, 277-278 (1966).
[CrossRef]

Furst, S.

S. Wenk, S. Furst, V. Danicke, and D. T. Kunde, “Design and technical concept of a Tm laser scalpel for clinical investigation based on a 60W, 1.92 μm Tm fiber laser system,” in Advances in Medical Engineering, T.M.Buzug, ed. (Springer, 2007), pp. 447-452.
[CrossRef]

Galan, M.

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. JoseValle, M. Galan, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494-2502 (2006).
[CrossRef]

Galzerano, G.

Garnier, N.

R. Moncorge, N. Garnier, P. Kerbrat, C. Wyon, and C. Borel, “Spectroscopic investigation and two-micron laser performance of Tm3+:CaYAlO4 single crystals,” Opt. Commun. 141, 29-34 (1997).
[CrossRef]

Gavalda, J.

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244-1251 (2004).
[CrossRef]

Girard, S.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. M. Tkachuk, “Energy-transfer processes in Yb: Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280-5292 (2000).
[CrossRef]

Gomes, L.

F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91, 624-632 (2002).
[CrossRef]

Gong, X. H.

Gorton, E. K.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm: YLF lasers,” Appl. Phys. B 84, 389-393 (2006).
[CrossRef]

Griebner, U.

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

X. Mateos, J. Liu, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous-wave and tunable laser operation of Tm:LuVO4 near 1.9 μm under Ti: sapphire and diode laser pumping,” Phys. Status Solidi A 203, R19-R21 (2006).
[CrossRef]

J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. JoseValle, M. Galan, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494-2502 (2006).
[CrossRef]

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244-1251 (2004).
[CrossRef]

Gruber, J. B.

L. D. Merkle, J. B. Gruber, M. D. Seltzer, S. B. Stevens, and T. H. Allik, “Spectroscopic analysis of Tm3+-NaLa(MoO4)2,” J. Appl. Phys. 72, 4269-4274 (1992).
[CrossRef]

Guell, F.

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244-1251 (2004).
[CrossRef]

F. Guell, “1.48 and 1.84 μm thulium emissions in monoclinic KGd(WO4)2 single crystals,” J. Appl. Phys. 95, 919-923 (2004).
[CrossRef]

Hanuza, J.

L. Macalik, J. Hanuza, D. Jaque, and J. G. Sole, “Spectroscopic characterisation of the Tm3+ doped KLa(WO4)2 single crystals,” Opt. Mater. 28, 980-987 (2006).
[CrossRef]

Harrison, J.

He, S. F.

Hegarty, J.

F. J. McAleavey, J. O'Gorman, J. F. Donegan, J. Hegarty, and G. Maze, “Extremely high sensitivity gas detection at 2.3 μm using a grazing incidence Tm3+ fiber laser cavity,” Sens. Actuators A 87, 107-112 (2001).
[CrossRef]

Hirayama, F.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978-1989 (1965).
[CrossRef]

Huang, Y. D.

H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Polarized spectral properties and laser demonstration of Nd3+:BaGd2(MoO4)4 cleavage crystal,” J. Opt. Soc. Am. B 24, 2659-2665 (2007).
[CrossRef]

H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101, 063109 (2007).
[CrossRef]

Y. J. Chen, X. H. Gong, Y. F. Lin, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Continuous-wave laser characteristics of a Nd3+:LaB3O6 cleavage microchip and the influence of thermal effects,” Appl. Opt. 45, 8338-8345 (2006).
[CrossRef] [PubMed]

Y. J. Chen, X. Q. Lin, Z. D. Luo, and Y. D. Huang, “Polarized spectral analysis of Nd3+ ions in LaB3O6 biaxial crystal,” Chem. Phys. Lett. 397, 282-287 (2004).
[CrossRef]

Huo, Y. J.

Inokuti, M.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978-1989 (1965).
[CrossRef]

Ipatov, V. V.

N. F. Fedorov, V. V. Ipatov, and G. I. Rozhnovskaya, “Phase equilibria in the BaMoO4-Ln2(MoO4)3 systems (Ln=Nd or Gd),” Russ. J. Inorg. Chem. 27, 1019-1022 (1982).

Ivleva, L. I.

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307-314 (1999).
[CrossRef]

Jagosich, F. H.

F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91, 624-632 (2002).
[CrossRef]

Jaque, D.

L. Macalik, J. Hanuza, D. Jaque, and J. G. Sole, “Spectroscopic characterisation of the Tm3+ doped KLa(WO4)2 single crystals,” Opt. Mater. 28, 980-987 (2006).
[CrossRef]

I. R. Martin, V. D. Rodriguez, U. R. Rodriguez-Mendoza, V. Lavin, E. Montoya, and D. Jaque, “Energy transfer with migration. Generalization of the Yokota-Tanimoto model for any kind of multipole interaction,” J. Chem. Phys. 111, 1191-1194 (1999).
[CrossRef]

Jia, G.

