Abstract

We report on Raman echo measurements of the Eu3+151:Y2SiO5 ground-state hyperfine transition. Using Raman echoes in zero magnetic field the ground-state hyperfine coherence time was observed to be (15.5±2)ms. When an external magnetic field was applied, the dephasing time of the hyperfine transition was observed to decay nonexponentially, with a decay rate of (36±4)ms. This nonexponential decay is indicative of the presence of spectral diffusion, similar to that observed in Pr3+:Y2SiO5. This work indicates that under favorable conditions we can expect hyperfine coherence times longer than the value of 30s recently reported in Pr3+Y2SiO5.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. N. Ohlsson, R. Mohan, and S. Kröll, "Quantum computer hardware based on rare-earth-ion-doped inorganic crystals," Opt. Commun. 201, 71-77 (2002).
    [CrossRef]
  2. A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, "Photon echoes produced by switching electric fields," Phys. Rev. Lett. 96, 043602 (2006).
    [CrossRef] [PubMed]
  3. M. Nilsson and S. Kröll, "Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles," Opt. Commun. 247, 393-403 (2005).
    [CrossRef]
  4. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of ultraslow and stored light pulses in a solid," Phys. Rev. Lett. 88, 023602 (2002).
    [CrossRef] [PubMed]
  5. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, "Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid," Phys. Rev. Lett. 95, 063601 (2005).
    [CrossRef] [PubMed]
  6. R. Equall, Y. Sun, R. Cone, and R. Macfarlane, "Ultraslow optical dephasing in Eu3+:Y2SiO5," Phys. Rev. Lett. 72, 2179-2182 (1994).
    [CrossRef] [PubMed]
  7. J. J. Longdell, A. L. Alexander, and M. J. Sellars, "Characterization of the hyperfine interaction in europium-doped yttrium orthosilicate and europium chloride hexahydrate," Phys. Rev. B 74, 195101 (2006).
    [CrossRef]
  8. R. Yano, M. Mitsunaga, and N. Uesugi, "Ultralong optical dephasing time in Eu3+:Y2SiO5," Opt. Lett. 16, 1884-1886 (1991).
    [CrossRef] [PubMed]
  9. P. Hu, S. Geschwind, and T. Jedju, "Spin-flip Raman echo in n-type CdS," Phys. Rev. Lett. 37, 1357-1360 (1976).
    [CrossRef]
  10. M. Mitsunaga, E. S. Kintzer, and R. G. Brewer, "Raman heterodyne interference: observations and analytic theory," Phys. Rev. B 31, 6947-6957 (1985).
    [CrossRef]
  11. M. Mitsunaga, E. S. Kintzer, and R. G. Brewer, "Raman heterodyne interference of inequivalent nuclear sites," Phys. Rev. Lett. 52, 1484-1487 (1984).
    [CrossRef]
  12. E. Fraval, M. J. Sellars, A. Morrison, and A. Ferris, "Pr-Y interaction in Pr3+:Y2SiO5," J. Lumin. 107, 347-350 (2004).
    [CrossRef]
  13. J. Klauder and P. Anderson, "Spectral diffusion decay in spin resonance experiments," Phys. Rev. 125, 912-932 (1962).
    [CrossRef]
  14. W. Mims, "Phase memory in electron spin echoes, lattice relaxation effects in CaWO4:Er,Ce,Mn," Phys. Rev. 168, 370-389 (1968).
    [CrossRef]
  15. B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, "Frequency-selective time-domain optical data storage by electromagnetically induced transparency in a rare-earth-doped solid," Opt. Lett. 22, 1849-1851 (1997).
    [CrossRef]
  16. E. Fraval, M. J. Sellars, and J. J. Longdell, "Dynamic decoherence control of a solid-state nuclear-quadrupole qubit," Phys. Rev. Lett. 95, 030506 (2005).
    [CrossRef] [PubMed]
  17. E. Fraval, M. J. Sellars, and J. J. Longdell, "Method of extending hyperfine coherence times in Pr3:Y2SiO5," Phys. Rev. Lett. 92, 077601 (2004).
    [CrossRef] [PubMed]
  18. B. Kraus, W. Tittel, N. Gisin, M. Nilsson, S. Kröll, and J. I. Cirac, "Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening," Phys. Rev. A 73, 020302 (2006).
    [CrossRef]

