Abstract

Linearly chirped fiber Bragg gratings have been developed for a wideband and compact tunable dispersion compensator. The apodization function of positive hyperbolic-tangent profile (tanh) was designed as an optimum profile by taking a practical writing technique into consideration. This writing technique was improved by finding the optimum condition of laser power and the division number of profile. A precise tuning of dispersion compensation is achieved by controlling the temperature distribution along a fiber Bragg grating. We fabricated a compact tunable dispersion compensator with a bandwidth of >35nm and low group-delay ripples of <10ps.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. Nakazawa, T. Yamamoto, and K. Tamura, "1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator," Electron. Lett. 36, 2027-2029 (2000).
    [CrossRef]
  2. M. Kato, K. Kurokawa, and Y. Miyajima, "Variable dispersion compensation with broad-range wavelength tunability using a chirped fiber Bragg grating," J. Opt. Commun. 20, 64-66 (1999).
  3. J. A. Rogers, B. J. Eggleton, and J. R. Pedrazzani, "Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp," Appl. Phys. Lett. 74, 3131-3133 (1999).
    [CrossRef]
  4. A. E. Willner, K. M. Feng, and J. Cai, "Tunable compensation of channel degrading effects using nonlinearly chirped passive fiber Bragg grating," IEEE J. Sel. Top. Quantum Electron. 5, 1298-1311 (1999).
    [CrossRef]
  5. B. J. Eggleton, B. Mikkelsen, and G. Raybon, "Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating," IEEE Photonics Technol. Lett. 12, 1022-1024 (2000).
    [CrossRef]
  6. T. Sugihara, K. Shimomura, K. Shimizu, Y. Kobayashi, K. Matsuoka, M. Hashimoto, T. Hashimoto, T. Hirai, S. Matsumoto, T. Ohira, M. Takabayashi, K. Yoshiara, and T. Mizuochi, "Automatically tracked dispersion compensation with penalty-free tunable dispersion equalizer for 40 Gbit/s systems," in Proceedings of the Optical Fiber and Communication Conference (Optical Society of America, 2002), paper ThAA2.
  7. M. Secondini, E. Forestieri, and G. Prati, "Adaptive minimum MSE controlled PLC optical equalizer for chromatic dispersion compensation," J. Lightwave Technol. 21, 2322-2331 (2003).
    [CrossRef]
  8. K. Takiguchi, K. Okamoto, and K. Moriwaki, "Dispersion compensation using a planar lightwave circuit optical equalizer," IEEE Photonics Technol. Lett. 6, 561-564 (1994).
    [CrossRef]
  9. H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, "40-Gb/s WDM transmission with virtually imaged phased array (VIPA) variable dispersion compensators," J. Lightwave Technol. 20, 2196--2203 (2002).
    [CrossRef]
  10. S. Wakabayashi, A. Baba, H. Moriya, X. Wang, T. Hasegawa, and A. Suzuki, "Tunable dispersion slope compensator based on chirped FBGs with temperature distribution for 160 Gbit/s," in Proceedings of the Optical Fiber and Communication Conference (Optical Society of America, 2003), paper MF27.
  11. S. Wakabayashi, A. Baba, H. Moriya, X. Wang, T. Hasegawa, and A. Suzuki, "Tunable dispersion and dispersion slope compensator based on two twin chirped FBGs with temperature gradient for 160 Gbit/s transmission," IEICE Trans. Electron. E87-C, 1100-1105 (2004).
  12. S. Wakabayashi, A. Itou, and J. Adachi, "Tunable dispersion compensator module based on chirped fiber gratings with 40 nm bandwidth for OTDM/WDM systems over 160 Gbit/s," in Proceedings of the 9th OptoElectronics and Communications Conference 3rd International Conference on Optical Internet (SPIE, 2004), paper 16d2-1.
    [PubMed]
  13. D. Pastor, J. Capmany, D. Ortega, V. Tatay, and J. Marti, "Design of apodized linearly chirped fiber gratings for dispersion compensation," J. Lightwave Technol. 14, 2581-2588 (1996).
    [CrossRef]
  14. K. Ennser, M. N. Zervas, and R. I. Laming, "Optimization of apodized linearly chirped fiber gratings for optical communications," IEEE J. Quantum Electron. 34, 770-778 (1998).
    [CrossRef]

2004 (1)

S. Wakabayashi, A. Baba, H. Moriya, X. Wang, T. Hasegawa, and A. Suzuki, "Tunable dispersion and dispersion slope compensator based on two twin chirped FBGs with temperature gradient for 160 Gbit/s transmission," IEICE Trans. Electron. E87-C, 1100-1105 (2004).

2003 (1)

2002 (1)

2000 (2)

B. J. Eggleton, B. Mikkelsen, and G. Raybon, "Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating," IEEE Photonics Technol. Lett. 12, 1022-1024 (2000).
[CrossRef]

M. Nakazawa, T. Yamamoto, and K. Tamura, "1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator," Electron. Lett. 36, 2027-2029 (2000).
[CrossRef]

1999 (3)

M. Kato, K. Kurokawa, and Y. Miyajima, "Variable dispersion compensation with broad-range wavelength tunability using a chirped fiber Bragg grating," J. Opt. Commun. 20, 64-66 (1999).

