Abstract

Monocrystalline lattice matched Er(0.6at.%):(Gd,Lu)2O3 films with nearly atomically flat surfaces and thicknesses up to 3μm have been grown on Y2O3 substrates using pulsed laser deposition. The emission cross sections were comparable with the ones of Er:Y2O3 bulk crystals, showing only a marginal spectral broadening. Rib channel waveguiding could be demonstrated after structuring the films with reactive ion etching. Gain measurements have been performed and the results compared with a theoretical gain spectrum. A gain of 5.9dBcm could be measured at 1535.5nm through in-band pumping at 1480nm. The scattering losses in such a 7mm long rib waveguide have been determined to be below 4.4dB at 632.8nm. An extrapolation to the gain wavelength with the λ4-Rayleigh law of scattering resulted in losses of 0.2dBcm at 1.5μm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15, 7075-7082 (2007).
    [CrossRef] [PubMed]
  2. C. Grivas and R. W. Eason, “Dielectric binary oxide films as waveguide laser media: a review,” J. Phys. Condens. Matter 20, 264011 (2008).
    [CrossRef] [PubMed]
  3. Y. Kuzminykh, A. Kahn, and G. Huber, “Nd3+ doped Sc2O3 waveguiding film produced by pulsed laser deposition,” Opt. Mater. 28, 883-887 (2006).
    [CrossRef]
  4. A. Kahn, Y. Kuzminykh, H. Scheife, and G. Huber, “Nondestructive measurement of the propagation losses in active planar waveguides,” J. Opt. Soc. Am. B 24, 1571-1574 (2007).
    [CrossRef]
  5. T. Gün, A. Kahn, B. İleri, K. Petermann, and G. Huber, “Two-dimensional growth of lattice matched Nd-doped (Gd,Lu)2O3-films on Y2O3 by pulsed laser deposition,” Appl. Phys. Lett. 93, 053108 (2008).
    [CrossRef]
  6. J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89, 311-318 (2007).
    [CrossRef]
  7. H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32, 1908-1910 (2007).
    [CrossRef] [PubMed]
  8. M. J. Weber, “Radiative and multiphonon relaxation of rare-earth ions in Y2O3,” Phys. Rev. 171, 283-291 (1968).
    [CrossRef]
  9. H. P. Weber, P. F. Liao, and B. C. Tofield, “Emission cross section and fluorescence efficiency of Nd-pentaphosphate,” IEEE J. Quantum Electron. QE-10, 563-567 (1974).
    [CrossRef]
  10. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31, 754-756 (2006).
    [CrossRef] [PubMed]
  11. M. Fechner, R. Peters, A. Kahn, K. Petermann, E. Heumann, and G. Huber, “Efficient in-band-pumped Er:Sc2O3-laser at 1.58 μm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2008 Technical Digest (Optical Society of America, 2008), paper CTuAA3.
    [PubMed]
  12. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954-A957 (1964).
    [CrossRef]
  13. T. H. Hoekstra, P. V. Lambeck, H. Albers, and T. J. A. Popma, “Sputter-deposited erbium doped Y2O3 active optical waveguides,” Electron. Lett. 29, 581-583 (1993).
    [CrossRef]

2008 (2)

C. Grivas and R. W. Eason, “Dielectric binary oxide films as waveguide laser media: a review,” J. Phys. Condens. Matter 20, 264011 (2008).
[CrossRef] [PubMed]

T. Gün, A. Kahn, B. İleri, K. Petermann, and G. Huber, “Two-dimensional growth of lattice matched Nd-doped (Gd,Lu)2O3-films on Y2O3 by pulsed laser deposition,” Appl. Phys. Lett. 93, 053108 (2008).
[CrossRef]

2007 (4)

2006 (2)

Y. Kuzminykh, A. Kahn, and G. Huber, “Nd3+ doped Sc2O3 waveguiding film produced by pulsed laser deposition,” Opt. Mater. 28, 883-887 (2006).
[CrossRef]

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31, 754-756 (2006).
[CrossRef] [PubMed]