2006 (3)

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, "Photon echoes produced by switching electric fields," Phys. Rev. Lett. 96, 043602 (2006).
[CrossRef] [PubMed]

J. J. Longdell, A. L. Alexander, and M. J. Sellars, "Characterization of the hyperfine interaction in europium-doped yttrium orthosilicate and europium chloride hexahydrate," Phys. Rev. B 74, 195101 (2006).
[CrossRef]

B. Kraus, W. Tittel, N. Gisin, M. Nilsson, S. Kröll, and J. I. Cirac, "Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening," Phys. Rev. A 73, 020302 (2006).
[CrossRef]

2005 (3)

E. Fraval, M. J. Sellars, and J. J. Longdell, "Dynamic decoherence control of a solid-state nuclear-quadrupole qubit," Phys. Rev. Lett. 95, 030506 (2005).
[CrossRef] [PubMed]

M. Nilsson and S. Kröll, "Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles," Opt. Commun. 247, 393-403 (2005).
[CrossRef]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, "Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid," Phys. Rev. Lett. 95, 063601 (2005).
[CrossRef] [PubMed]

2004 (2)

E. Fraval, M. J. Sellars, and J. J. Longdell, "Method of extending hyperfine coherence times in Pr3:Y2SiO5," Phys. Rev. Lett. 92, 077601 (2004).
[CrossRef] [PubMed]

E. Fraval, M. J. Sellars, A. Morrison, and A. Ferris, "Pr-Y interaction in Pr3+:Y2SiO5," J. Lumin. 107, 347-350 (2004).
[CrossRef]

2002 (2)

N. Ohlsson, R. Mohan, and S. Kröll, "Quantum computer hardware based on rare-earth-ion-doped inorganic crystals," Opt. Commun. 201, 71-77 (2002).
[CrossRef]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of ultraslow and stored light pulses in a solid," Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

1997 (1)

1994 (1)

R. Equall, Y. Sun, R. Cone, and R. Macfarlane, "Ultraslow optical dephasing in Eu3+:Y2SiO5," Phys. Rev. Lett. 72, 2179-2182 (1994).
[CrossRef] [PubMed]

1991 (1)

1985 (1)

M. Mitsunaga, E. S. Kintzer, and R. G. Brewer, "Raman heterodyne interference: observations and analytic theory," Phys. Rev. B 31, 6947-6957 (1985).
[CrossRef]

1984 (1)

M. Mitsunaga, E. S. Kintzer, and R. G. Brewer, "Raman heterodyne interference of inequivalent nuclear sites," Phys. Rev. Lett. 52, 1484-1487 (1984).
[CrossRef]

1976 (1)

P. Hu, S. Geschwind, and T. Jedju, "Spin-flip Raman echo in n-type CdS," Phys. Rev. Lett. 37, 1357-1360 (1976).
[CrossRef]

1968 (1)

W. Mims, "Phase memory in electron spin echoes, lattice relaxation effects in CaWO4:Er,Ce,Mn," Phys. Rev. 168, 370-389 (1968).
[CrossRef]

1962 (1)

J. Klauder and P. Anderson, "Spectral diffusion decay in spin resonance experiments," Phys. Rev. 125, 912-932 (1962).
[CrossRef]

J. Lumin. (1)

E. Fraval, M. J. Sellars, A. Morrison, and A. Ferris, "Pr-Y interaction in Pr3+:Y2SiO5," J. Lumin. 107, 347-350 (2004).
[CrossRef]

Opt. Commun. (2)

M. Nilsson and S. Kröll, "Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles," Opt. Commun. 247, 393-403 (2005).
[CrossRef]

N. Ohlsson, R. Mohan, and S. Kröll, "Quantum computer hardware based on rare-earth-ion-doped inorganic crystals," Opt. Commun. 201, 71-77 (2002).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (2)

J. Klauder and P. Anderson, "Spectral diffusion decay in spin resonance experiments," Phys. Rev. 125, 912-932 (1962).
[CrossRef]

W. Mims, "Phase memory in electron spin echoes, lattice relaxation effects in CaWO4:Er,Ce,Mn," Phys. Rev. 168, 370-389 (1968).
[CrossRef]

Phys. Rev. A (1)

