Abstract

An instrumentation for detection of nitric oxide (NO) by direct absorption spectrometry in the parts in 109 (ppb) range on its electronic X2Π(ν=0)A2Σ+(ν=0) transition has been constructed around a commercially available fully diode-laser-based laser system producing milliwatts powers of ultraviolet light at 226.6nm, and its analytical performance has been evaluated. It is shown that the system is capable of detecting NO down to 3ppbm under low-pressure conditions (at a signal-to-noise ratio of 3 for a signal averaging of 5s), which is 2 orders of magnitude below that of any other diode-laser-based absorption technique. The combined line strength of the targeted lines was assessed to 3.1×1018cm1(moleculecm2), which supersedes typical line strengths of the fundamental vibrational band and the first and second overtone bands of NO by 2, 4, and 5 orders of magnitude, respectively. Also the collision broadening and shift of the targeted lines in NO by N2 have been assessed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. U.S. Environmental Protection Agency, "National air quality and emission trends report, 1998," EPA 454/R-01-004 (U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, 2001).
  2. M. Radojevic, "Reduction of nitrogen oxides in flue gases," Environ. Pollut. 102, 685-689 (1998).
    [CrossRef]
  3. R. K. Lyon, "Thermal DeNOx," Environ. Sci. Technol. 21, 231-236 (1987).
    [CrossRef] [PubMed]
  4. T. J. Feeley, A. E. Mayne, and S. I. Plasynski, "The US Department of Energy's NOx control technology R&D program for existing power plants," Int. J. Environ. Pollut. 17, 66-81 (2002).
  5. L. J. Muzio, G. C. Quartucy, and J. E. Cichanowicz, "Overview and status of post-combustion NOx control: SNCR, SCR, and hybrid technologies," Int. J. Environ. Pollut. 17, 4-30 (2002).
  6. S. Zandaryaa, R. Gavasci, F. Lombardi, and A. Fiore, "Nitrogen oxides from waste incineration: control by selective non-catalytic reduction," Chemosphere 42, 491-497 (2001).
    [CrossRef] [PubMed]
  7. M. G. Allen, "Diode laser absorption sensors for gas-dynamic and combustion flows," Meas. Sci. Technol. 9, 545-562 (1998).
    [CrossRef]
  8. P. Werle, "A review of recent advances in semiconductor laser based gas monitors," Spectrochim. Acta, Part A 54, 197-236 (1998).
    [CrossRef]
  9. P. Werle, "Spectroscopic trace gas analysis using semiconductor diode lasers," Spectrochim. Acta, Part A 52, 805-822 (1996).
    [CrossRef]
  10. P. Werle, "Tunable diode laser absorption spectroscopy: recent findings and novel approaches," Infrared Phys. Technol. 37, 59-66 (1996).
    [CrossRef]
  11. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, "Near- and mid-infrared laser-optical sensors for gas analysis," Opt. Lasers Eng. 37, 101-114 (2002).
    [CrossRef]
  12. P. Kluczynski, J. Gustafsson, Å. M. Lindberg, and O. Axner, "Wavelength modulation absorption spectrometry--an extensive scrutiny of the generation of signals," Spectrochim. Acta, Part B 56, 1277-1354 (2001).
    [CrossRef]
  13. G. Gagliardi and L. Gianfrani, "Trace-gas analysis using diode lasers in the near-IR and long-path techniques," Opt. Lasers Eng. 37, 509-520 (2002).
    [CrossRef]
  14. P. A. Martin, "Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring," Chem. Soc. Rev. 31, 201-210 (2002).
    [CrossRef] [PubMed]
  15. P. Werle, K. Maurer, R. Kormann, R. Mucke, F. D'Amato, T. Lancia, and A. Popov, "Spectroscopic gas analyzers based on indium-phosphide antimonide, and lead-salt diode-lasers," Spectrochim. Acta, Part A 58, 2361-2372 (2002).
    [CrossRef]
  16. A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, "Trace complex-molecule detection using near-IR diode lasers," Appl. Phys. B 75, 203-214 (2002).
    [CrossRef]
  17. R. Claps, F. V. Englich, D. Leleux, D. Richter, F. K. Tittel, and R. F. Curl, "Ammonia detection using near-infrared diode laser based overtone spectrocopy," Appl. Opt. 40, 4376-4386 (2001).
    [CrossRef]
  18. G. Whitenett, G. Stewart, H. B. Yu, and B. N. Culshaw, "Investigation of a tuneable mode-locked fiber laser for application to multipoint gas spectroscopy," J. Lightwave Technol. 22, 813-819 (2004).
    [CrossRef]
  19. K. C. Clemitshaw, "A review of instrumentation and measurement techniques for ground-based and airborne field studies of gas-phase tropospheric chemistry," Critical Rev. Environ. Sci. Technol. 34, 1-108 (2004).
    [CrossRef]
  20. F. K. Tittel, D. Richter, and A. Fried, "Mid-infrared laser applications in spectroscopy," in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer, 2003), pp. 445-510.
