Abstract

We present two independent measurements of the photon pairs production efficiency (PPPE) at 1572nm, generated in a noncommercial periodically poled lithium-niobate waveguide fabricated in our laboratory. The first measurement, referred to as “direct” measurement, is performed at the photon-counting level (light power at the level of a few picowatts), exploiting a typical coincidence detection technique and a dedicated statistical model. In this case the measured PPPE is (4.1±1.1) 1011  pairs(sW). The same parameter was estimated independently by a well-established “indirect” measurement, based on a difference frequency generation experiment (typical light power level of a few microwatts). This other measurement yields (5.0±2.4) 1011  pairs(sW). Despite the large uncertainty of this second measurement, we observe that the two results are in good agreement even considering only the lower uncertainty value. To our knowledge, it is the first realization of a comparison between these two measurement techniques, working at so different light levels.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach, 1988).
  2. A. L. Migdall, S. Castelletto, I. P. Degiovanni, and M. L. Rastello, "Intercomparison of a correlated-photon-based method to measure detector quantum efficiency," Appl. Opt. 41, 2914-2922 (2002).
    [CrossRef] [PubMed]
  3. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
    [CrossRef] [PubMed]
  4. E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
    [CrossRef] [PubMed]
  5. A. Migdall, "Correlated-photon metrology without absolute standards," Phys. Today 52, 41-46 (1999).
    [CrossRef]
  6. S. V. Polyakov and A. L. Migdall, "High accuracy verification of a correlated-photon-based method for determining photoncounting detection efficiency," Opt. Express 15, 1390-1407 (2007).
    [CrossRef] [PubMed]
  7. M. Pelton, P. Marsden, M. T. D. Ljunggren, and A. Karlsson, "Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP," Opt. Express 12, 3573-3580 (2004).
    [CrossRef] [PubMed]
  8. M. A. Albota and E. Dauler, "Single photon detection of degenerate photon pairs at 1.55 μm from a periodically poled lithium niobate downconverter," J. Mod. Opt. 51, 1417-1432 (2004).
    [CrossRef]
  9. C. E. Kuklevicz, M. Fiorentino, G. Messin, F. N. Wong, and J. H. Shapiro, "High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric downconverter," Phys. Rev. A 69, 013807 (2004).
    [CrossRef]
  10. J. Soderholm, K. Hirano, S. Mori, S. Inoue, and S. Kurimura, "Analysis of the generation of photon pairs in periodically poled lithium niobate," in Proceedings of the 8th International Symposium on Foundations of Quantum Mechanics in the Light of New Technology (World Scientific, 2006), pp. 46-49.
  11. C. Kurtsiefer, M. Oberparlieter, and H. Weinfurter, "High-efficiency entangled photon pair collection in type-II parametric fluorescence," Phys. Rev. A 64, 023802 (2001).
    [CrossRef]
  12. F. A. Bovino, P. Varisco, A. M. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, "Effective fiber-coupling of entangled photons for quantum communication," Opt. Commun. 227, 343-348 (2003).
    [CrossRef]
  13. S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall, "Spatial and spectral mode selection of heralded single photons from pulsed parametric down-conversion," Opt. Express 13, 6709-6722 (2005).
    [CrossRef] [PubMed]
  14. T. B. Pittmann, B. C. Jacobs, and J. D. Franson, "Heralding single photons from pulsed parametric down-conversion," Opt. Commun. 246, 545-550 (2005).
    [CrossRef]
  15. K. Sanaka, K. Kawahara, and T. Kunga, "New high-efficiency source of photon pairs for engineering quantum entanglement," Phys. Rev. Lett. 86, 5620-5623 (2001).
