Abstract

Terahertz (THz) pulses with a peak power of 2kW were generated in a noncollinear phase-matched GaAs crystal at room temperature. Two 200ns pulses from a dual-beam TEA CO2 laser were used for difference frequency mixing in the crystal. A comb of narrow lines (Δνν104) was obtained in the 0.53THz range with a step of 40GHz. By comparing the effective nonlinearity of GaSe with that of GaAs for THz generation, the electro-optic nonlinear coefficient for GaSe was measured to be deo=24.3±10%pmV. Using simulations we show that a 1kWTHz pulse could be amplified by a factor of 2×104 to a 10MW level in a 2m long single-pass free-electron laser.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. Koch, "Terahertz technology: a land to be discovered," Opt. Photonics News 18, 21-25 (2007).
    [CrossRef]
  2. V. V. Apollonov, R. Bocquet, A. Boscheron, A. I. Gribenyukov, V. V. Korotkova, C. Rouyer, A. G. Suzdal'tsev, and Yu. A. Shakir, "Far infrared generation by CO2 lasers frequencies subtraction in a ZnGeP2 crystal," Int. J. Infrared Millim. Waves 17, 1465-1472 (1996).
    [CrossRef]
  3. W. Shi and Y. J. Ding, "Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phospide," Appl. Phys. Lett. 83, 848-850 (2003).
    [CrossRef]
  4. M. A. Piestrip, R. N. Fleming, and R. H. Pantell, "Continuously tunable submillimeter wave source," Appl. Phys. Lett. 26, 418-421 (1975).
    [CrossRef]
  5. K. Kawase, M. Sato, T. Taniuchi, and H. Ito, "Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler," Appl. Phys. Lett. 68, 2483-2485 (1996).
    [CrossRef]
  6. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, "Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal," Opt. Lett. 27, 1454-1456 (2002).
    [CrossRef]
  7. R. L. Aggarwal and B. Lax, "Noncollinear phase matching in GaAs," Appl. Phys. Lett. 22, 329-330 (1973).
    [CrossRef]
  8. S. Ya. Tochitsky, J. E. Ralph, C. Sung, and C. Joshi, "Generation of magawatt-power terahertz pulses by noncollinear difference-frequency mixing in GaAs," J. Appl. Phys. 98, 026101 (2005).
    [CrossRef]
  9. G. D. Boyd, T. J. Bridges, M. A. Pollack, and E. H. Turner, "Microwave nonlinear susceptibilities due to electronic and ionic anharmonicities in acentric crystals," Phys. Rev. Lett. 26, 387-390 (1971).
    [CrossRef]
  10. V. I. Sokolov and V. K. Subashiev, "Linear electroptical effect in gallium selenide," Sov. Phys. Solid State 14, 178-183 (1972).
  11. N. VanTran and C. K. N. Patel, "Free-carrier magneto-optical effects in far-infrared difference-frequency generation in semiconductors," Phys. Rev. Lett. 22, 463-466 (1971).
    [CrossRef]
  12. F. Zernike, "Temperature-dependent phase matching for far-infrared difference-frequency generation in InSb," Phys. Rev. Lett. 22, 931-933 (1971).
    [CrossRef]
  13. T. J. Bridges and A. R. Strand, "Submillimeter wave generation by difference-frequency mixing in GaAs," Appl. Phys. Lett. 20, 382-384 (1973).
    [CrossRef]
  14. N. Lee, B. Lax, and R. L. Aggarwal, "High power far infrared generation in GaAs," Opt. Commun. 18, 50 (1976).
    [CrossRef]
  15. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Crystals (Springer, 1997).
  16. C. J. Johnson, G. H. Sherman, and R. Weil, "Far infrared measurement of the dielectric properties of GaAs and CdTe at 300 K and 8 K," Appl. Opt. 8, 1667-1671 (1969).
    [CrossRef] [PubMed]
  17. F. Pedrotti and L. Pedrotti, Introduction to Optics (Prentice-Hall, 1993).
  18. A. G. Maki, C. C. Chou, K. M. Evenson, L. R. Zink, and J. T. Shy, "Improved molecular constants and frequencies for the CO2 laser from new high-J and hot band frequency measurements," J. Mol. Spectrosc. 167, 211-224 (1994).
    [CrossRef]
  19. S. Ya. Tochitsky, V. O. Petukhov, V. A. Gorobets, V. V. Churakov, and V. N. Jakimovich, "Efficient continuous-wave frequency doubling of a tunable CO2 laser in AgGaSe2," Appl. Opt. 36, 1882-1888 (1997).
    [CrossRef] [PubMed]
  20. B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, "Coherent manipulation of semiconductor bits with terahertz radiation," Nature 410, 60-63 (2001).
    [CrossRef] [PubMed]
  21. W. B. Colson, E. D. Johnson, M. J. Kelley, and H. A. Schwettman, "Putting free electron lasers to work," Phys. Today 55(1), 35-41 (2002).
    [CrossRef]
  22. C. Sung, S. Ya. Tochitsky, S. Reiche, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, "Seeded free-electron and inverse free-electron laser techniques for radiation amplification and electron microbunching in the terahertz range," Phys. Rev. ST Accel. Beams 9, 120703 (2006).
    [CrossRef]
  23. S. Reihe, "Genesis 1.3: a fully 3D time-dependent FEL simulation code," Nucl. Instrum. Methods Phys. Res. A 429, 243-248 (1999).
    [CrossRef]
  24. S. G. Anderson, M. Loh, P. Musumeci, J. B. Rosenzweig, H. Suk, and M. C. Thompson, "Commisioning and measurements of the Neptune photoinjector," in Advanced Accelerator Concepts, P.L.Colestock and S.Kelly, eds., AIP Conf. Proc. 569, 487-499 (2000).
  25. T. C. Marshall, Free Electron Lasers (Macmillan, 1985).