1993 (1)

T. H. Hoekstra, P. V. Lambeck, H. Albers, and T. J. A. Popma, “Sputter-deposited erbium doped Y2O3 active optical waveguides,” Electron. Lett. 29, 581-583 (1993).
[CrossRef]

1974 (1)

H. P. Weber, P. F. Liao, and B. C. Tofield, “Emission cross section and fluorescence efficiency of Nd-pentaphosphate,” IEEE J. Quantum Electron. QE-10, 563-567 (1974).
[CrossRef]

1968 (1)

M. J. Weber, “Radiative and multiphonon relaxation of rare-earth ions in Y2O3,” Phys. Rev. 171, 283-291 (1968).
[CrossRef]

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954-A957 (1964).
[CrossRef]

Albers, H.

T. H. Hoekstra, P. V. Lambeck, H. Albers, and T. J. A. Popma, “Sputter-deposited erbium doped Y2O3 active optical waveguides,” Electron. Lett. 29, 581-583 (1993).
[CrossRef]

Ay, F.

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89, 311-318 (2007).
[CrossRef]

Bradley, J. D. B.

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89, 311-318 (2007).
[CrossRef]

Clarkson, W. A.

Eason, R. W.

C. Grivas and R. W. Eason, “Dielectric binary oxide films as waveguide laser media: a review,” J. Phys. Condens. Matter 20, 264011 (2008).
[CrossRef] [PubMed]

Fechner, M.

M. Fechner, R. Peters, A. Kahn, K. Petermann, E. Heumann, and G. Huber, “Efficient in-band-pumped Er:Sc2O3-laser at 1.58 μm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2008 Technical Digest (Optical Society of America, 2008), paper CTuAA3.
[PubMed]

Fredrich-Thornton, S. T.

Grivas, C.

C. Grivas and R. W. Eason, “Dielectric binary oxide films as waveguide laser media: a review,” J. Phys. Condens. Matter 20, 264011 (2008).
[CrossRef] [PubMed]

Gün, T.

T. Gün, A. Kahn, B. İleri, K. Petermann, and G. Huber, “Two-dimensional growth of lattice matched Nd-doped (Gd,Lu)2O3-films on Y2O3 by pulsed laser deposition,” Appl. Phys. Lett. 93, 053108 (2008).
[CrossRef]

Heumann, E.

M. Fechner, R. Peters, A. Kahn, K. Petermann, E. Heumann, and G. Huber, “Efficient in-band-pumped Er:Sc2O3-laser at 1.58 μm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2008 Technical Digest (Optical Society of America, 2008), paper CTuAA3.
[PubMed]

Hoekstra, T. H.

T. H. Hoekstra, P. V. Lambeck, H. Albers, and T. J. A. Popma, “Sputter-deposited erbium doped Y2O3 active optical waveguides,” Electron. Lett. 29, 581-583 (1993).
[CrossRef]

Huber, G.

T. Gün, A. Kahn, B. İleri, K. Petermann, and G. Huber, “Two-dimensional growth of lattice matched Nd-doped (Gd,Lu)2O3-films on Y2O3 by pulsed laser deposition,” Appl. Phys. Lett. 93, 053108 (2008).
[CrossRef]

A. Kahn, Y. Kuzminykh, H. Scheife, and G. Huber, “Nondestructive measurement of the propagation losses in active planar waveguides,” J. Opt. Soc. Am. B 24, 1571-1574 (2007).
[CrossRef]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15, 7075-7082 (2007).
[CrossRef] [PubMed]

Y. Kuzminykh, A. Kahn, and G. Huber, “Nd3+ doped Sc2O3 waveguiding film produced by pulsed laser deposition,” Opt. Mater. 28, 883-887 (2006).
[CrossRef]

M. Fechner, R. Peters, A. Kahn, K. Petermann, E. Heumann, and G. Huber, “Efficient in-band-pumped Er:Sc2O3-laser at 1.58 μm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2008 Technical Digest (Optical Society of America, 2008), paper CTuAA3.
[PubMed]

Ileri, B.

