Abstract

A ring resonator composed of a plasmonic waveguide is presented. For the plasmonic waveguide, an array of silver nanorods is assumed. To determine the modes of this ring resonator, the generalized multipole technique (GMT) is used. Using this analysis, we obtain various modes of the proposed ring resonator. The mode field and the corresponding quality factor of each mode of the ring resonator is computed. The results are compared with those obtained using the finite-element method (FEM) and the finite-difference time domain (FDTD) method.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Ausseneg, “Electromagnetic field transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331-1333 (1998).
    [CrossRef]
  2. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356-R16359 (2000).
    [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824-830 (2003).
    [CrossRef]
  4. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel,B. Koel, and A. A. G. ReQuicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nature 2, 229-232 (2003).
    [CrossRef]
  5. B. Pradarutti, C. Rau, G. Torosyan, R. Beigang, and K. Kawase, “Plasmonic response in a one-dimensional periodic structures of metallic rods,” Appl. Phys. Lett. 87, 204105 (2005).
    [CrossRef]
  6. H. Chu, W. Ewe, E. Li, and R. Vahldieck, “Analysis of sub-wavelength light propagation through long double-chain nanowires with funnel feeding,” Opt. Express 15, 4216-4223 (2007).
    [CrossRef] [PubMed]
  7. N. Talebi and M. Shahabadi, “Analysis of the propagation of light along an array of nanorods using the generalized multipole technique,” J. Comput. Theor. Nanosci. 4, 711-716 (2008).
    [CrossRef]
  8. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag And Au nanowire grating,” Appl. Phys. 90, 3825-3830 (2001).
  9. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590-2593 (1999).
    [CrossRef]
  10. C. Hagness, T. Rafizadeh, T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ting and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154-2165 (1997).
    [CrossRef]
  11. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
    [CrossRef]
  12. N. Talebi, M. Shahabadi, and C. Hafner, “Analysis of a lossy microring resonator using generalized multipole technique,” PIER 66, 287-299 (2006).
    [CrossRef]
  13. B. Liu, A. Shakouri, and J. E. Bowers, “Wide tuneable double ring resonator coupled lasers,” IEEE Photonics Technol. Lett. 14, 600-602 (2002).
    [CrossRef]
  14. S. Deng, W. Cai, and V. N. Astratov, “Numerical study of light propagation via whispering gallery modes in microcylinder coupled resonator optical waveguides,” Opt. Express 12, 6468-6480 (2004).
    [CrossRef] [PubMed]
  15. C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, 1990).
  16. C. Rockstuhl, M. G. Salt, and H. P. Herzig, “Application of the boundary-element method to the interaction of light with single and coupled metallic nanoparticles,” J. Opt. Soc. Am. A 20, 1969-1973 (2003).
    [CrossRef]
  17. E. Cottancin, G. Celep, J. Lerme, M. Pellarin, J. R. Hunzinger, J. L. Vialle, and M. Broyer, “Optical properties of noble metal clusters as a function of size: comparison between experiments and a semi-quantal theory,” Theor. Chem. Acc. 116, 514-523 (2006).
    [CrossRef]
  18. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

2008 (1)

N. Talebi and M. Shahabadi, “Analysis of the propagation of light along an array of nanorods using the generalized multipole technique,” J. Comput. Theor. Nanosci. 4, 711-716 (2008).
[CrossRef]

2007 (1)

2006 (2)

E. Cottancin, G. Celep, J. Lerme, M. Pellarin, J. R. Hunzinger, J. L. Vialle, and M. Broyer, “Optical properties of noble metal clusters as a function of size: comparison between experiments and a semi-quantal theory,” Theor. Chem. Acc. 116, 514-523 (2006).
[CrossRef]

N. Talebi, M. Shahabadi, and C. Hafner, “Analysis of a lossy microring resonator using generalized multipole technique,” PIER 66, 287-299 (2006).
[CrossRef]

2005 (1)

B. Pradarutti, C. Rau, G. Torosyan, R. Beigang, and K. Kawase, “Plasmonic response in a one-dimensional periodic structures of metallic rods,” Appl. Phys. Lett. 87, 204105 (2005).
[CrossRef]

2004 (1)

2003 (3)

C. Rockstuhl, M. G. Salt, and H. P. Herzig, “Application of the boundary-element method to the interaction of light with single and coupled metallic nanoparticles,” J. Opt. Soc. Am. A 20, 1969-1973 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824-830 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel,B. Koel, and A. A. G. ReQuicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nature 2, 229-232 (2003).
[CrossRef]

2002 (1)

B. Liu, A. Shakouri, and J. E. Bowers, “Wide tuneable double ring resonator coupled lasers,” IEEE Photonics Technol. Lett. 14, 600-602 (2002).
[CrossRef]

2001 (1)

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag And Au nanowire grating,” Appl. Phys. 90, 3825-3830 (2001).