Y. Wei, C. Tu, H. Wang, F. Yang, G. Jia, Z. You, J. Li, Z. Zhu, and Y. Wang, “Thermal and optical properties of Tm3+:NaLa(WO4)2 crystal,” Appl. Phys. B 86, 529-535 (2007).
[CrossRef]

Jia, G. H.

X. Lu, Z. Y. You, J. F. Li, Z. J. Zhu, G. H. Jia, B. C. Wu, and C. Y. Tu, “Optical spectra of Tm3+ doped NaBi(WO4)2,” Opt. Mater. 29, 849-853 (2007).
[CrossRef]

Jiang, M.

X. Mateos, J. Liu, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous-wave and tunable laser operation of Tm:LuVO4 near 1.9 μm under Ti: sapphire and diode laser pumping,” Phys. Status Solidi A 203, R19-R21 (2006).
[CrossRef]

JoseValle, F.

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750-761 (1962).
[CrossRef]

Kerbrat, P.

R. Moncorge, N. Garnier, P. Kerbrat, C. Wyon, and C. Borel, “Spectroscopic investigation and two-micron laser performance of Tm3+:CaYAlO4 single crystals,” Opt. Commun. 141, 29-34 (1997).
[CrossRef]

Khomchenko, G. P.

V. V. Vakulyuk, A. A. Evdokimov, and G. P. Khomchenko, “The BaMoO4-Ln2(MoO4)3 systems (Ln=Nd,Sm,Yb),” Russ. J. Inorg. Chem. 27, 1016-1019 (1982).

Kim, N. S.

Kisel, V. E.

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86, 287-292 (2007).
[CrossRef]

Kornienko, A. A.

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86, 287-292 (2007).
[CrossRef]

Kuleshov, N. V.

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86, 287-292 (2007).
[CrossRef]

Kunde, D. T.

S. Wenk, S. Furst, V. Danicke, and D. T. Kunde, “Design and technical concept of a Tm laser scalpel for clinical investigation based on a 60W, 1.92 μm Tm fiber laser system,” in Advances in Medical Engineering, T.M.Buzug, ed. (Springer, 2007), pp. 447-452.
[CrossRef]

Lavin, V.

I. R. Martin, V. D. Rodriguez, U. R. Rodriguez-Mendoza, V. Lavin, E. Montoya, and D. Jaque, “Energy transfer with migration. Generalization of the Yokota-Tanimoto model for any kind of multipole interaction,” J. Chem. Phys. 111, 1191-1194 (1999).
[CrossRef]

Lemons, M. L.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 629-635 (2000).
[CrossRef]

Lescroart, G.

G. L. Bourdet, G. Lescroart, and R. Muller, “Spectral characteristics of 2 μm microchip Tm:YVO4 and Tm,Ho: YLF lasers,” Opt. Commun. 150, 141-146 (1998).
[CrossRef]

G. L. Bourdet and G. Lescroart, “Theoretical modelling of mode formation in Tm3+:YVO4 microchip lasers,” Opt. Commun. 150, 136-140 (1998).
[CrossRef]

G. L. Bourdet and G. Lescroart, “Theoretical modelling and design of a Tm:YVO4 microchip laser,” Opt. Commun. 149, 404-414 (1998).
[CrossRef]

Li, C.

Li, J.

Y. Wei, C. Tu, H. Wang, F. Yang, G. Jia, Z. You, J. Li, Z. Zhu, and Y. Wang, “Thermal and optical properties of Tm3+:NaLa(WO4)2 crystal,” Appl. Phys. B 86, 529-535 (2007).
[CrossRef]

Li, J. F.

X. Lu, Z. Y. You, J. F. Li, Z. J. Zhu, G. H. Jia, B. C. Wu, and C. Y. Tu, “Optical spectra of Tm3+ doped NaBi(WO4)2,” Opt. Mater. 29, 849-853 (2007).
[CrossRef]

Lin, X. Q.

Y. J. Chen, X. Q. Lin, Z. D. Luo, and Y. D. Huang, “Polarized spectral analysis of Nd3+ ions in LaB3O6 biaxial crystal,” Chem. Phys. Lett. 397, 282-287 (2004).
[CrossRef]

Lin, Y. F.

Liu, J.

X. Mateos, J. Liu, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous-wave and tunable laser operation of Tm:LuVO4 near 1.9 μm under Ti: sapphire and diode laser pumping,” Phys. Status Solidi A 203, R19-R21 (2006).
[CrossRef]

J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. JoseValle, M. Galan, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494-2502 (2006).
[CrossRef]

Liu, J. H.