T. Gün, A. Kahn, B. İleri, K. Petermann, and G. Huber, “Two-dimensional growth of lattice matched Nd-doped (Gd,Lu)2O3-films on Y2O3 by pulsed laser deposition,” Appl. Phys. Lett. 93, 053108 (2008).
[CrossRef]

Kahn, A.

T. Gün, A. Kahn, B. İleri, K. Petermann, and G. Huber, “Two-dimensional growth of lattice matched Nd-doped (Gd,Lu)2O3-films on Y2O3 by pulsed laser deposition,” Appl. Phys. Lett. 93, 053108 (2008).
[CrossRef]

A. Kahn, Y. Kuzminykh, H. Scheife, and G. Huber, “Nondestructive measurement of the propagation losses in active planar waveguides,” J. Opt. Soc. Am. B 24, 1571-1574 (2007).
[CrossRef]

Y. Kuzminykh, A. Kahn, and G. Huber, “Nd3+ doped Sc2O3 waveguiding film produced by pulsed laser deposition,” Opt. Mater. 28, 883-887 (2006).
[CrossRef]

M. Fechner, R. Peters, A. Kahn, K. Petermann, E. Heumann, and G. Huber, “Efficient in-band-pumped Er:Sc2O3-laser at 1.58 μm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2008 Technical Digest (Optical Society of America, 2008), paper CTuAA3.
[PubMed]

Kränkel, C.

Kühn, H.

Kuzminykh, Y.

A. Kahn, Y. Kuzminykh, H. Scheife, and G. Huber, “Nondestructive measurement of the propagation losses in active planar waveguides,” J. Opt. Soc. Am. B 24, 1571-1574 (2007).
[CrossRef]

Y. Kuzminykh, A. Kahn, and G. Huber, “Nd3+ doped Sc2O3 waveguiding film produced by pulsed laser deposition,” Opt. Mater. 28, 883-887 (2006).
[CrossRef]

Lambeck, P. V.

T. H. Hoekstra, P. V. Lambeck, H. Albers, and T. J. A. Popma, “Sputter-deposited erbium doped Y2O3 active optical waveguides,” Electron. Lett. 29, 581-583 (1993).
[CrossRef]

Liao, P. F.

H. P. Weber, P. F. Liao, and B. C. Tofield, “Emission cross section and fluorescence efficiency of Nd-pentaphosphate,” IEEE J. Quantum Electron. QE-10, 563-567 (1974).
[CrossRef]

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954-A957 (1964).
[CrossRef]

Petermann, K.

T. Gün, A. Kahn, B. İleri, K. Petermann, and G. Huber, “Two-dimensional growth of lattice matched Nd-doped (Gd,Lu)2O3-films on Y2O3 by pulsed laser deposition,” Appl. Phys. Lett. 93, 053108 (2008).
[CrossRef]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15, 7075-7082 (2007).
[CrossRef] [PubMed]

H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32, 1908-1910 (2007).
[CrossRef] [PubMed]

M. Fechner, R. Peters, A. Kahn, K. Petermann, E. Heumann, and G. Huber, “Efficient in-band-pumped Er:Sc2O3-laser at 1.58 μm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2008 Technical Digest (Optical Society of America, 2008), paper CTuAA3.
[PubMed]

Peters, R.

H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32, 1908-1910 (2007).
[CrossRef] [PubMed]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15, 7075-7082 (2007).
[CrossRef] [PubMed]

M. Fechner, R. Peters, A. Kahn, K. Petermann, E. Heumann, and G. Huber, “Efficient in-band-pumped Er:Sc2O3-laser at 1.58 μm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2008 Technical Digest (Optical Society of America, 2008), paper CTuAA3.
[PubMed]

Pollnau, M.

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89, 311-318 (2007).
[CrossRef]

Popma, T. J. A.

T. H. Hoekstra, P. V. Lambeck, H. Albers, and T. J. A. Popma, “Sputter-deposited erbium doped Y2O3 active optical waveguides,” Electron. Lett. 29, 581-583 (1993).
[CrossRef]

Sahu, J. K.