  21. A. Sasso, G. Pesce, and G. Rusciano, "High-resolution and high-sensitivity laser spectroscopy of atoms and molecules in the near- and mid-IR spectral regions," Phys. Scr. T105, 76-84 (2003).
    [CrossRef]
  22. J. Shao, W. J. Zhang, X. M. Gao, L. X. Ning, and Y. Q. Yuan, "Absorption measurements for highly sensitive diode laser of CO2 near 1.3μm at room temperature," Chin. Phys. 14, 482-486 (2005).
    [CrossRef]
  23. D. M. Sonnenfroh and M. G. Allen, "Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-μm room-temperature diode laser," Appl. Opt. 36, 7970-7977 (1997).
    [CrossRef]
  24. R. M. Mihalcea, D. S. Baer, and R. K. Hanson, "A diode-laser absorption sensor system for combustion emission measurements," Meas. Sci. Technol. 9, 327-338 (1998).
    [CrossRef]
  25. D. B. Oh and A. C. Stanton, "Measurement of nitric oxide with an antimonide diode laser," Appl. Opt. 36, 3294-3297 (1997).
    [CrossRef] [PubMed]
  26. M. Snels, C. Corsi, F. D'Amato, M. De Rosa, and G. Modugno, "Pressure broadening in the second overtone of NO, measured with a near infrared DFB diode laser," Opt. Commun. 159, 80-83 (1999).
    [CrossRef]
  27. D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, "A tunable diode laser system for the remote sensing of on-road vehicle emissions," Appl. Phys. B 67, 433-441 (1998).
    [CrossRef]
  28. J. L. Jimenez, M. D. Koplow, D. D. Nelson, M. S. Zahniser, and S. E. Schmidt, "Characterization of on-road vehicle NO emissions by a TILDAS remote sensor," J. Air Waste Manage. Assoc. 49, 463-470 (1999).
  29. J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, "Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers," Environ. Sci. Technol. 34, 2380-2387 (2000).
    [CrossRef]
  30. C. Roller, K. Namjou, J. D. Jeffers, M. Camp, A. Mock, P. J. McCann, and J. Grego, "Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: application in monitoring respiratory inflammation," Appl. Opt. 41, 6018-6029 (2002).
    [CrossRef] [PubMed]
  31. P. K. Falcone, R. K. Hansson, and C. H. Kruger, "Tunable diode laser absorption measurements of nitric oxide in combustion gases," Combust. Sci. Technol. 35, 81-99 (1983).
    [CrossRef]
  32. D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Application of balanced detection to absorption measurements of trace gases with room-temperature quasi-cw quantum-cascade lasers," Appl. Opt. 40, 812-820 (2001).
    [CrossRef]
  33. D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, "Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer," Appl. Phys. B 75, 343-350 (2002).
    [CrossRef]
  34. S. C. Herndon, J. H. Shorter, M. S. Zahniser, D. D. Nelson, J. Jayne, R. C. Brown, R. C. Miake-Lye, I. Waitz, P. Silva, T. Lanni, K. Demerjian, and C. E. Kolb, "NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff," Environ. Sci. Technol. 38, 6078-6084 (2004).
    [CrossRef] [PubMed]
  35. Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, "Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection," Appl. Opt. 43, 2257-2266 (2004).
    [CrossRef] [PubMed]
  36. In addition, QC lasers have not proved to be problem-free to utilize for spectroscopic applications. They have a few drawbacks that need to be circumvented before their full potential can be used. One is that they require exceptionally large driving currents from several hundreds milliamperes to several amperes. This makes cw operation so far difficult. This implies also that they have a significant "chirping" of the wavelength during a pulse, which can complicate spectroscopic investigations.
  37. B. A. Paldus and A. A. Kachanov, "An historical overview of cavity-enhanced methods," Can. J. Phys. 83, 975-999 (2005).
    [CrossRef]
  38. Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, "Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy," Appl. Phys. B 82, 149-154 (2006).
    [CrossRef]
  39. M. R. McCurdy, Y. A. Bakhirkin, and F. K. Tittel, "Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide," Appl. Phys. B 85, 445-452 (2006).
    [CrossRef]
  40. H. R. Barry, B. Bakowski, L. Corner, T. Freegarde, O. T. W. Hawkins, G. Hancock, R. M. J. Jacobs, R. Peverall, and G. A. D. Ritchie, "OH detection by absorption of frequency-doubled diode laser radiation at 308nm," Chem. Phys. Lett. 319, 125-130 (2000).
    [CrossRef]
  41. G. J. Ray, T. N. Anderson, J. A. Caton, R. P. Lucht, and T. Walther, "OH sensor based on ultraviolet, continuous-wave absorption spectroscopy utilizing a frequency-quadrupled, fiber-amplified external-cavity diode laser," Opt. Lett. 26, 1870-1872 (2001).
    [CrossRef]