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

Lu, X.

X. Lu, Z. Y. You, J. F. Li, Z. J. Zhu, G. H. Jia, B. C. Wu, and C. Y. Tu, “Optical spectra of Tm3+ doped NaBi(WO4)2,” Opt. Mater. 29, 849-853 (2007).
[CrossRef]

Luo, Z. D.

H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101, 063109 (2007).
[CrossRef]

H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Polarized spectral properties and laser demonstration of Nd3+:BaGd2(MoO4)4 cleavage crystal,” J. Opt. Soc. Am. B 24, 2659-2665 (2007).
[CrossRef]

Y. J. Chen, X. H. Gong, Y. F. Lin, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Continuous-wave laser characteristics of a Nd3+:LaB3O6 cleavage microchip and the influence of thermal effects,” Appl. Opt. 45, 8338-8345 (2006).
[CrossRef] [PubMed]

Y. J. Chen, X. Q. Lin, Z. D. Luo, and Y. D. Huang, “Polarized spectral analysis of Nd3+ ions in LaB3O6 biaxial crystal,” Chem. Phys. Lett. 397, 282-287 (2004).
[CrossRef]

Lupei, V.

V. Lupei, N. Pavel, and T. Taira, “Efficient laser emission in concentrated Nd laser materials under pumping to the emitting level,” IEEE J. Quantum Electron. 38, 240-245 (2002).
[CrossRef]

Macalik, L.

L. Macalik, J. Hanuza, D. Jaque, and J. G. Sole, “Spectroscopic characterisation of the Tm3+ doped KLa(WO4)2 single crystals,” Opt. Mater. 28, 980-987 (2006).
[CrossRef]

L. Macalik, “Comparison of the spectroscopic and crystallographic data of Tm3+ in the different hosts: KLn(MO4)2 where Ln=Y, La, Lu, and M=Mo,W,” J. Alloys Compd. 341, 226-232 (2002).
[CrossRef]

Mackenzie, J. I.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm: YLF lasers,” Appl. Phys. B 84, 389-393 (2006).
[CrossRef]

Martin, I. R.

I. R. Martin, V. D. Rodriguez, U. R. Rodriguez-Mendoza, V. Lavin, E. Montoya, and D. Jaque, “Energy transfer with migration. Generalization of the Yokota-Tanimoto model for any kind of multipole interaction,” J. Chem. Phys. 111, 1191-1194 (1999).
[CrossRef]

Massons, J.

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244-1251 (2004).
[CrossRef]

Mateos, X.

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

X. Mateos, J. Liu, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous-wave and tunable laser operation of Tm:LuVO4 near 1.9 μm under Ti: sapphire and diode laser pumping,” Phys. Status Solidi A 203, R19-R21 (2006).
[CrossRef]

J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. JoseValle, M. Galan, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494-2502 (2006).
[CrossRef]

Maze, G.

F. J. McAleavey, J. O'Gorman, J. F. Donegan, J. Hegarty, and G. Maze, “Extremely high sensitivity gas detection at 2.3 μm using a grazing incidence Tm3+ fiber laser cavity,” Sens. Actuators A 87, 107-112 (2001).
[CrossRef]

McAleavey, F. J.

F. J. McAleavey, J. O'Gorman, J. F. Donegan, J. Hegarty, and G. Maze, “Extremely high sensitivity gas detection at 2.3 μm using a grazing incidence Tm3+ fiber laser cavity,” Sens. Actuators A 87, 107-112 (2001).
[CrossRef]

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954-A957 (1964).
[CrossRef]

Merkle, L. D.

L. D. Merkle, J. B. Gruber, M. D. Seltzer, S. B. Stevens, and T. H. Allik, “Spectroscopic analysis of Tm3+-NaLa(MoO4)2,” J. Appl. Phys. 72, 4269-4274 (1992).
[CrossRef]

Meschini, C.

E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, “Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,” J. Phys. Chem. Solids 58, 587-595 (1997).
[CrossRef]

Moncorge, R.

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorge, “Spectroscopy and cw operation of a 1.85 μmTm:KY3F10 laser,” Appl. Phys. B 72, 909-912 (2001).
[CrossRef]

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. M. Tkachuk, “Energy-transfer processes in Yb: Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280-5292 (2000).
[CrossRef]

R. Moncorge, N. Garnier, P. Kerbrat, C. Wyon, and C. Borel, “Spectroscopic investigation and two-micron laser performance of Tm3+:CaYAlO4 single crystals,” Opt. Commun. 141, 29-34 (1997).
[CrossRef]

Montoya, E.

