Abstract

We demonstrate the use of tilted fiber gratings to assist with the generation of infrared surface plasmons on a metal film coating the flat of a D-shaped fiber. The wavelength of the strong (>25dB) resonance is tunable over 1000nm by adjusting the polarization state of the light and is highly sensitive to the refractive index of any aqueous medium surrounding the fiber (sensitivity=3365nm).

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Vasilev and O. Medvedkov, “Long-period refractive index fibre gratings: properties, applications and fabrication techniques,” Proc. SPIE 4083, 212-223 (2000).
    [CrossRef]
  2. S.-M. Tseng, K.-Y. Hsu, H.-S. Wei, and K.-F. Chen, “Analysis and experiment of thin metal-clad fiber polarizer with index overlay,” IEEE Photon. Technol. Lett. 9, 628-630 (1997).
    [CrossRef]
  3. K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757-764 (2001).
    [CrossRef]
  4. M. Piliarik, J. Homola, Z. Maníková, and J. Ctyroký, “Surface plasmon resonance sensor based on a single-mode polarisation-maintaining optical fiber,” Sens. Actuators B 90, 236-242 (2003).
    [CrossRef]
  5. J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]
  6. S. Patskovsky, A. Kabashin, M. Meunier, and J. Luong, “Properties and sensing characteristics of surface plasmon resonance in infrared light,” J. Opt. Soc. Am. A 20, 1644-1650 (2003).
    [CrossRef]
  7. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277-1292 (1997).
    [CrossRef]
  8. M. Iga, A. Seki, and K. Watanabe, “Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor,” Sens. Actuators B 106, 363-368 (2005).
    [CrossRef]
  9. H.Raether, ed., “Surface Plasmons on Smooth and Rough Surfaces and on Gratings,” (Academic, 1997).
  10. T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Surface plasmon resonance generation utilising tilted fiber Bragg grating for the biochemical sensing,” in Proceedings of the OFS-18, Biological and Medical Sensors (2006), paper WA 4.
  11. T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “The generation of infrared surface plasmon resonances with high refractive index sensitivity utilizing tilted fibre Bragg gratings,” Appl. Opt. 46, 5456-5460 (2007).
    [CrossRef] [PubMed]
  12. R. Walker, S. Mihailov, P. Lu, and D. Grobnic, “Shaping the radiation field of tilted fiber Bragg gratings,” J. Opt. Soc. Am. B 22, 962-975 (2005).
    [CrossRef]
  13. A. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritions and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5, 16-50 (2003).
    [CrossRef]
  14. J. Homola and S. Yee, “Novel polarisation control scheme for spectral surface plasmon resonance sensors,” Sens. Actuators B 51, 331-339 (1998).
    [CrossRef]
  15. C.Tsao, ed., “Optical Fibre Waveguide Analysis” (Oxford, 1992).
  16. K. S. Lee and T. Erdogan, “Fiber mode coupling in transmissive and reflective tilted fiber gratings,” Appl. Opt. 39, 1394-1404 (2000).
    [CrossRef]
  17. NanoRule+trade, http://www.pacificnanotech.com/.

2007 (1)

2005 (2)

R. Walker, S. Mihailov, P. Lu, and D. Grobnic, “Shaping the radiation field of tilted fiber Bragg gratings,” J. Opt. Soc. Am. B 22, 962-975 (2005).
[CrossRef]

M. Iga, A. Seki, and K. Watanabe, “Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor,” Sens. Actuators B 106, 363-368 (2005).
[CrossRef]

2003 (3)

A. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritions and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5, 16-50 (2003).
[CrossRef]

M. Piliarik, J. Homola, Z. Maníková, and J. Ctyroký, “Surface plasmon resonance sensor based on a single-mode polarisation-maintaining optical fiber,” Sens. Actuators B 90, 236-242 (2003).
[CrossRef]

S. Patskovsky, A. Kabashin, M. Meunier, and J. Luong, “Properties and sensing characteristics of surface plasmon resonance in infrared light,” J. Opt. Soc. Am. A 20, 1644-1650 (2003).
[CrossRef]

2001 (1)

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757-764 (2001).
[CrossRef]