2000 (1)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356-R16359 (2000).
[CrossRef]

1999 (1)

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

1998 (1)

1997 (2)

C. Hagness, T. Rafizadeh, T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ting and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154-2165 (1997).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Astratov, V. N.

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel,B. Koel, and A. A. G. ReQuicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nature 2, 229-232 (2003).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356-R16359 (2000).
[CrossRef]

Ausseneg, F. R.

Aussenegg, F. R.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag And Au nanowire grating,” Appl. Phys. 90, 3825-3830 (2001).

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824-830 (2003).
[CrossRef]

Beigang, R.

B. Pradarutti, C. Rau, G. Torosyan, R. Beigang, and K. Kawase, “Plasmonic response in a one-dimensional periodic structures of metallic rods,” Appl. Phys. Lett. 87, 204105 (2005).
[CrossRef]

Bourillot, E.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

Bowers, J. E.

B. Liu, A. Shakouri, and J. E. Bowers, “Wide tuneable double ring resonator coupled lasers,” IEEE Photonics Technol. Lett. 14, 600-602 (2002).
[CrossRef]

Brongersma, M. L.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356-R16359 (2000).
[CrossRef]

Broyer, M.

E. Cottancin, G. Celep, J. Lerme, M. Pellarin, J. R. Hunzinger, J. L. Vialle, and M. Broyer, “Optical properties of noble metal clusters as a function of size: comparison between experiments and a semi-quantal theory,” Theor. Chem. Acc. 116, 514-523 (2006).
[CrossRef]

Cai, W.

Celep, G.

E. Cottancin, G. Celep, J. Lerme, M. Pellarin, J. R. Hunzinger, J. L. Vialle, and M. Broyer, “Optical properties of noble metal clusters as a function of size: comparison between experiments and a semi-quantal theory,” Theor. Chem. Acc. 116, 514-523 (2006).
[CrossRef]

Chu, H.

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Cottancin, E.

E. Cottancin, G. Celep, J. Lerme, M. Pellarin, J. R. Hunzinger, J. L. Vialle, and M. Broyer, “Optical properties of noble metal clusters as a function of size: comparison between experiments and a semi-quantal theory,” Theor. Chem. Acc. 116, 514-523 (2006).
[CrossRef]

Deng, S.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824-830 (2003).
[CrossRef]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

Ditlbacher, H.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag And Au nanowire grating,” Appl. Phys. 90, 3825-3830 (2001).

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824-830 (2003).
[CrossRef]

Ewe, W.

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Girard, C.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

Gotschy, W.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag And Au nanowire grating,” Appl. Phys. 90, 3825-3830 (2001).

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

Goudonnet, J. P.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

Hafner, C.

N. Talebi, M. Shahabadi, and C. Hafner, “Analysis of a lossy microring resonator using generalized multipole technique,” PIER 66, 287-299 (2006).
[CrossRef]

C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, 1990).

Hagness, C.

C. Hagness, T. Rafizadeh, T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ting and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154-2165 (1997).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel,B. Koel, and A. A. G. ReQuicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nature 2, 229-232 (2003).
[CrossRef]

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356-R16359 (2000).
[CrossRef]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Herzig, H. P.

Ho, T.

C. Hagness, T. Rafizadeh, T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ting and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154-2165 (1997).
[CrossRef]

Hunzinger, J. R.

E. Cottancin, G. Celep, J. Lerme, M. Pellarin, J. R. Hunzinger, J. L. Vialle, and M. Broyer, “Optical properties of noble metal clusters as a function of size: comparison between experiments and a semi-quantal theory,” Theor. Chem. Acc. 116, 514-523 (2006).
[CrossRef]

Kawase, K.

B. Pradarutti, C. Rau, G. Torosyan, R. Beigang, and K. Kawase, “Plasmonic response in a one-dimensional periodic structures of metallic rods,” Appl. Phys. Lett. 87, 204105 (2005).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel,B. Koel, and A. A. G. ReQuicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nature 2, 229-232 (2003).
[CrossRef]

Koel, B.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel,B. Koel, and A. A. G. ReQuicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nature 2, 229-232 (2003).
[CrossRef]

Krenn, J. R.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag And Au nanowire grating,” Appl. Phys. 90, 3825-3830 (2001).