I. R. Martin, V. D. Rodriguez, U. R. Rodriguez-Mendoza, V. Lavin, E. Montoya, and D. Jaque, “Energy transfer with migration. Generalization of the Yokota-Tanimoto model for any kind of multipole interaction,” J. Chem. Phys. 111, 1191-1194 (1999).
[CrossRef]

Mosto, J. R.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 629-635 (2000).
[CrossRef]

Muller, R.

G. L. Bourdet, G. Lescroart, and R. Muller, “Spectral characteristics of 2 μm microchip Tm:YVO4 and Tm,Ho: YLF lasers,” Opt. Commun. 150, 141-146 (1998).
[CrossRef]

Obara, M.

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+-YVO4 crystal as an efficient diode pumped laser source near 2000-nm,” J. Appl. Phys. 73, 3149-3152 (1993).
[CrossRef]

Ochoa, J.

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511-520 (1962).
[CrossRef]

O'Gorman, J.

F. J. McAleavey, J. O'Gorman, J. F. Donegan, J. Hegarty, and G. Maze, “Extremely high sensitivity gas detection at 2.3 μm using a grazing incidence Tm3+ fiber laser cavity,” Sens. Actuators A 87, 107-112 (2001).
[CrossRef]

Ohta, K.

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+-YVO4 crystal as an efficient diode pumped laser source near 2000-nm,” J. Appl. Phys. 73, 3149-3152 (1993).
[CrossRef]

Osiko, V. V.

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307-314 (1999).
[CrossRef]

Parisi, D.

Pavel, N.

V. Lupei, N. Pavel, and T. Taira, “Efficient laser emission in concentrated Nd laser materials under pumping to the emitting level,” IEEE J. Quantum Electron. 38, 240-245 (2002).
[CrossRef]

Pavlyuk, A. A.

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86, 287-292 (2007).
[CrossRef]

Petrov, V.

X. Mateos, J. Liu, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous-wave and tunable laser operation of Tm:LuVO4 near 1.9 μm under Ti: sapphire and diode laser pumping,” Phys. Status Solidi A 203, R19-R21 (2006).
[CrossRef]

J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. JoseValle, M. Galan, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494-2502 (2006).
[CrossRef]

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244-1251 (2004).
[CrossRef]

Powell, R. C.

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307-314 (1999).
[CrossRef]

Pujol, M. C.

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 15, 4412-4423 (1968).
[CrossRef]

Ranieri, I. M.

F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91, 624-632 (2002).
[CrossRef]

Rico, M.

Rodriguez, V. D.

I. R. Martin, V. D. Rodriguez, U. R. Rodriguez-Mendoza, V. Lavin, E. Montoya, and D. Jaque, “Energy transfer with migration. Generalization of the Yokota-Tanimoto model for any kind of multipole interaction,” J. Chem. Phys. 111, 1191-1194 (1999).
[CrossRef]

Rodriguez-Mendoza, U. R.

I. R. Martin, V. D. Rodriguez, U. R. Rodriguez-Mendoza, V. Lavin, E. Montoya, and D. Jaque, “Energy transfer with migration. Generalization of the Yokota-Tanimoto model for any kind of multipole interaction,” J. Chem. Phys. 111, 1191-1194 (1999).
[CrossRef]

Rozhnovskaya, G. I.

N. F. Fedorov, V. V. Ipatov, and G. I. Rozhnovskaya, “Phase equilibria in the BaMoO4-Ln2(MoO4)3 systems (Ln=Nd or Gd),” Russ. J. Inorg. Chem. 27, 1019-1022 (1982).

Saito, H.

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+-YVO4 crystal as an efficient diode pumped laser source near 2000-nm,” J. Appl. Phys. 73, 3149-3152 (1993).
[CrossRef]

H. Saito, S. Chaddha, R. S. F. Chang, and N. Djeu, “Efficient 1.94-μmTm3+ laser in YVO4 host,” Opt. Lett. 17, 189-191 (1992).
[CrossRef] [PubMed]

Seltzer, M. D.

L. D. Merkle, J. B. Gruber, M. D. Seltzer, S. B. Stevens, and T. H. Allik, “Spectroscopic analysis of Tm3+-NaLa(MoO4)2,” J. Appl. Phys. 72, 4269-4274 (1992).
[CrossRef]

Serrano, M. D.

Shen, D. Y.

Shepherd, D. P.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm: YLF lasers,” Appl. Phys. B 84, 389-393 (2006).
[CrossRef]

So, S.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm: YLF lasers,” Appl. Phys. B 84, 389-393 (2006).
[CrossRef]

Sobol, A. A.

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307-314 (1999).
[CrossRef]

Sole, J. G.