J. A. Rogers, B. J. Eggleton, and J. R. Pedrazzani, "Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp," Appl. Phys. Lett. 74, 3131-3133 (1999).
[CrossRef]

A. E. Willner, K. M. Feng, and J. Cai, "Tunable compensation of channel degrading effects using nonlinearly chirped passive fiber Bragg grating," IEEE J. Sel. Top. Quantum Electron. 5, 1298-1311 (1999).
[CrossRef]

1998 (1)

K. Ennser, M. N. Zervas, and R. I. Laming, "Optimization of apodized linearly chirped fiber gratings for optical communications," IEEE J. Quantum Electron. 34, 770-778 (1998).
[CrossRef]

1996 (1)

D. Pastor, J. Capmany, D. Ortega, V. Tatay, and J. Marti, "Design of apodized linearly chirped fiber gratings for dispersion compensation," J. Lightwave Technol. 14, 2581-2588 (1996).
[CrossRef]

1994 (1)

K. Takiguchi, K. Okamoto, and K. Moriwaki, "Dispersion compensation using a planar lightwave circuit optical equalizer," IEEE Photonics Technol. Lett. 6, 561-564 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

J. A. Rogers, B. J. Eggleton, and J. R. Pedrazzani, "Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp," Appl. Phys. Lett. 74, 3131-3133 (1999).
[CrossRef]

Electron. Lett. (1)

M. Nakazawa, T. Yamamoto, and K. Tamura, "1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator," Electron. Lett. 36, 2027-2029 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Ennser, M. N. Zervas, and R. I. Laming, "Optimization of apodized linearly chirped fiber gratings for optical communications," IEEE J. Quantum Electron. 34, 770-778 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. E. Willner, K. M. Feng, and J. Cai, "Tunable compensation of channel degrading effects using nonlinearly chirped passive fiber Bragg grating," IEEE J. Sel. Top. Quantum Electron. 5, 1298-1311 (1999).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

B. J. Eggleton, B. Mikkelsen, and G. Raybon, "Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating," IEEE Photonics Technol. Lett. 12, 1022-1024 (2000).
[CrossRef]

K. Takiguchi, K. Okamoto, and K. Moriwaki, "Dispersion compensation using a planar lightwave circuit optical equalizer," IEEE Photonics Technol. Lett. 6, 561-564 (1994).
[CrossRef]

IEICE Trans. Electron. (1)

S. Wakabayashi, A. Baba, H. Moriya, X. Wang, T. Hasegawa, and A. Suzuki, "Tunable dispersion and dispersion slope compensator based on two twin chirped FBGs with temperature gradient for 160 Gbit/s transmission," IEICE Trans. Electron. E87-C, 1100-1105 (2004).

J. Lightwave Technol. (3)

J. Opt. Commun. (1)

M. Kato, K. Kurokawa, and Y. Miyajima, "Variable dispersion compensation with broad-range wavelength tunability using a chirped fiber Bragg grating," J. Opt. Commun. 20, 64-66 (1999).

Other (3)

S. Wakabayashi, A. Baba, H. Moriya, X. Wang, T. Hasegawa, and A. Suzuki, "Tunable dispersion slope compensator based on chirped FBGs with temperature distribution for 160 Gbit/s," in Proceedings of the Optical Fiber and Communication Conference (Optical Society of America, 2003), paper MF27.

T. Sugihara, K. Shimomura, K. Shimizu, Y. Kobayashi, K. Matsuoka, M. Hashimoto, T. Hashimoto, T. Hirai, S. Matsumoto, T. Ohira, M. Takabayashi, K. Yoshiara, and T. Mizuochi, "Automatically tracked dispersion compensation with penalty-free tunable dispersion equalizer for 40 Gbit/s systems," in Proceedings of the Optical Fiber and Communication Conference (Optical Society of America, 2002), paper ThAA2.

S. Wakabayashi, A. Itou, and J. Adachi, "Tunable dispersion compensator module based on chirped fiber gratings with 40 nm bandwidth for OTDM/WDM systems over 160 Gbit/s," in Proceedings of the 9th OptoElectronics and Communications Conference 3rd International Conference on Optical Internet (SPIE, 2004), paper 16d2-1.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Apodization profiles of tanh function for various β.

Fig. 2
Fig. 2

Refractive index distribution assumed in simulation.

Fig. 3
Fig. 3

Calculated (a) relative group delay, (b) reflectivity, and (c) dispersion with a division number of 80.

Fig. 4
Fig. 4

Dispersion characteristics with a division number of (a) 100, (b) 200, and (c) 400.

Fig. 5
Fig. 5

Fabrication setup of wideband linearly chirped FBGs.

Fig. 6
Fig. 6

(a) Relative group delay, (b) reflectivity, and (c) close-up of the group delay of a single linearly chirped FBG.

Fig. 7
Fig. 7

(a) Relative group delay and (b) reflectivity of two twin linearly chirped FBGs.

Fig. 8
Fig. 8

Configuration of a tunable dispersion compensator.

Fig. 9
Fig. 9

Tunable dispersion characteristics of a tunable dispersion compensator.

Fig. 10
Fig. 10

Configuration of a compact tunable dispersion compensator module.

Fig. 11
Fig. 11

Experimental setup for short-pulse transmission measurement in a tunable dispersion compensator.

Fig. 12
Fig. 12

Measured autocorrelation traces through the fiber link.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

positive tanh profile : f ( z ) = tanh { β ( z ) L } , 0 = z = L 2 ,
tanh { β ( z L ) L } , L 2 = z = L ;

Metrics