2007

M. Koch, "Terahertz technology: a land to be discovered," Opt. Photonics News 18, 21-25 (2007).
[CrossRef]

2006

C. Sung, S. Ya. Tochitsky, S. Reiche, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, "Seeded free-electron and inverse free-electron laser techniques for radiation amplification and electron microbunching in the terahertz range," Phys. Rev. ST Accel. Beams 9, 120703 (2006).
[CrossRef]

2005

S. Ya. Tochitsky, J. E. Ralph, C. Sung, and C. Joshi, "Generation of magawatt-power terahertz pulses by noncollinear difference-frequency mixing in GaAs," J. Appl. Phys. 98, 026101 (2005).
[CrossRef]

2003

W. Shi and Y. J. Ding, "Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phospide," Appl. Phys. Lett. 83, 848-850 (2003).
[CrossRef]

2002

W. B. Colson, E. D. Johnson, M. J. Kelley, and H. A. Schwettman, "Putting free electron lasers to work," Phys. Today 55(1), 35-41 (2002).
[CrossRef]

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, "Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal," Opt. Lett. 27, 1454-1456 (2002).
[CrossRef]

2001

B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, "Coherent manipulation of semiconductor bits with terahertz radiation," Nature 410, 60-63 (2001).
[CrossRef] [PubMed]

1999

S. Reihe, "Genesis 1.3: a fully 3D time-dependent FEL simulation code," Nucl. Instrum. Methods Phys. Res. A 429, 243-248 (1999).
[CrossRef]

1997

1996

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, "Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler," Appl. Phys. Lett. 68, 2483-2485 (1996).
[CrossRef]

V. V. Apollonov, R. Bocquet, A. Boscheron, A. I. Gribenyukov, V. V. Korotkova, C. Rouyer, A. G. Suzdal'tsev, and Yu. A. Shakir, "Far infrared generation by CO2 lasers frequencies subtraction in a ZnGeP2 crystal," Int. J. Infrared Millim. Waves 17, 1465-1472 (1996).
[CrossRef]

1994

A. G. Maki, C. C. Chou, K. M. Evenson, L. R. Zink, and J. T. Shy, "Improved molecular constants and frequencies for the CO2 laser from new high-J and hot band frequency measurements," J. Mol. Spectrosc. 167, 211-224 (1994).
[CrossRef]

1976

N. Lee, B. Lax, and R. L. Aggarwal, "High power far infrared generation in GaAs," Opt. Commun. 18, 50 (1976).
[CrossRef]

1975

M. A. Piestrip, R. N. Fleming, and R. H. Pantell, "Continuously tunable submillimeter wave source," Appl. Phys. Lett. 26, 418-421 (1975).
[CrossRef]

1973

R. L. Aggarwal and B. Lax, "Noncollinear phase matching in GaAs," Appl. Phys. Lett. 22, 329-330 (1973).
[CrossRef]

T. J. Bridges and A. R. Strand, "Submillimeter wave generation by difference-frequency mixing in GaAs," Appl. Phys. Lett. 20, 382-384 (1973).
[CrossRef]

1972

V. I. Sokolov and V. K. Subashiev, "Linear electroptical effect in gallium selenide," Sov. Phys. Solid State 14, 178-183 (1972).