2000 (2)

K. S. Lee and T. Erdogan, “Fiber mode coupling in transmissive and reflective tilted fiber gratings,” Appl. Opt. 39, 1394-1404 (2000).
[CrossRef]

S. Vasilev and O. Medvedkov, “Long-period refractive index fibre gratings: properties, applications and fabrication techniques,” Proc. SPIE 4083, 212-223 (2000).
[CrossRef]

1999 (1)

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

1998 (1)

J. Homola and S. Yee, “Novel polarisation control scheme for spectral surface plasmon resonance sensors,” Sens. Actuators B 51, 331-339 (1998).
[CrossRef]

1997 (2)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277-1292 (1997).
[CrossRef]

S.-M. Tseng, K.-Y. Hsu, H.-S. Wei, and K.-F. Chen, “Analysis and experiment of thin metal-clad fiber polarizer with index overlay,” IEEE Photon. Technol. Lett. 9, 628-630 (1997).
[CrossRef]

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (1)

S.-M. Tseng, K.-Y. Hsu, H.-S. Wei, and K.-F. Chen, “Analysis and experiment of thin metal-clad fiber polarizer with index overlay,” IEEE Photon. Technol. Lett. 9, 628-630 (1997).
[CrossRef]

J. Lightwave Technol. (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277-1292 (1997).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

A. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritions and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5, 16-50 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757-764 (2001).
[CrossRef]

Proc. SPIE (1)

S. Vasilev and O. Medvedkov, “Long-period refractive index fibre gratings: properties, applications and fabrication techniques,” Proc. SPIE 4083, 212-223 (2000).
[CrossRef]

Sens. Actuators B (4)

J. Homola and S. Yee, “Novel polarisation control scheme for spectral surface plasmon resonance sensors,” Sens. Actuators B 51, 331-339 (1998).
[CrossRef]

M. Piliarik, J. Homola, Z. Maníková, and J. Ctyroký, “Surface plasmon resonance sensor based on a single-mode polarisation-maintaining optical fiber,” Sens. Actuators B 90, 236-242 (2003).
[CrossRef]

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

M. Iga, A. Seki, and K. Watanabe, “Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor,” Sens. Actuators B 106, 363-368 (2005).
[CrossRef]

Other (4)

H.Raether, ed., “Surface Plasmons on Smooth and Rough Surfaces and on Gratings,” (Academic, 1997).

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Surface plasmon resonance generation utilising tilted fiber Bragg grating for the biochemical sensing,” in Proceedings of the OFS-18, Biological and Medical Sensors (2006), paper WA 4.

C.Tsao, ed., “Optical Fibre Waveguide Analysis” (Oxford, 1992).

NanoRule+trade, http://www.pacificnanotech.com/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Comparison of transmission spectra using nonpolarized light from a tilted Bragg grating (length: 3.2 cm , tilt: 3 ° ) before (a) and after lapping (b).

Fig. 2
Fig. 2

Scheme used for the characterization of the tilted, lapped, and coated fiber Bragg grating device.

Fig. 3
Fig. 3

Normalized transmission spectra of a fiber SPR device with a tilt angle of 7 ° and length 2.2 cm immersed in a solution with an index of 1.360 and illuminated with light with various polarization states.

Fig. 4
Fig. 4

Azimuthal polarization dependency of the SPR device (Ag thickness 35 nm , tilt angle 3 ° , grating length 3.2 cm ), showing resonant wavelength (diamonds) and coupling strength (triangles) as a function of polarization for different refractive indices of the surrounding medium.

Fig. 5
Fig. 5

(a) Transmission response and (b) shift in resonant wavelength as a function of the surrounding medium’s refractive index for a given polarization state. Tilt angle = 7 ° , length = 2.2 cm .

Fig. 6
Fig. 6

Spectral characteristics of three devices with 3 ° , 7 ° , and 9 ° tilt angles and lengths 3.3, 2.2, and 1.7 cm , respectively. (a) Wavelength dependence and (b) optical coupling strength dependence of the device as a function of the surrounding medium’s refractive index. Also shown as a control in (b) is the coupling of a coated and lapped fiber with no grating inscribed.