L. Macalik, J. Hanuza, D. Jaque, and J. G. Sole, “Spectroscopic characterisation of the Tm3+ doped KLa(WO4)2 single crystals,” Opt. Mater. 28, 980-987 (2006).
[CrossRef]

Sole, R. M.

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244-1251 (2004).
[CrossRef]

Song, J.

Stafsudd, O. M.

H. Dai and O. M. Stafsudd, “Polarized absorption-spectrum and intensity analysis of trivalent neodymium in sodium beta alumina,” J. Phys. Chem. Solids 52, 367-379 (1991).
[CrossRef]

Stevens, S. B.

L. D. Merkle, J. B. Gruber, M. D. Seltzer, S. B. Stevens, and T. H. Allik, “Spectroscopic analysis of Tm3+-NaLa(MoO4)2,” J. Appl. Phys. 72, 4269-4274 (1992).
[CrossRef]

Taira, T.

V. Lupei, N. Pavel, and T. Taira, “Efficient laser emission in concentrated Nd laser materials under pumping to the emitting level,” IEEE J. Quantum Electron. 38, 240-245 (2002).
[CrossRef]

Tan, Q. G.

H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101, 063109 (2007).
[CrossRef]

Y. J. Chen, X. H. Gong, Y. F. Lin, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Continuous-wave laser characteristics of a Nd3+:LaB3O6 cleavage microchip and the influence of thermal effects,” Appl. Opt. 45, 8338-8345 (2006).
[CrossRef] [PubMed]

Tanimoto, O.

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779-784 (1967).
[CrossRef]

Tarelho, L. V. G.

F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91, 624-632 (2002).
[CrossRef]

Thevar, T.

Thuau, M.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. M. Tkachuk, “Energy-transfer processes in Yb: Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280-5292 (2000).
[CrossRef]

Tigreat, P. Y.

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorge, “Spectroscopy and cw operation of a 1.85 μmTm:KY3F10 laser,” Appl. Phys. B 72, 909-912 (2001).
[CrossRef]

Tkachuk, A. M.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. M. Tkachuk, “Energy-transfer processes in Yb: Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280-5292 (2000).
[CrossRef]

Toncelli, A.

G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, and M. Tonelli, “Widely tunable 1.94-μmTm:BaY2F8 laser,” Opt. Lett. 30, 854-856 (2005).
[CrossRef] [PubMed]

E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, “Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,” J. Phys. Chem. Solids 58, 587-595 (1997).
[CrossRef]

Tonelli, M.

G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, and M. Tonelli, “Widely tunable 1.94-μmTm:BaY2F8 laser,” Opt. Lett. 30, 854-856 (2005).
[CrossRef] [PubMed]

E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, “Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,” J. Phys. Chem. Solids 58, 587-595 (1997).
[CrossRef]

Troshin, A. E.

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86, 287-292 (2007).
[CrossRef]

Tu, C.

Y. Wei, C. Tu, H. Wang, F. Yang, G. Jia, Z. You, J. Li, Z. Zhu, and Y. Wang, “Thermal and optical properties of Tm3+:NaLa(WO4)2 crystal,” Appl. Phys. B 86, 529-535 (2007).
[CrossRef]

Tu, C. Y.

X. Lu, Z. Y. You, J. F. Li, Z. J. Zhu, G. H. Jia, B. C. Wu, and C. Y. Tu, “Optical spectra of Tm3+ doped NaBi(WO4)2,” Opt. Mater. 29, 849-853 (2007).
[CrossRef]

Ueda, K.

Urata, Y.

Vakulyuk, V. V.

V. V. Vakulyuk, A. A. Evdokimov, and G. P. Khomchenko, “The BaMoO4-Ln2(MoO4)3 systems (Ln=Nd,Sm,Yb),” Russ. J. Inorg. Chem. 27, 1016-1019 (1982).

Viera, G.

J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. JoseValle, M. Galan, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494-2502 (2006).
[CrossRef]

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

Wada, S.

Walsh, B. M.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772-2787 (1998).
[CrossRef]

Wang, H.

Y. Wei, C. Tu, H. Wang, F. Yang, G. Jia, Z. You, J. Li, Z. Zhu, and Y. Wang, “Thermal and optical properties of Tm3+:NaLa(WO4)2 crystal,” Appl. Phys. B 86, 529-535 (2007).
[CrossRef]

Wang, J.

X. Mateos, J. Liu, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous-wave and tunable laser operation of Tm:LuVO4 near 1.9 μm under Ti: sapphire and diode laser pumping,” Phys. Status Solidi A 203, R19-R21 (2006).
[CrossRef]

Wang, Y.

Y. Wei, C. Tu, H. Wang, F. Yang, G. Jia, Z. You, J. Li, Z. Zhu, and Y. Wang, “Thermal and optical properties of Tm3+:NaLa(WO4)2 crystal,” Appl. Phys. B 86, 529-535 (2007).
[CrossRef]

Wei, Y.