1971

N. VanTran and C. K. N. Patel, "Free-carrier magneto-optical effects in far-infrared difference-frequency generation in semiconductors," Phys. Rev. Lett. 22, 463-466 (1971).
[CrossRef]

F. Zernike, "Temperature-dependent phase matching for far-infrared difference-frequency generation in InSb," Phys. Rev. Lett. 22, 931-933 (1971).
[CrossRef]

G. D. Boyd, T. J. Bridges, M. A. Pollack, and E. H. Turner, "Microwave nonlinear susceptibilities due to electronic and ionic anharmonicities in acentric crystals," Phys. Rev. Lett. 26, 387-390 (1971).
[CrossRef]

1969

Appl. Opt.

Appl. Phys. Lett.

R. L. Aggarwal and B. Lax, "Noncollinear phase matching in GaAs," Appl. Phys. Lett. 22, 329-330 (1973).
[CrossRef]

T. J. Bridges and A. R. Strand, "Submillimeter wave generation by difference-frequency mixing in GaAs," Appl. Phys. Lett. 20, 382-384 (1973).
[CrossRef]

W. Shi and Y. J. Ding, "Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phospide," Appl. Phys. Lett. 83, 848-850 (2003).
[CrossRef]

M. A. Piestrip, R. N. Fleming, and R. H. Pantell, "Continuously tunable submillimeter wave source," Appl. Phys. Lett. 26, 418-421 (1975).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, "Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler," Appl. Phys. Lett. 68, 2483-2485 (1996).
[CrossRef]

Int. J. Infrared Millim. Waves

V. V. Apollonov, R. Bocquet, A. Boscheron, A. I. Gribenyukov, V. V. Korotkova, C. Rouyer, A. G. Suzdal'tsev, and Yu. A. Shakir, "Far infrared generation by CO2 lasers frequencies subtraction in a ZnGeP2 crystal," Int. J. Infrared Millim. Waves 17, 1465-1472 (1996).
[CrossRef]

J. Appl. Phys.

S. Ya. Tochitsky, J. E. Ralph, C. Sung, and C. Joshi, "Generation of magawatt-power terahertz pulses by noncollinear difference-frequency mixing in GaAs," J. Appl. Phys. 98, 026101 (2005).
[CrossRef]

J. Mol. Spectrosc.

A. G. Maki, C. C. Chou, K. M. Evenson, L. R. Zink, and J. T. Shy, "Improved molecular constants and frequencies for the CO2 laser from new high-J and hot band frequency measurements," J. Mol. Spectrosc. 167, 211-224 (1994).
[CrossRef]

Nature

B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, "Coherent manipulation of semiconductor bits with terahertz radiation," Nature 410, 60-63 (2001).
[CrossRef] [PubMed]

Nucl. Instrum. Methods Phys. Res. A

S. Reihe, "Genesis 1.3: a fully 3D time-dependent FEL simulation code," Nucl. Instrum. Methods Phys. Res. A 429, 243-248 (1999).
[CrossRef]

Opt. Commun.

N. Lee, B. Lax, and R. L. Aggarwal, "High power far infrared generation in GaAs," Opt. Commun. 18, 50 (1976).
[CrossRef]

Opt. Lett.

Opt. Photonics News

M. Koch, "Terahertz technology: a land to be discovered," Opt. Photonics News 18, 21-25 (2007).
[CrossRef]

Phys. Rev. Lett.