    [CrossRef] [PubMed]
  16. K. Banaszek, A. B. U'Ren, and I. A. Walmsley, "Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides," Opt. Lett. 26, 1367-1369 (2001).
    [CrossRef]
  17. A. U'Ren, C. Silberhorn, K. Banaszek, and I. Walmsley, "Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks," Phys. Rev. Lett. 93, 093601 (2004).
    [CrossRef] [PubMed]
  18. S. Tanzilli, H. D. Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
    [CrossRef]
  19. A. Trifonov, A. Zavriyev, V. Denchev, and A. Leverrier, "Improving the performance of quantum key distribution apparatus," J. Mod. Opt. 54, 9-13 (2006).
  20. S. Mori, J. Soderholm, N. Namekata, and S. Inoue, "On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide," Opt. Commun. 264, 156-162 (2006).
    [CrossRef]
  21. O. Alibart, S. Tanzilli, D. Ostrowsky, and P. Baldi, "High-performance guided-wave asynchronous heralded single-photon source," Opt. Lett. 30, 1539-1541 (2005).
    [CrossRef] [PubMed]
  22. I. Avrutsky and A. V. Sergienko, "Design of integrated optical source of twin photons," Phys. Rev. A 71, 033812 (2005).
    [CrossRef]
  23. J. Chen, K. F. Lee, C. Liang, and P. Kumar, "Fiber-based telecom-band degenerate-frequency source of entangled photon pairs," Opt. Lett. 31, 2798-2800 (2006).
    [CrossRef] [PubMed]
  24. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, "Linear optical quantum computing," arXiv:quant-ph/0512071 (2006).
  25. P. Baldi, M. Sundheimer, K. E. Hadi, M. P. de Micheli, and D. B. Ostrowsky, "Comparison between difference-frequency generation and parametric fluorescence in quasi-phase-matched lithium niobate stripe waveguides," IEEE J. Sel. Top. Quantum Electron. 2, 385-395 (1996).
    [CrossRef]
  26. C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, and W. Sohler, "Advanced Ti:Er:LiNbO3 waveguide lasers," IEEE J. Sel. Top. Quantum Electron. 6, 101-113 (2000).
    [CrossRef]
  27. T. Del Rosso, G. Margheri, S. Sottini, S. Trigari, M. De Sario, F. Prudenzano, and D. Grando, "An optical thermometer exploiting periodically poled lithium niobate for monitoring the pantographs of high-speed trains," IEEE Sens. J. 7, 417-425 (2007).
    [CrossRef]
  28. X. F. Cao, R. V. Ramaswamy, and R. Srivastava, "Characterization of annealed proton exchanged LiNbO3 waveguide for nonlinear frequency conversion," J. Lightwave Technol. 10, 1302-1313 (1992).
    [CrossRef]
  29. D. Grando, F. Gelli, S. Trigari, and S. Sottini, "Caratterizzazione di guide a scambio protonico su Niobato di Litio polato periodicamente o per mezzo di impulsi elettrici o per Titanio indiffuso" in Proceedings of the Convegno Nazionale sulle Tecniche Fotoniche nelle Telecomunicazioni (Atti di Fotonica2001), pp. 207-201.
  30. S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall, "Optimizing single-photon-source heralding efficiency and detection efficiency metrology at 1550 nm using periodically poled lithium niobate," Metrologia 43, S56-S60 (2006).
    [CrossRef]
  31. id 200 Single-Photon Detector Module, Application Note, id Quantique, Switzerland (2004).
  32. G. Hocker and W. K. Burns, "Mode dispersion in diffused channel waveguides by effective index method," Appl. Opt. 16, 113-118 (1977).
    [CrossRef] [PubMed]
  33. Guide to the Expression of Uncertainty in Measurement (International Organization for Standardization, 1995).
  34. E. Kapon and R. Bath, "Low-loss single-mode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy," Appl. Phys. Lett. 50, 1628-1630 (1987).
    [CrossRef]
  35. T. Del Rosso, "Dispositivi in LiNbO3 periodicamente polarizzato per applicazioni alla sensoristica ed alle telecomunicazioni," Ph.D. thesis (U. Florence, 2006).