  42. L. Corner, J. S. Gibb, G. Hancock, A. Hutchinson, V. L. Kasyutich, R. Peverall, and G. A. D. Ritchie, "Sum frequency generation at 309nm using a violet and a near-IR DFB diode laser for detection of OH," Appl. Phys. B 74, 441-444 (2002).
    [CrossRef]
  43. D. B. Oh, "Diode-laser-based sum-frequency generation of tunable wavelength-modulated UV-light for OH radical detection," Opt. Lett. 20, 100-102 (1995).
    [CrossRef] [PubMed]
  44. T. N. Anderson, R. P. Lucht, T. R. Meyer, S. Roy, and J. R. Gord, "Diode-laser-based ultraviolet-absorption sensor for high-speed detection of the hydroxyl-radical," Opt. Lett. 30, 1321-1323 (2005).
    [CrossRef] [PubMed]
  45. T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, "Measurements of OH mole fraction and temperature up to 20kHz by using a diode-laser-based UV absorption sensor," Appl. Opt. 44, 6729-6740 (2005).
    [CrossRef] [PubMed]
  46. K. A. Peterson and D. B. Oh, "High-sensitivity detection of CH radicals in flames by use of a diode-laser-based near-ultraviolet light source," Opt. Lett. 24, 667-669 (1999).
    [CrossRef]
  47. G. Hancock, V. L. Kasyutich, and G. A. D. Ritchie, "Wavelength-modulation spectroscopy using a frequency-doubled current-modulated diode laser," Appl. Phys. B 74, 569-575 (2002).
    [CrossRef]
  48. G. Hancock, V. L. Kasyutich, and G. A. D. Ritchie, "Single-tone frequency-modulation spectroscopy with frequency-doubled current-modulated diode laser light," Opt. Lett. 27, 763-765 (2002).
    [CrossRef]
  49. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, "Development of a narrow-band, tunable, frequency-quadrupled diode laser for UV absorption spectroscopy," Appl. Opt. 37, 3954-3960 (1998).
    [CrossRef]
  50. J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, "Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254nm," Appl. Phys. Lett. 76, 1234-1236 (2000).
    [CrossRef]
  51. W. G. Mallard, J. H. Miller, and K. C. Smyth, "Resonantly enhanced two-photon photoionization of NO in an atmospheric flame," J. Chem. Phys. 76, 3483-3492 (1982).
    [CrossRef]
  52. A. Y. Chang, M. D. Dirosa, and R. K. Hanson, "Temperature dependence of collision broadening and shift in the NO A-X (0,0) band in the presence of argon and nitrogen," J. Quant. Spectrosc. Radiat. Transf. 47, 375-390 (1992).
    [CrossRef]
  53. S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, and T. Walther, "Diode-laser-based ultraviolet absorption sensor for nitric oxide," Appl. Phys. B 75, 113-117 (2002).
    [CrossRef]
  54. T. N. Anderson, R. P. Lucht, R. Barron-Jimenez, S. F. Hanna, J. A. Caton, T. Walther, S. Roy, M. S. Brown, J. R. Gord, I. Critchley, and L. Flamand, "Combustion exhaust measurements of nitric oxide with an ultraviolet diode-laser-based absorption sensor," Appl. Opt. 44, 1491-1502 (2005).
    [CrossRef] [PubMed]
  55. M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, "Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database," J. Quant. Spectrosc. Radiat. Transf. 98, 130-155 (2006).
    [CrossRef]
  56. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, "The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001," J. Quant. Spectrosc. Radiat. Transf. 82, 5-44 (2003).
    [CrossRef]
  57. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, "The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition," J. Quant. Spectrosc. Radiat. Transf. 60, 665-710 (1998).
    [CrossRef]
  58. L. G. Piper and L. M. Cowles, "Einstein coefficients and transition-moment variation for the NO(A2Σ+−X2Π) transition," J. Chem. Phys. 85, 2419-2422 (1986).
    [CrossRef]
  59. M.-S. Chou, A. M. Dean, and D. Stern, "Laser induced fluorescence and absorption measurements of NO in NH3/O2 and CH4/air flames," J. Chem. Phys. 78, 5962-5970 (1983).
    [CrossRef]
  60. J. R. Reisel, C. D. Carter, and N. M. Laurendeau, "Einstein coefficients for rotational lines of the (0,0) band of the NOA2Σ+−X2Π system," J. Quant. Spectrosc. Radiat. Transf. 47, 43-54 (1992).
    [CrossRef]
  61. R. Freedman and R. W. Nicholls, "Molecular constants for the ν″=0(X2Π) and ν′=0(A2Σ+) levels of the NO molecule and its isotopes," J. Mol. Spectrosc. 83, 223-227 (1980).
    [CrossRef]
  62. A. Timmermann and R. Wallenstein, "Doppler-free two-photon excitation of nitric oxide with frequency-stabilized cw dye laser radiation," Opt. Commun. 39, 239-242 (1981).
    [CrossRef]
  63. P. M. Danehy, E. J. Friedmanhill, R. P. Lucht, and R. L. Farrow, "The effects of collisional quenching on degenerate four-wave-mixing," Appl. Phys. B 57, 243-248 (1993).
    [CrossRef]