N. VanTran and C. K. N. Patel, "Free-carrier magneto-optical effects in far-infrared difference-frequency generation in semiconductors," Phys. Rev. Lett. 22, 463-466 (1971).
[CrossRef]

F. Zernike, "Temperature-dependent phase matching for far-infrared difference-frequency generation in InSb," Phys. Rev. Lett. 22, 931-933 (1971).
[CrossRef]

G. D. Boyd, T. J. Bridges, M. A. Pollack, and E. H. Turner, "Microwave nonlinear susceptibilities due to electronic and ionic anharmonicities in acentric crystals," Phys. Rev. Lett. 26, 387-390 (1971).
[CrossRef]

Phys. Rev. ST Accel. Beams

C. Sung, S. Ya. Tochitsky, S. Reiche, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, "Seeded free-electron and inverse free-electron laser techniques for radiation amplification and electron microbunching in the terahertz range," Phys. Rev. ST Accel. Beams 9, 120703 (2006).
[CrossRef]

Phys. Today

W. B. Colson, E. D. Johnson, M. J. Kelley, and H. A. Schwettman, "Putting free electron lasers to work," Phys. Today 55(1), 35-41 (2002).
[CrossRef]

Sov. Phys. Solid State

V. I. Sokolov and V. K. Subashiev, "Linear electroptical effect in gallium selenide," Sov. Phys. Solid State 14, 178-183 (1972).

Other

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Crystals (Springer, 1997).

S. G. Anderson, M. Loh, P. Musumeci, J. B. Rosenzweig, H. Suk, and M. C. Thompson, "Commisioning and measurements of the Neptune photoinjector," in Advanced Accelerator Concepts, P.L.Colestock and S.Kelly, eds., AIP Conf. Proc. 569, 487-499 (2000).

T. C. Marshall, Free Electron Lasers (Macmillan, 1985).

F. Pedrotti and L. Pedrotti, Introduction to Optics (Prentice-Hall, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Calculated internal phase-matching angles for THz DFG in a collinear phase-matched GaSe (dashed curve) and a noncollinear phase-matched GaAs (solid curve); TIR is total internal reflection.

Fig. 2
Fig. 2

Scheme of an experimental setup for the THz DFG source and vector diagram for noncollinear DFG in GaAs; HCT is the HgCdTe fast detector.

Fig. 3
Fig. 3

(a) DFG output power at 344 μ m (triangles) and at 361 μ m (circles) versus the external phase-matching angle in GaAs and (b) calculated (solid curve) and measured (triangles) DFG peak power in the THz range.

Fig. 4
Fig. 4

THz signal at 289.2 μ m transmitted through the scanning Fabry–Perot interferometer versus the spacing distance varied from 9 to 10 mm .

Fig. 5
Fig. 5

Phase-matching tuning curve for 2 THz radiation generated in a 1 cm long GaSe pumped by C O 2 laser lines. The diamonds are experimental data and the solid curve represents a calculated phase mismatch function Sinc 2 ( Δ k L 2 ) fit to the experimental Δ Θ value.

Fig. 6
Fig. 6

Calculated THz power in a FEL single-pass amplifier as a function of the undulator length for a peak current of 60 A and different wavelengths.

Fig. 7
Fig. 7

Calculated power in a 100 μ m FEL amplifier as a function of the undulator length for a peak current of 100 A with tapering (solid curve) and without tapering (dashed curve).

Tables (2)

Tables Icon

Table 1 Parameters of the THz Nonlinear Materials a

Tables Icon

Table 2 Parameters for the Neptune High-Gain Seeded THz Waveguide FEL Amplifier

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

sin ( θ 2 ) = ( n 3 ω 3 ) 2 ( n 1 ω 1 n 2 ω 2 ) 2 4 n 1 n 2 ω 1 ω 2 ,
cos ψ = [ 1 + 2 ( ω 2 ω 3 ) sin 2 ( θ 2 ) ] [ 1 + 4 ( ω 1 ω 2 ω 3 2 ) sin 2 ( θ 2 ) ] 1 2 .
Δ λ min = 2 λ π m F ,
P THz = 0.5 ( μ 0 ε 0 ) 0.5 ( 4 d eff 2 ω 3 2 n 1 n 2 n 3 c 2 ) P 10.3 P 10.6 L 2 T 1 T 2 T 3 S e α L ,
α = 1 L c ln ( { [ ( 1 R ) 2 2 T R 2 ] 2 + 1 R 2 } 1 2 ( 1 R ) 2 2 T R 2 ) ,
d eff = d 22 e o cos 2 θ cos 3 φ ,
λ FEL = λ u 2 γ 2 ( 1 + K 2 2 ) ,

Metrics