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Ausseneg, “Electromagnetic field transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331-1333 (1998).
[CrossRef]

Lacroute, Y.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

Laine, J. P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Lamprecht, B.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag And Au nanowire grating,” Appl. Phys. 90, 3825-3830 (2001).

Leitner, A.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag And Au nanowire grating,” Appl. Phys. 90, 3825-3830 (2001).

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Ausseneg, “Electromagnetic field transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331-1333 (1998).
[CrossRef]

Lerme, J.

E. Cottancin, G. Celep, J. Lerme, M. Pellarin, J. R. Hunzinger, J. L. Vialle, and M. Broyer, “Optical properties of noble metal clusters as a function of size: comparison between experiments and a semi-quantal theory,” Theor. Chem. Acc. 116, 514-523 (2006).
[CrossRef]

Li, E.

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Liu, B.

B. Liu, A. Shakouri, and J. E. Bowers, “Wide tuneable double ring resonator coupled lasers,” IEEE Photonics Technol. Lett. 14, 600-602 (2002).
[CrossRef]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel,B. Koel, and A. A. G. ReQuicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nature 2, 229-232 (2003).
[CrossRef]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel,B. Koel, and A. A. G. ReQuicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nature 2, 229-232 (2003).
[CrossRef]

Pellarin, M.

E. Cottancin, G. Celep, J. Lerme, M. Pellarin, J. R. Hunzinger, J. L. Vialle, and M. Broyer, “Optical properties of noble metal clusters as a function of size: comparison between experiments and a semi-quantal theory,” Theor. Chem. Acc. 116, 514-523 (2006).
[CrossRef]

Pradarutti, B.

B. Pradarutti, C. Rau, G. Torosyan, R. Beigang, and K. Kawase, “Plasmonic response in a one-dimensional periodic structures of metallic rods,” Appl. Phys. Lett. 87, 204105 (2005).
[CrossRef]

Quinten, M.

Rafizadeh, T.

C. Hagness, T. Rafizadeh, T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ting and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154-2165 (1997).
[CrossRef]

Rau, C.

B. Pradarutti, C. Rau, G. Torosyan, R. Beigang, and K. Kawase, “Plasmonic response in a one-dimensional periodic structures of metallic rods,” Appl. Phys. Lett. 87, 204105 (2005).
[CrossRef]

ReQuicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel,B. Koel, and A. A. G. ReQuicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nature 2, 229-232 (2003).
[CrossRef]

Rockstuhl, C.

Salt, M. G.

Schider, G.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag And Au nanowire grating,” Appl. Phys. 90, 3825-3830 (2001).

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

Shahabadi, M.

N. Talebi and M. Shahabadi, “Analysis of the propagation of light along an array of nanorods using the generalized multipole technique,” J. Comput. Theor. Nanosci. 4, 711-716 (2008).
[CrossRef]

N. Talebi, M. Shahabadi, and C. Hafner, “Analysis of a lossy microring resonator using generalized multipole technique,” PIER 66, 287-299 (2006).
[CrossRef]

Shakouri, A.

B. Liu, A. Shakouri, and J. E. Bowers, “Wide tuneable double ring resonator coupled lasers,” IEEE Photonics Technol. Lett. 14, 600-602 (2002).
[CrossRef]

Taflove, A.

C. Hagness, T. Rafizadeh, T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ting and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154-2165 (1997).
[CrossRef]

Talebi, N.

N. Talebi and M. Shahabadi, “Analysis of the propagation of light along an array of nanorods using the generalized multipole technique,” J. Comput. Theor. Nanosci. 4, 711-716 (2008).
[CrossRef]

N. Talebi, M. Shahabadi, and C. Hafner, “Analysis of a lossy microring resonator using generalized multipole technique,” PIER 66, 287-299 (2006).
[CrossRef]

Torosyan, G.

B. Pradarutti, C. Rau, G. Torosyan, R. Beigang, and K. Kawase, “Plasmonic response in a one-dimensional periodic structures of metallic rods,” Appl. Phys. Lett. 87, 204105 (2005).
[CrossRef]

Vahldieck, R.

Vialle, J. L.

E. Cottancin, G. Celep, J. Lerme, M. Pellarin, J. R. Hunzinger, J. L. Vialle, and M. Broyer, “Optical properties of noble metal clusters as a function of size: comparison between experiments and a semi-quantal theory,” Theor. Chem. Acc. 116, 514-523 (2006).
[CrossRef]

Weeber, J. C.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

Appl. Phys. (1)

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag And Au nanowire grating,” Appl. Phys. 90, 3825-3830 (2001).