2006 (3)

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, "Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy," Appl. Phys. B 82, 149-154 (2006).
[CrossRef]

M. R. McCurdy, Y. A. Bakhirkin, and F. K. Tittel, "Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide," Appl. Phys. B 85, 445-452 (2006).
[CrossRef]

M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, "Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database," J. Quant. Spectrosc. Radiat. Transf. 98, 130-155 (2006).
[CrossRef]

2005 (5)

2004 (4)

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, "Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection," Appl. Opt. 43, 2257-2266 (2004).
[CrossRef] [PubMed]

G. Whitenett, G. Stewart, H. B. Yu, and B. N. Culshaw, "Investigation of a tuneable mode-locked fiber laser for application to multipoint gas spectroscopy," J. Lightwave Technol. 22, 813-819 (2004).
[CrossRef]

K. C. Clemitshaw, "A review of instrumentation and measurement techniques for ground-based and airborne field studies of gas-phase tropospheric chemistry," Critical Rev. Environ. Sci. Technol. 34, 1-108 (2004).
[CrossRef]

S. C. Herndon, J. H. Shorter, M. S. Zahniser, D. D. Nelson, J. Jayne, R. C. Brown, R. C. Miake-Lye, I. Waitz, P. Silva, T. Lanni, K. Demerjian, and C. E. Kolb, "NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff," Environ. Sci. Technol. 38, 6078-6084 (2004).
[CrossRef] [PubMed]

2003 (2)

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, "The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001," J. Quant. Spectrosc. Radiat. Transf. 82, 5-44 (2003).
[CrossRef]