Scheife, H.

Shen, D. Y.

Tofield, B. C.

H. P. Weber, P. F. Liao, and B. C. Tofield, “Emission cross section and fluorescence efficiency of Nd-pentaphosphate,” IEEE J. Quantum Electron. QE-10, 563-567 (1974).
[CrossRef]

Weber, H. P.

H. P. Weber, P. F. Liao, and B. C. Tofield, “Emission cross section and fluorescence efficiency of Nd-pentaphosphate,” IEEE J. Quantum Electron. QE-10, 563-567 (1974).
[CrossRef]

Weber, M. J.

M. J. Weber, “Radiative and multiphonon relaxation of rare-earth ions in Y2O3,” Phys. Rev. 171, 283-291 (1968).
[CrossRef]

Wörhoff, K.

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89, 311-318 (2007).
[CrossRef]

Appl. Phys. B (1)

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89, 311-318 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

T. Gün, A. Kahn, B. İleri, K. Petermann, and G. Huber, “Two-dimensional growth of lattice matched Nd-doped (Gd,Lu)2O3-films on Y2O3 by pulsed laser deposition,” Appl. Phys. Lett. 93, 053108 (2008).
[CrossRef]

Electron. Lett. (1)

T. H. Hoekstra, P. V. Lambeck, H. Albers, and T. J. A. Popma, “Sputter-deposited erbium doped Y2O3 active optical waveguides,” Electron. Lett. 29, 581-583 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. P. Weber, P. F. Liao, and B. C. Tofield, “Emission cross section and fluorescence efficiency of Nd-pentaphosphate,” IEEE J. Quantum Electron. QE-10, 563-567 (1974).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

C. Grivas and R. W. Eason, “Dielectric binary oxide films as waveguide laser media: a review,” J. Phys. Condens. Matter 20, 264011 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. (1)

Y. Kuzminykh, A. Kahn, and G. Huber, “Nd3+ doped Sc2O3 waveguiding film produced by pulsed laser deposition,” Opt. Mater. 28, 883-887 (2006).
[CrossRef]

Phys. Rev. (2)

M. J. Weber, “Radiative and multiphonon relaxation of rare-earth ions in Y2O3,” Phys. Rev. 171, 283-291 (1968).
[CrossRef]

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954-A957 (1964).
[CrossRef]

Other (1)

M. Fechner, R. Peters, A. Kahn, K. Petermann, E. Heumann, and G. Huber, “Efficient in-band-pumped Er:Sc2O3-laser at 1.58 μm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2008 Technical Digest (Optical Society of America, 2008), paper CTuAA3.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Emission cross sections of an Er : ( Gd , Lu ) 2 O 3 film (black curve) in comparison with the ones of an Er : Y 2 O 3 bulk crystal (gray curve).

Fig. 2
Fig. 2

Measured gain for the 7 mm long and 3 μ m thick Er ( 0.6 at. % ) : ( Gd , Lu ) 2 O 3 waveguide excited at 1480 nm (squares) and theoretically calculated maximum gain obtainable through complete bleaching at this wavelength (curve). The maximum theoretical gain is 4.6 dB at the wavelength λ = 1535.5 nm .

Fig. 3
Fig. 3

Intensity distribution of the outcoupled mode of 1 μ m light in one of the rib waveguides of the 3 μ m thick Er ( 0.6 at. % ) : ( Gd , Lu ) 2 O 3 film. The corresponding intensity profiles I ( x ) and I ( y ) (squares) are fitted with Gaussian functions (curves).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

β = σ abs ( λ p ) σ abs ( λ p ) + σ em ( λ p ) .
σ gain ( λ ) = β σ em ( λ ) ( 1 β ) σ abs ( λ ) ,
G ( λ ) = exp ( σ gain ( λ ) N l ) 1 .
G = I signal ( P max ) I signal ( P = 0 ) I signal ( P = 0 ) .
P abs = β N h v V τ .

Metrics