Y. Wei, C. Tu, H. Wang, F. Yang, G. Jia, Z. You, J. Li, Z. Zhu, and Y. Wang, “Thermal and optical properties of Tm3+:NaLa(WO4)2 crystal,” Appl. Phys. B 86, 529-535 (2007).
[CrossRef]

Wenk, S.

S. Wenk, S. Furst, V. Danicke, and D. T. Kunde, “Design and technical concept of a Tm laser scalpel for clinical investigation based on a 60W, 1.92 μm Tm fiber laser system,” in Advances in Medical Engineering, T.M.Buzug, ed. (Springer, 2007), pp. 447-452.
[CrossRef]

Wu, B. C.

X. Lu, Z. Y. You, J. F. Li, Z. J. Zhu, G. H. Jia, B. C. Wu, and C. Y. Tu, “Optical spectra of Tm3+ doped NaBi(WO4)2,” Opt. Mater. 29, 849-853 (2007).
[CrossRef]

Wyon, C.

R. Moncorge, N. Garnier, P. Kerbrat, C. Wyon, and C. Borel, “Spectroscopic investigation and two-micron laser performance of Tm3+:CaYAlO4 single crystals,” Opt. Commun. 141, 29-34 (1997).
[CrossRef]

Yang, F.

Y. Wei, C. Tu, H. Wang, F. Yang, G. Jia, Z. You, J. Li, Z. Zhu, and Y. Wang, “Thermal and optical properties of Tm3+:NaLa(WO4)2 crystal,” Appl. Phys. B 86, 529-535 (2007).
[CrossRef]

Yasukevich, A. S.

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86, 287-292 (2007).
[CrossRef]

Yokota, M.

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779-784 (1967).
[CrossRef]

You, Z.

Y. Wei, C. Tu, H. Wang, F. Yang, G. Jia, Z. You, J. Li, Z. Zhu, and Y. Wang, “Thermal and optical properties of Tm3+:NaLa(WO4)2 crystal,” Appl. Phys. B 86, 529-535 (2007).
[CrossRef]

You, Z. Y.

X. Lu, Z. Y. You, J. F. Li, Z. J. Zhu, G. H. Jia, B. C. Wu, and C. Y. Tu, “Optical spectra of Tm3+ doped NaBi(WO4)2,” Opt. Mater. 29, 849-853 (2007).
[CrossRef]

Zaldo, C.

Zayhowski, J. J.

Zhang, H.

X. Mateos, J. Liu, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous-wave and tunable laser operation of Tm:LuVO4 near 1.9 μm under Ti: sapphire and diode laser pumping,” Phys. Status Solidi A 203, R19-R21 (2006).
[CrossRef]

Zhu, H. M.

H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101, 063109 (2007).
[CrossRef]

H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Polarized spectral properties and laser demonstration of Nd3+:BaGd2(MoO4)4 cleavage crystal,” J. Opt. Soc. Am. B 24, 2659-2665 (2007).
[CrossRef]

Zhu, Z.

Y. Wei, C. Tu, H. Wang, F. Yang, G. Jia, Z. You, J. Li, Z. Zhu, and Y. Wang, “Thermal and optical properties of Tm3+:NaLa(WO4)2 crystal,” Appl. Phys. B 86, 529-535 (2007).
[CrossRef]

Zhu, Z. J.

X. Lu, Z. Y. You, J. F. Li, Z. J. Zhu, G. H. Jia, B. C. Wu, and C. Y. Tu, “Optical spectra of Tm3+ doped NaBi(WO4)2,” Opt. Mater. 29, 849-853 (2007).
[CrossRef]

Zverev, P. G.

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307-314 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. B

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorge, “Spectroscopy and cw operation of a 1.85 μmTm:KY3F10 laser,” Appl. Phys. B 72, 909-912 (2001).
[CrossRef]

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86, 287-292 (2007).
[CrossRef]

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm: YLF lasers,” Appl. Phys. B 84, 389-393 (2006).
[CrossRef]

Y. Wei, C. Tu, H. Wang, F. Yang, G. Jia, Z. You, J. Li, Z. Zhu, and Y. Wang, “Thermal and optical properties of Tm3+:NaLa(WO4)2 crystal,” Appl. Phys. B 86, 529-535 (2007).
[CrossRef]

Chem. Phys. Lett.

Y. J. Chen, X. Q. Lin, Z. D. Luo, and Y. D. Huang, “Polarized spectral analysis of Nd3+ ions in LaB3O6 biaxial crystal,” Chem. Phys. Lett. 397, 282-287 (2004).
[CrossRef]

IEEE J. Quantum Electron.