A. Sasso, G. Pesce, and G. Rusciano, "High-resolution and high-sensitivity laser spectroscopy of atoms and molecules in the near- and mid-IR spectral regions," Phys. Scr. T105, 76-84 (2003).
[CrossRef]

2002 (13)

G. Gagliardi and L. Gianfrani, "Trace-gas analysis using diode lasers in the near-IR and long-path techniques," Opt. Lasers Eng. 37, 509-520 (2002).
[CrossRef]

P. A. Martin, "Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring," Chem. Soc. Rev. 31, 201-210 (2002).
[CrossRef] [PubMed]

P. Werle, K. Maurer, R. Kormann, R. Mucke, F. D'Amato, T. Lancia, and A. Popov, "Spectroscopic gas analyzers based on indium-phosphide antimonide, and lead-salt diode-lasers," Spectrochim. Acta, Part A 58, 2361-2372 (2002).
[CrossRef]

A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, "Trace complex-molecule detection using near-IR diode lasers," Appl. Phys. B 75, 203-214 (2002).
[CrossRef]

T. J. Feeley, A. E. Mayne, and S. I. Plasynski, "The US Department of Energy's NOx control technology R&D program for existing power plants," Int. J. Environ. Pollut. 17, 66-81 (2002).

L. J. Muzio, G. C. Quartucy, and J. E. Cichanowicz, "Overview and status of post-combustion NOx control: SNCR, SCR, and hybrid technologies," Int. J. Environ. Pollut. 17, 4-30 (2002).

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, "Near- and mid-infrared laser-optical sensors for gas analysis," Opt. Lasers Eng. 37, 101-114 (2002).
[CrossRef]

G. Hancock, V. L. Kasyutich, and G. A. D. Ritchie, "Wavelength-modulation spectroscopy using a frequency-doubled current-modulated diode laser," Appl. Phys. B 74, 569-575 (2002).
[CrossRef]

L. Corner, J. S. Gibb, G. Hancock, A. Hutchinson, V. L. Kasyutich, R. Peverall, and G. A. D. Ritchie, "Sum frequency generation at 309nm using a violet and a near-IR DFB diode laser for detection of OH," Appl. Phys. B 74, 441-444 (2002).
[CrossRef]

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, "Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer," Appl. Phys. B 75, 343-350 (2002).
[CrossRef]

G. Hancock, V. L. Kasyutich, and G. A. D. Ritchie, "Single-tone frequency-modulation spectroscopy with frequency-doubled current-modulated diode laser light," Opt. Lett. 27, 763-765 (2002).
[CrossRef]

S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, and T. Walther, "Diode-laser-based ultraviolet absorption sensor for nitric oxide," Appl. Phys. B 75, 113-117 (2002).
[CrossRef]

C. Roller, K. Namjou, J. D. Jeffers, M. Camp, A. Mock, P. J. McCann, and J. Grego, "Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: application in monitoring respiratory inflammation," Appl. Opt. 41, 6018-6029 (2002).
[CrossRef] [PubMed]

2001 (5)

2000 (3)

H. R. Barry, B. Bakowski, L. Corner, T. Freegarde, O. T. W. Hawkins, G. Hancock, R. M. J. Jacobs, R. Peverall, and G. A. D. Ritchie, "OH detection by absorption of frequency-doubled diode laser radiation at 308nm," Chem. Phys. Lett. 319, 125-130 (2000).
[CrossRef]

J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, "Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers," Environ. Sci. Technol. 34, 2380-2387 (2000).
[CrossRef]

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, "Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254nm," Appl. Phys. Lett. 76, 1234-1236 (2000).
[CrossRef]

1999 (3)

K. A. Peterson and D. B. Oh, "High-sensitivity detection of CH radicals in flames by use of a diode-laser-based near-ultraviolet light source," Opt. Lett. 24, 667-669 (1999).
[CrossRef]

J. L. Jimenez, M. D. Koplow, D. D. Nelson, M. S. Zahniser, and S. E. Schmidt, "Characterization of on-road vehicle NO emissions by a TILDAS remote sensor," J. Air Waste Manage. Assoc. 49, 463-470 (1999).