Appl. Phys. Lett. (1)

B. Pradarutti, C. Rau, G. Torosyan, R. Beigang, and K. Kawase, “Plasmonic response in a one-dimensional periodic structures of metallic rods,” Appl. Phys. Lett. 87, 204105 (2005).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

B. Liu, A. Shakouri, and J. E. Bowers, “Wide tuneable double ring resonator coupled lasers,” IEEE Photonics Technol. Lett. 14, 600-602 (2002).
[CrossRef]

J. Comput. Theor. Nanosci. (1)

N. Talebi and M. Shahabadi, “Analysis of the propagation of light along an array of nanorods using the generalized multipole technique,” J. Comput. Theor. Nanosci. 4, 711-716 (2008).
[CrossRef]

J. Lightwave Technol. (2)

C. Hagness, T. Rafizadeh, T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ting and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154-2165 (1997).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel,B. Koel, and A. A. G. ReQuicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nature 2, 229-232 (2003).
[CrossRef]

Nature (London) (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824-830 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356-R16359 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

PIER (1)

N. Talebi, M. Shahabadi, and C. Hafner, “Analysis of a lossy microring resonator using generalized multipole technique,” PIER 66, 287-299 (2006).
[CrossRef]

Theor. Chem. Acc. (1)

E. Cottancin, G. Celep, J. Lerme, M. Pellarin, J. R. Hunzinger, J. L. Vialle, and M. Broyer, “Optical properties of noble metal clusters as a function of size: comparison between experiments and a semi-quantal theory,” Theor. Chem. Acc. 116, 514-523 (2006).
[CrossRef]

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Plasmonic ring resonator. The locations of the multipoles for expanding the fields in domains D 1 and D 2 are represented by × and ◯, respectively. The points marked by ∗ represent the excitation points. In this structure, R r o d = 25 nm , L = 75 nm , and N = 10 are assumed.

Fig. 2
Fig. 2

Comparison between the GMT and the FEM results. The left inset visualizes the magnitude of H z component at λ = 284 nm computed using the GMT with the shown multipoles. The right inset is the configuration of the meshes for the FEM analysis.

Fig. 3
Fig. 3

Comparison between the GMT and the FDTD results. The left inset visualizes the H z component at t = 14.2 fs computed using the FDTD method. The right inset shows H z as a function of time at the observation point ( R , 0 ) .

Fig. 4
Fig. 4

Search functions for obtaining resonance wavelengths: a) N = 18 , b) N = 19 , c) N = 25 , and d) N = 26 .

Fig. 5
Fig. 5

Magnitude of the magnetic field component H z for the L mode at a given time. The unit of the color bar is A m . (a) N = 25 , M = 9 , and λ = 289 nm ; (b) N = 25 , M = 10 , and λ = 281.2 nm ; c) N = 25 , M = 11 , and λ = 276.9 nm ; d) N = 25 , M = 12 , and λ = 275.2 nm .

Fig. 6
Fig. 6

Computed electromagnetic power along the circumference depicted in the inset.

Fig. 7
Fig. 7

Magnitude of the magnetic field component H z for the T mode at a given time. The unit of the color bar is A m . (a) N = 25 , M = 9 , and λ = 237.7 nm ; b) N = 25 , M = 10 , and λ = 229.7 nm ; c) N = 25 , M = 11 , and λ = 225.1 nm ; d) N = 25 , M = 12 , and λ = 223.3 nm .

Tables (4)

Tables Icon

Table 1 Iterations of FEM Solution to Achieve Convergence for the Transmittance at λ = 140 nm

Tables Icon

Table 2 Resonance Parameters of a Plasmonic Ring Resonator with L = 75 nm and R rod = 25 nm

Tables Icon

Table 3 Resonance Parameters for Various Plasmonic Ring Resonators with R = 299.2 nm , s = 25 nm , M = 12 , and Different Values for R r o d

Tables Icon

Table 4 Resonance Parameters for Various Plasmonic Ring Resonators with R = 299.2 nm , R r o d = 25 nm , M = 12 , and Different Values for L

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

H z D n ( r ) = H z , s D n ( r ) + H z , i D n ( r )     ,
H z , s D 1 , 2 ( r , ϕ ) = p = 1 P 1 , 2 n = 1 N ( A n 1 , 2 cos ( n ϕ p ) + B n 1 , 2 sin ( n ϕ p ) ) exp ( j ( p 1 ) M ϕ 0 ) B n D 1 , 2 ( k 1 , 2 r r p )     ,
H z , i = H M ( 2 ) ( k 0 r ) exp ( j M ϕ )     ,

Metrics