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244-1251 (2004).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, “Efficient laser emission in concentrated Nd laser materials under pumping to the emitting level,” IEEE J. Quantum Electron. 38, 240-245 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 629-635 (2000).
[CrossRef]

J. Alloys Compd.

L. Macalik, “Comparison of the spectroscopic and crystallographic data of Tm3+ in the different hosts: KLn(MO4)2 where Ln=Y, La, Lu, and M=Mo,W,” J. Alloys Compd. 341, 226-232 (2002).
[CrossRef]

J. Appl. Phys.

L. D. Merkle, J. B. Gruber, M. D. Seltzer, S. B. Stevens, and T. H. Allik, “Spectroscopic analysis of Tm3+-NaLa(MoO4)2,” J. Appl. Phys. 72, 4269-4274 (1992).
[CrossRef]

H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101, 063109 (2007).
[CrossRef]

F. Guell, “1.48 and 1.84 μm thulium emissions in monoclinic KGd(WO4)2 single crystals,” J. Appl. Phys. 95, 919-923 (2004).
[CrossRef]

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772-2787 (1998).
[CrossRef]

F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91, 624-632 (2002).
[CrossRef]

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+-YVO4 crystal as an efficient diode pumped laser source near 2000-nm,” J. Appl. Phys. 73, 3149-3152 (1993).
[CrossRef]

J. Chem. Phys.

I. R. Martin, V. D. Rodriguez, U. R. Rodriguez-Mendoza, V. Lavin, E. Montoya, and D. Jaque, “Energy transfer with migration. Generalization of the Yokota-Tanimoto model for any kind of multipole interaction,” J. Chem. Phys. 111, 1191-1194 (1999).
[CrossRef]

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978-1989 (1965).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511-520 (1962).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 15, 4412-4423 (1968).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. Solids

E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, “Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,” J. Phys. Chem. Solids 58, 587-595 (1997).
[CrossRef]

H. Dai and O. M. Stafsudd, “Polarized absorption-spectrum and intensity analysis of trivalent neodymium in sodium beta alumina,” J. Phys. Chem. Solids 52, 367-379 (1991).
[CrossRef]

J. Phys. Soc. Jpn.

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779-784 (1967).
[CrossRef]

Opt. Commun.

G. L. Bourdet and G. Lescroart, “Theoretical modelling of mode formation in Tm3+:YVO4 microchip lasers,” Opt. Commun. 150, 136-140 (1998).
[CrossRef]

G. L. Bourdet and G. Lescroart, “Theoretical modelling and design of a Tm:YVO4 microchip laser,” Opt. Commun. 149, 404-414 (1998).
[CrossRef]

G. L. Bourdet, G. Lescroart, and R. Muller, “Spectral characteristics of 2 μm microchip Tm:YVO4 and Tm,Ho: YLF lasers,” Opt. Commun. 150, 141-146 (1998).
[CrossRef]

R. Moncorge, N. Garnier, P. Kerbrat, C. Wyon, and C. Borel, “Spectroscopic investigation and two-micron laser performance of Tm3+:CaYAlO4 single crystals,” Opt. Commun. 141, 29-34 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

X. Lu, Z. Y. You, J. F. Li, Z. J. Zhu, G. H. Jia, B. C. Wu, and C. Y. Tu, “Optical spectra of Tm3+ doped NaBi(WO4)2,” Opt. Mater. 29, 849-853 (2007).
[CrossRef]

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307-314 (1999).
[CrossRef]

L. Macalik, J. Hanuza, D. Jaque, and J. G. Sole, “Spectroscopic characterisation of the Tm3+ doped KLa(WO4)2 single crystals,” Opt. Mater. 28, 980-987 (2006).
[CrossRef]

Phys. Lett.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-levels lasers,” Phys. Lett. 20, 277-278 (1966).
[CrossRef]

Phys. Rev.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954-A957 (1964).
[CrossRef]

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750-761 (1962).
[CrossRef]

Phys. Rev. B

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. M. Tkachuk, “Energy-transfer processes in Yb: Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280-5292 (2000).
[CrossRef]

Phys. Status Solidi A

X. Mateos, J. Liu, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous-wave and tunable laser operation of Tm:LuVO4 near 1.9 μm under Ti: sapphire and diode laser pumping,” Phys. Status Solidi A 203, R19-R21 (2006).
[CrossRef]

Proc. SPIE

T. J. Carrig, “Novel pulsed solid-state sources for laser remote sensing,” Proc. SPIE 5620, 187-198 (2004).
[CrossRef]

Russ. J. Inorg. Chem.