2007

T. Del Rosso, G. Margheri, S. Sottini, S. Trigari, M. De Sario, F. Prudenzano, and D. Grando, "An optical thermometer exploiting periodically poled lithium niobate for monitoring the pantographs of high-speed trains," IEEE Sens. J. 7, 417-425 (2007).
[CrossRef]

S. V. Polyakov and A. L. Migdall, "High accuracy verification of a correlated-photon-based method for determining photoncounting detection efficiency," Opt. Express 15, 1390-1407 (2007).
[CrossRef] [PubMed]

2006

J. Chen, K. F. Lee, C. Liang, and P. Kumar, "Fiber-based telecom-band degenerate-frequency source of entangled photon pairs," Opt. Lett. 31, 2798-2800 (2006).
[CrossRef] [PubMed]

A. Trifonov, A. Zavriyev, V. Denchev, and A. Leverrier, "Improving the performance of quantum key distribution apparatus," J. Mod. Opt. 54, 9-13 (2006).

S. Mori, J. Soderholm, N. Namekata, and S. Inoue, "On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide," Opt. Commun. 264, 156-162 (2006).
[CrossRef]

S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall, "Optimizing single-photon-source heralding efficiency and detection efficiency metrology at 1550 nm using periodically poled lithium niobate," Metrologia 43, S56-S60 (2006).
[CrossRef]

2005

2004

M. Pelton, P. Marsden, M. T. D. Ljunggren, and A. Karlsson, "Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP," Opt. Express 12, 3573-3580 (2004).
[CrossRef] [PubMed]

M. A. Albota and E. Dauler, "Single photon detection of degenerate photon pairs at 1.55 μm from a periodically poled lithium niobate downconverter," J. Mod. Opt. 51, 1417-1432 (2004).
[CrossRef]

C. E. Kuklevicz, M. Fiorentino, G. Messin, F. N. Wong, and J. H. Shapiro, "High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric downconverter," Phys. Rev. A 69, 013807 (2004).
[CrossRef]

A. U'Ren, C. Silberhorn, K. Banaszek, and I. Walmsley, "Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks," Phys. Rev. Lett. 93, 093601 (2004).
[CrossRef] [PubMed]

2003

F. A. Bovino, P. Varisco, A. M. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, "Effective fiber-coupling of entangled photons for quantum communication," Opt. Commun. 227, 343-348 (2003).
[CrossRef]

2002

2001

K. Banaszek, A. B. U'Ren, and I. A. Walmsley, "Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides," Opt. Lett. 26, 1367-1369 (2001).
[CrossRef]

K. Sanaka, K. Kawahara, and T. Kunga, "New high-efficiency source of photon pairs for engineering quantum entanglement," Phys. Rev. Lett. 86, 5620-5623 (2001).
[CrossRef] [PubMed]

C. Kurtsiefer, M. Oberparlieter, and H. Weinfurter, "High-efficiency entangled photon pair collection in type-II parametric fluorescence," Phys. Rev. A 64, 023802 (2001).
[CrossRef]

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

S. Tanzilli, H. D. Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

2000

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, and W. Sohler, "Advanced Ti:Er:LiNbO3 waveguide lasers," IEEE J. Sel. Top. Quantum Electron. 6, 101-113 (2000).
[CrossRef]

1999

A. Migdall, "Correlated-photon metrology without absolute standards," Phys. Today 52, 41-46 (1999).
[CrossRef]

1996

P. Baldi, M. Sundheimer, K. E. Hadi, M. P. de Micheli, and D. B. Ostrowsky, "Comparison between difference-frequency generation and parametric fluorescence in quasi-phase-matched lithium niobate stripe waveguides," IEEE J. Sel. Top. Quantum Electron. 2, 385-395 (1996).
[CrossRef]

1992

X. F. Cao, R. V. Ramaswamy, and R. Srivastava, "Characterization of annealed proton exchanged LiNbO3 waveguide for nonlinear frequency conversion," J. Lightwave Technol. 10, 1302-1313 (1992).
[CrossRef]

1987

E. Kapon and R. Bath, "Low-loss single-mode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy," Appl. Phys. Lett. 50, 1628-1630 (1987).
[CrossRef]

1977

Appl. Opt.