Fig. 7
Fig. 7

Coupling coefficient for TM 0 , v modes for a 7 ° tilted grating in a D-shaped fiber with a silver coated flat.

Fig. 8
Fig. 8

Theoretically predicted transmission spectra of a SPR fiber device as a function of the azimuth, δ, of the linearly polarized illuminating light (see text for other device parameters).

Fig. 9
Fig. 9

Theoretically predicted spectral response (a) and coupling strength (b) of a SPR fiber device as a function of the azimuth of polarization of the illuminating linearly polarized light (see text for other device parameters).

Fig. 10
Fig. 10

Typical image of the surface of a silver coated D-shaped fiber taken with an AFM.

Fig. 11
Fig. 11

Grain analysis of a typical silver coating on the D-shaped fiber: (a) scatter plot of height of the grains against length of the grains, and (b) scatter plot of width of the grains against length of the grains.

Fig. 12
Fig. 12

Theoretical transmission spectra as a function of the surrounding medium’s refractive index for a SPR fiber device for p-polarization state of the illuminating light. The device has a tilt angle of 7 ° and a 35 nm coating of silver.

Fig. 13
Fig. 13

Theoretically predicted spectral response (a) and coupling strength (b) of a SPR fiber device as a function of the surrounding medium’s refractive index for p-polarization state of the illuminating light. The device has a tilt angle of 7 ° and a 35 nm coating of silver.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

β = k ( ϵ m n s 2 ϵ m + n s 2 ) ,
2 π λ ( ϵ ( λ ) m n ( λ ) s 2 ϵ ( λ ) m + n ( λ ) s 2 ) = 2 π n cl λ sin ( φ ) .
R = E r p E 0 p 2 = r n 2 n m p + r n m n s p exp ( 2 i K z n m d ) 1 + r n 2 n m p r n m n s p exp ( 2 i K z n m d ) 2 ,
( J v ( u 1 r 1 ) u 1 r J v ( u 1 r 1 ) P v + s 21 Q v W 2 ) ( K v ( w 3 r 2 ) w 3 r 2 K v ( w 3 r 2 ) s 23 R v α 2 W 2 ) = ( n 2 2 n 1 n 3 α 2 W 2 2 ) 2
( J v ( u 1 r 1 ) u 1 r J v ( u 1 r 1 ) P v + Q v W 2 ) ( K v ( w 3 r 2 ) w 3 r 2 K v ( w 3 r 2 ) R v α 2 W 2 ) = ( 1 α 2 W 2 2 ) 2 ,
E r cl = β μ 1 A 1 Ψ 1 ω w 2 ϵ 1 Ψ 2 [ I ν ( w 2 r ) ( Ψ 2 ϵ 1 w 2 Ψ 1 ϵ 2 J ν ( u 1 r 1 ) + I ν ( w 2 , r 1 ) ) K ν ( w 2 r ) K ν ( w 2 r 1 ) ] ,
H ϕ cl = u 1 A 1 ϵ 2 Ψ 1 w 2 2 ϵ 1 Ψ 2 [ I ν ( w 2 r ) ( Ψ 2 ϵ 1 w 2 Ψ 1 ϵ 2 J ν ( u 1 r 1 ) + I ν ( w 2 r 1 ) ) K ν ( w 2 r ) K ν ( w 2 r 1 ) ] ,
E s cl = u 1 A 1 Ψ 1 i ω ϵ 1 Ψ 2 [ I ν ( w 2 r ) ( Ψ 2 ϵ 1 w 2 Ψ 1 ϵ 2 J ν ( u 1 r 1 ) + I ν ( w 2 r 1 ) ) K ν ( w 2 r ) K ν ( w 2 r 1 ) ] .
k cl co = 0 2 π 0 r 1 E co E ¯ cl exp ( i K t sin ( ϕ ) r d r d ϕ ,
E co = J 0 ( u 1 r 1 ) cos ( ϕ δ ) r ̂ J 0 ( u 1 r 1 ) sin ( ϕ δ ) ϕ ̂ + i u 1 β co J 1 ( u 1 r 1 ) cos ( ϕ δ ) s ̂ ,

Metrics