M. Snels, C. Corsi, F. D'Amato, M. De Rosa, and G. Modugno, "Pressure broadening in the second overtone of NO, measured with a near infrared DFB diode laser," Opt. Commun. 159, 80-83 (1999).
[CrossRef]

1998 (7)

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, "A tunable diode laser system for the remote sensing of on-road vehicle emissions," Appl. Phys. B 67, 433-441 (1998).
[CrossRef]

M. G. Allen, "Diode laser absorption sensors for gas-dynamic and combustion flows," Meas. Sci. Technol. 9, 545-562 (1998).
[CrossRef]

P. Werle, "A review of recent advances in semiconductor laser based gas monitors," Spectrochim. Acta, Part A 54, 197-236 (1998).
[CrossRef]

M. Radojevic, "Reduction of nitrogen oxides in flue gases," Environ. Pollut. 102, 685-689 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, "A diode-laser absorption sensor system for combustion emission measurements," Meas. Sci. Technol. 9, 327-338 (1998).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, "The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition," J. Quant. Spectrosc. Radiat. Transf. 60, 665-710 (1998).
[CrossRef]

J. P. Koplow, D. A. V. Kliner, and L. Goldberg, "Development of a narrow-band, tunable, frequency-quadrupled diode laser for UV absorption spectroscopy," Appl. Opt. 37, 3954-3960 (1998).
[CrossRef]

1997 (2)

1996 (2)

P. Werle, "Spectroscopic trace gas analysis using semiconductor diode lasers," Spectrochim. Acta, Part A 52, 805-822 (1996).
[CrossRef]

P. Werle, "Tunable diode laser absorption spectroscopy: recent findings and novel approaches," Infrared Phys. Technol. 37, 59-66 (1996).
[CrossRef]

1995 (1)

1993 (1)

P. M. Danehy, E. J. Friedmanhill, R. P. Lucht, and R. L. Farrow, "The effects of collisional quenching on degenerate four-wave-mixing," Appl. Phys. B 57, 243-248 (1993).
[CrossRef]

1992 (2)

A. Y. Chang, M. D. Dirosa, and R. K. Hanson, "Temperature dependence of collision broadening and shift in the NO A-X (0,0) band in the presence of argon and nitrogen," J. Quant. Spectrosc. Radiat. Transf. 47, 375-390 (1992).
[CrossRef]

J. R. Reisel, C. D. Carter, and N. M. Laurendeau, "Einstein coefficients for rotational lines of the (0,0) band of the NOA2Σ+−X2Π system," J. Quant. Spectrosc. Radiat. Transf. 47, 43-54 (1992).
[CrossRef]

1987 (1)

R. K. Lyon, "Thermal DeNOx," Environ. Sci. Technol. 21, 231-236 (1987).
[CrossRef] [PubMed]

1986 (1)

L. G. Piper and L. M. Cowles, "Einstein coefficients and transition-moment variation for the NO(A2Σ+−X2Π) transition," J. Chem. Phys. 85, 2419-2422 (1986).
[CrossRef]

1983 (2)

M.-S. Chou, A. M. Dean, and D. Stern, "Laser induced fluorescence and absorption measurements of NO in NH3/O2 and CH4/air flames," J. Chem. Phys. 78, 5962-5970 (1983).
[CrossRef]

P. K. Falcone, R. K. Hansson, and C. H. Kruger, "Tunable diode laser absorption measurements of nitric oxide in combustion gases," Combust. Sci. Technol. 35, 81-99 (1983).
[CrossRef]

1982 (1)

W. G. Mallard, J. H. Miller, and K. C. Smyth, "Resonantly enhanced two-photon photoionization of NO in an atmospheric flame," J. Chem. Phys. 76, 3483-3492 (1982).
[CrossRef]

1981 (1)

A. Timmermann and R. Wallenstein, "Doppler-free two-photon excitation of nitric oxide with frequency-stabilized cw dye laser radiation," Opt. Commun. 39, 239-242 (1981).
[CrossRef]

1980 (1)

R. Freedman and R. W. Nicholls, "Molecular constants for the ν″=0(X2Π) and ν′=0(A2Σ+) levels of the NO molecule and its isotopes," J. Mol. Spectrosc. 83, 223-227 (1980).
[CrossRef]

Appl. Opt. (9)