N. F. Fedorov, V. V. Ipatov, and G. I. Rozhnovskaya, “Phase equilibria in the BaMoO4-Ln2(MoO4)3 systems (Ln=Nd or Gd),” Russ. J. Inorg. Chem. 27, 1019-1022 (1982).

V. V. Vakulyuk, A. A. Evdokimov, and G. P. Khomchenko, “The BaMoO4-Ln2(MoO4)3 systems (Ln=Nd,Sm,Yb),” Russ. J. Inorg. Chem. 27, 1016-1019 (1982).

Sens. Actuators A

F. J. McAleavey, J. O'Gorman, J. F. Donegan, J. Hegarty, and G. Maze, “Extremely high sensitivity gas detection at 2.3 μm using a grazing incidence Tm3+ fiber laser cavity,” Sens. Actuators A 87, 107-112 (2001).
[CrossRef]

Sov. Phys. JETP

A. I. Burshtein, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882-885 (1972).

Other

S. Wenk, S. Furst, V. Danicke, and D. T. Kunde, “Design and technical concept of a Tm laser scalpel for clinical investigation based on a 60W, 1.92 μm Tm fiber laser system,” in Advances in Medical Engineering, T.M.Buzug, ed. (Springer, 2007), pp. 447-452.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Photograph of the 6.4 at. % Tm 3 + : BGM sample: (a) (010) plane is parallel to the paper plane; (b) (010) plane is perpendicular to the paper plane. The (010) plane is the cleavage plane and without polishing.

Fig. 2
Fig. 2

Polarized absorption spectra of the 6.4 at. % Tm 3 + : BGM crystal.

Fig. 3
Fig. 3

Polarized absorption cross sections of the 6.4 at. % Tm 3 + : BGM crystal in the range of 750 840 nm .

Fig. 4
Fig. 4

Polarized fluorescence spectra of the 6.4 at. % Tm 3 + : BGM crystal. The solid curves represent the spectra by exciting to the G 4 1 multiplet ( 467 nm exciting). The dashed curves represent the spectra by exciting to the F 2 , 3 3 multiplets ( 689 nm exciting).

Fig. 5
Fig. 5

Fluorescence decay curves of the G 4 1 and H 4 3 multiplets. The open circles represent the measured data, and the solid curves represent the fitting curves by the I–H and hopping models, respectively.

Fig. 6
Fig. 6

Absorption and emission cross sections for transitions between the H 6 3 and F 4 3 multiplets of the Tm 3 + : BGM crystal. The solid curves represent the absorption cross sections, and the dashed curves represent the emission cross sections.

Fig. 7
Fig. 7

Gain curves of the F 4 3 H 6 3 transition for the Tm 3 + : BGM crystal with β = 0.2 , 0.3, 0.4, and 0.5.

Fig. 8
Fig. 8

Output power versus absorbed pump power for the 798 nm Ti:sapphire laser pumped Tm 3 + : BGM laser at 2.0 μ m .

Fig. 9
Fig. 9

Spectra of the Tm 3 + : BGM laser at 2.0 μ m for different output couplers when the absorbed pump power of the 798 nm Ti:sapphire laser is 1.0 W .

Fig. 10
Fig. 10

Laser output power of 2.0 μ m versus wavelength of the Ti:sapphire pumping laser for the 6.7% output coupler when the pump power is 1.4 W .

Tables (3)

Tables Icon

Table 1 Judd–Ofelt Intensity Parameters Ω t X , Y , Z ( 10 20 cm 2 ) of a Tm 3 + : BGM Crystal

Tables Icon

Table 2 Barycentric Wavelength λ ¯ , ED ( A ed q ) , and MD ( A md ) Radiative Transition Probabilities, Branching Ratios ( β q ) , and Radiative Lifetimes ( τ rad ) of a Tm 3 + : BGM Crystal

Tables Icon

Table 3 Comparison of Several Important Spectral Parameters Related to an 2.0 μ m Laser between Tm 3 + : BGM and Other Tm 3 + -doped Crystals

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

τ f = 1 I 0 0 I ( t ) d t ,
I ( t ) = I ( 0 ) exp ( t τ 0 γ t 3 S ) ,
I ( t ) = I ( 0 ) exp [ t τ 0 4 π 3 N a Γ ( 1 3 S ) × ( C D A t ) 3 S ( 1 + a 1 X + a 2 X 2 1 + b 1 X ) ( S 3 ) ( S 2 ) ] ,
I ( t ) = I ( 0 ) exp ( t τ 0 γ t K t ) ,
γ = 4 3 π 3 2 N a C D A ,
K = π ( 2 π 3 ) 5 2 N a N d C D A C D D ,
σ em q ( λ ) = σ abs q ( λ ) Z l Z u exp ( E zl h c λ 1 k B T ) ,

Metrics