B. Kraus, W. Tittel, N. Gisin, M. Nilsson, S. Kröll, and J. I. Cirac, "Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening," Phys. Rev. A 73, 020302 (2006).
[CrossRef]

Phys. Rev. B (2)

M. Mitsunaga, E. S. Kintzer, and R. G. Brewer, "Raman heterodyne interference: observations and analytic theory," Phys. Rev. B 31, 6947-6957 (1985).
[CrossRef]

J. J. Longdell, A. L. Alexander, and M. J. Sellars, "Characterization of the hyperfine interaction in europium-doped yttrium orthosilicate and europium chloride hexahydrate," Phys. Rev. B 74, 195101 (2006).
[CrossRef]

Phys. Rev. Lett. (8)

P. Hu, S. Geschwind, and T. Jedju, "Spin-flip Raman echo in n-type CdS," Phys. Rev. Lett. 37, 1357-1360 (1976).
[CrossRef]

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, "Photon echoes produced by switching electric fields," Phys. Rev. Lett. 96, 043602 (2006).
[CrossRef] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of ultraslow and stored light pulses in a solid," Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, "Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid," Phys. Rev. Lett. 95, 063601 (2005).
[CrossRef] [PubMed]

R. Equall, Y. Sun, R. Cone, and R. Macfarlane, "Ultraslow optical dephasing in Eu3+:Y2SiO5," Phys. Rev. Lett. 72, 2179-2182 (1994).
[CrossRef] [PubMed]

M. Mitsunaga, E. S. Kintzer, and R. G. Brewer, "Raman heterodyne interference of inequivalent nuclear sites," Phys. Rev. Lett. 52, 1484-1487 (1984).
[CrossRef]

E. Fraval, M. J. Sellars, and J. J. Longdell, "Dynamic decoherence control of a solid-state nuclear-quadrupole qubit," Phys. Rev. Lett. 95, 030506 (2005).
[CrossRef] [PubMed]

E. Fraval, M. J. Sellars, and J. J. Longdell, "Method of extending hyperfine coherence times in Pr3:Y2SiO5," Phys. Rev. Lett. 92, 077601 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Energy-level diagram showing ground and excited states of Eu 3 + 151 at site 1. The transitions ω p and ω c are used to optically create hyperfine coherence on the ground state ± 3 2 ± 1 2 transition at 34.5 MHz . ω r is used only in the preparation phase of the experiment.

Fig. 2
Fig. 2

Experimental setup for Raman echoes. A frequency-stabilized cw Coherent 699-21 ring dye laser was employed. The light incident on the sample was gated with two acousto-optic modulators (AOMs) in series. A Mach–Zehnder interferometer arrangement with the AOMs and sample in one arm was employed to enable heterodyne detection of the coherent emission from the sample. The frequency shift of ω p , introduced by AOM1 and 2, was 51 MHz from the local oscillator beam. The amplitude of the beat signal between the local oscillator and the ω p field was detected with a photodiode. Beamsplitters are labelled as B/S.

Fig. 3
Fig. 3

Pulse sequence for the Raman echo. The ions are initially prepared in the F 0 7 ( ± 3 2 ) state through the application of the ω c and ω r fields. A combination of ω p and ω c pulses then create and rephase the hyperfine coherence, whereas the last ω c pulse enables optical detection of the echo. The time between the end of the first set of pulses and the output echo is labelled τ.

Fig. 4
Fig. 4

Single shot of a Raman echo where the π 2 pulse is 5 μ s for the ω p field and 4.5 μ s for the ω c field. The delay τ between the first set of pulses and the output echo is 21 ms . The solid curve is the output Raman echo when a 100 G external magnetic field is applied, whereas the dashed curve is the Raman echo when no external field is applied. The input pulses were not recorded during the pulse sequence.

Fig. 5
Fig. 5

Decay of the Raman echo amplitude with no external applied magnetic field as the time between the initial pulses and the output echo τ is increased. The decay rate of the echo envelope gives the T 2 of the ground-state hyperfine levels in Eu 3 + : Y 2 Si O 5 and is ( 15.5 ± 2 ) ms .

Fig. 6
Fig. 6

Decay of the Raman echo amplitude under the influence of a small magnetic field (엯) as the time between the initial pulses and the output echo, τ, is increased. The dashed curve is given by Eq. (1).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( τ ) = I 0 exp ( ( τ T M ) 2 ) ,

Metrics