Appl. Phys. Lett.

E. Kapon and R. Bath, "Low-loss single-mode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy," Appl. Phys. Lett. 50, 1628-1630 (1987).
[CrossRef]

Electron. Lett.

S. Tanzilli, H. D. Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

P. Baldi, M. Sundheimer, K. E. Hadi, M. P. de Micheli, and D. B. Ostrowsky, "Comparison between difference-frequency generation and parametric fluorescence in quasi-phase-matched lithium niobate stripe waveguides," IEEE J. Sel. Top. Quantum Electron. 2, 385-395 (1996).
[CrossRef]

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, and W. Sohler, "Advanced Ti:Er:LiNbO3 waveguide lasers," IEEE J. Sel. Top. Quantum Electron. 6, 101-113 (2000).
[CrossRef]

IEEE Sens. J.

T. Del Rosso, G. Margheri, S. Sottini, S. Trigari, M. De Sario, F. Prudenzano, and D. Grando, "An optical thermometer exploiting periodically poled lithium niobate for monitoring the pantographs of high-speed trains," IEEE Sens. J. 7, 417-425 (2007).
[CrossRef]

J. Lightwave Technol.

X. F. Cao, R. V. Ramaswamy, and R. Srivastava, "Characterization of annealed proton exchanged LiNbO3 waveguide for nonlinear frequency conversion," J. Lightwave Technol. 10, 1302-1313 (1992).
[CrossRef]

J. Mod. Opt.

A. Trifonov, A. Zavriyev, V. Denchev, and A. Leverrier, "Improving the performance of quantum key distribution apparatus," J. Mod. Opt. 54, 9-13 (2006).

M. A. Albota and E. Dauler, "Single photon detection of degenerate photon pairs at 1.55 μm from a periodically poled lithium niobate downconverter," J. Mod. Opt. 51, 1417-1432 (2004).
[CrossRef]

Metrologia

S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall, "Optimizing single-photon-source heralding efficiency and detection efficiency metrology at 1550 nm using periodically poled lithium niobate," Metrologia 43, S56-S60 (2006).
[CrossRef]

Nature

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

Opt. Commun.

F. A. Bovino, P. Varisco, A. M. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, "Effective fiber-coupling of entangled photons for quantum communication," Opt. Commun. 227, 343-348 (2003).
[CrossRef]

S. Mori, J. Soderholm, N. Namekata, and S. Inoue, "On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide," Opt. Commun. 264, 156-162 (2006).
[CrossRef]

T. B. Pittmann, B. C. Jacobs, and J. D. Franson, "Heralding single photons from pulsed parametric down-conversion," Opt. Commun. 246, 545-550 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

I. Avrutsky and A. V. Sergienko, "Design of integrated optical source of twin photons," Phys. Rev. A 71, 033812 (2005).
[CrossRef]

C. Kurtsiefer, M. Oberparlieter, and H. Weinfurter, "High-efficiency entangled photon pair collection in type-II parametric fluorescence," Phys. Rev. A 64, 023802 (2001).
[CrossRef]

C. E. Kuklevicz, M. Fiorentino, G. Messin, F. N. Wong, and J. H. Shapiro, "High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric downconverter," Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Phys. Rev. Lett.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

K. Sanaka, K. Kawahara, and T. Kunga, "New high-efficiency source of photon pairs for engineering quantum entanglement," Phys. Rev. Lett. 86, 5620-5623 (2001).
[CrossRef] [PubMed]

A. U'Ren, C. Silberhorn, K. Banaszek, and I. Walmsley, "Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks," Phys. Rev. Lett. 93, 093601 (2004).
[CrossRef] [PubMed]

Phys. Today

A. Migdall, "Correlated-photon metrology without absolute standards," Phys. Today 52, 41-46 (1999).
[CrossRef]

Other

J. Soderholm, K. Hirano, S. Mori, S. Inoue, and S. Kurimura, "Analysis of the generation of photon pairs in periodically poled lithium niobate," in Proceedings of the 8th International Symposium on Foundations of Quantum Mechanics in the Light of New Technology (World Scientific, 2006), pp. 46-49.

D. N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach, 1988).

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, "Linear optical quantum computing," arXiv:quant-ph/0512071 (2006).

D. Grando, F. Gelli, S. Trigari, and S. Sottini, "Caratterizzazione di guide a scambio protonico su Niobato di Litio polato periodicamente o per mezzo di impulsi elettrici o per Titanio indiffuso" in Proceedings of the Convegno Nazionale sulle Tecniche Fotoniche nelle Telecomunicazioni (Atti di Fotonica2001), pp. 207-201.

id 200 Single-Photon Detector Module, Application Note, id Quantique, Switzerland (2004).

Guide to the Expression of Uncertainty in Measurement (International Organization for Standardization, 1995).

T. Del Rosso, "Dispositivi in LiNbO3 periodicamente polarizzato per applicazioni alla sensoristica ed alle telecomunicazioni," Ph.D. thesis (U. Florence, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Setup used to generate photon pairs at 1572 nm from a cw pumped parametric down-conversion in a WG.

Fig. 2
Fig. 2

Coincidence counts histogram in the experimental condition of T = 20 ns , with triggering gate rate 100 KHz . Coincidence fluctuations before the peak are due to electronic imperfections. We account for these fluctuations in the estimation of π w , I .

Fig. 3
Fig. 3

Calculated (solid curve) and measured (dots) near field intensity distributions at the WG output.

Fig. 4
Fig. 4

Photon pairs production efficiency versus coupled pump power for the PDC experiment (squares) and the DFG experiment (dot).

Fig. 5
Fig. 5

Setup used for realizing DFG at 1572 nm in a WG.

Fig. 6
Fig. 6

Measured value in arbitrary units of Δ P s + P i at 1572 nm versus the temperature of the WG.

Fig. 7
Fig. 7

Measured value of Δ P s + P i at 1572 nm versus input pump power.

Tables (2)

Tables Icon

Table 1 Uncertainty Contributions in the Direct Measurement of PPPE a

Tables Icon

Table 2 Uncertainty Contributions in the Indirect Measurement of PPPE

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Λ c = p c true 2 ξ BS ( 1 ξ BS ) π w , I η 1 η 2 τ 1 τ 2 T ,
η 1 η 2 = f ( λ 1 ) η 1 ( λ 1 ) η 2 ( λ 2 ) δ ( 1 λ 1 + 1 λ 2 1 λ p ) d λ 1 d λ 2 ,
Δ ω FWHM = 2 π c 4 n eff ω + 2 ω QPM 2 n eff ω 2 L ,
PPPE = Λ c P p ( 0 ) .
Δ P s + P i 2 P s ( L ) g 2 L 2 ( 1 α p L 2 ) ,
P s PDC = ω s 2 π e α s L g 2 L 2 [ 1 e α p L 2 α p L 2 ] 2 Δ ω FWHM ,
PPPE = 1 2 π τ WG g 2 P p ( 0 ) L eff 2 [ 1 e α p L 2 α p L 2 ] 2 Δ ω FWHM ,
p 2 tot = p 2 + p 2 acc .
p 2 = n = 0 k = 0 n [ 1 ( 1 η 2 ) k ] B ( k n ; 2 ξ BS ( 1 ξ BS ) τ 1 τ 2 ) P ( n Λ c T ) .
p 2 = 1 P ( 0 2 ξ BS ( 1 ξ BS ) τ 1 τ 2 η 2 Λ c T ) .
p 2 2 ξ BS ( 1 ξ BS ) τ 1 τ 2 η 2 Λ c T .
p c tot = p 2 [ ( 1 π w , I ) + π w , I η 1 + π w , I ( 1 η 1 ) ( 1 π w , II ) ] + ( p 2 acc + p 2 dc ) ( 1 π w , I π w , II ) .
p c true = p 2 π w , I η 1 .

Metrics