D. B. Oh and A. C. Stanton, "Measurement of nitric oxide with an antimonide diode laser," Appl. Opt. 36, 3294-3297 (1997).
[CrossRef] [PubMed]

D. M. Sonnenfroh and M. G. Allen, "Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-μm room-temperature diode laser," Appl. Opt. 36, 7970-7977 (1997).
[CrossRef]

J. P. Koplow, D. A. V. Kliner, and L. Goldberg, "Development of a narrow-band, tunable, frequency-quadrupled diode laser for UV absorption spectroscopy," Appl. Opt. 37, 3954-3960 (1998).
[CrossRef]

D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Application of balanced detection to absorption measurements of trace gases with room-temperature quasi-cw quantum-cascade lasers," Appl. Opt. 40, 812-820 (2001).
[CrossRef]

R. Claps, F. V. Englich, D. Leleux, D. Richter, F. K. Tittel, and R. F. Curl, "Ammonia detection using near-infrared diode laser based overtone spectrocopy," Appl. Opt. 40, 4376-4386 (2001).
[CrossRef]

C. Roller, K. Namjou, J. D. Jeffers, M. Camp, A. Mock, P. J. McCann, and J. Grego, "Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: application in monitoring respiratory inflammation," Appl. Opt. 41, 6018-6029 (2002).
[CrossRef] [PubMed]

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, "Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection," Appl. Opt. 43, 2257-2266 (2004).
[CrossRef] [PubMed]

T. N. Anderson, R. P. Lucht, R. Barron-Jimenez, S. F. Hanna, J. A. Caton, T. Walther, S. Roy, M. S. Brown, J. R. Gord, I. Critchley, and L. Flamand, "Combustion exhaust measurements of nitric oxide with an ultraviolet diode-laser-based absorption sensor," Appl. Opt. 44, 1491-1502 (2005).
[CrossRef] [PubMed]

T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, "Measurements of OH mole fraction and temperature up to 20kHz by using a diode-laser-based UV absorption sensor," Appl. Opt. 44, 6729-6740 (2005).
[CrossRef] [PubMed]

Appl. Phys. B (9)

S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, and T. Walther, "Diode-laser-based ultraviolet absorption sensor for nitric oxide," Appl. Phys. B 75, 113-117 (2002).
[CrossRef]

L. Corner, J. S. Gibb, G. Hancock, A. Hutchinson, V. L. Kasyutich, R. Peverall, and G. A. D. Ritchie, "Sum frequency generation at 309nm using a violet and a near-IR DFB diode laser for detection of OH," Appl. Phys. B 74, 441-444 (2002).
[CrossRef]

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, "Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer," Appl. Phys. B 75, 343-350 (2002).
[CrossRef]

P. M. Danehy, E. J. Friedmanhill, R. P. Lucht, and R. L. Farrow, "The effects of collisional quenching on degenerate four-wave-mixing," Appl. Phys. B 57, 243-248 (1993).
[CrossRef]

A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, "Trace complex-molecule detection using near-IR diode lasers," Appl. Phys. B 75, 203-214 (2002).
[CrossRef]

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, "A tunable diode laser system for the remote sensing of on-road vehicle emissions," Appl. Phys. B 67, 433-441 (1998).
[CrossRef]

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, "Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy," Appl. Phys. B 82, 149-154 (2006).
[CrossRef]

M. R. McCurdy, Y. A. Bakhirkin, and F. K. Tittel, "Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide," Appl. Phys. B 85, 445-452 (2006).
[CrossRef]

G. Hancock, V. L. Kasyutich, and G. A. D. Ritchie, "Wavelength-modulation spectroscopy using a frequency-doubled current-modulated diode laser," Appl. Phys. B 74, 569-575 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, "Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254nm," Appl. Phys. Lett. 76, 1234-1236 (2000).
[CrossRef]

Can. J. Phys. (1)

B. A. Paldus and A. A. Kachanov, "An historical overview of cavity-enhanced methods," Can. J. Phys. 83, 975-999 (2005).
[CrossRef]

Chem. Phys. Lett. (1)

H. R. Barry, B. Bakowski, L. Corner, T. Freegarde, O. T. W. Hawkins, G. Hancock, R. M. J. Jacobs, R. Peverall, and G. A. D. Ritchie, "OH detection by absorption of frequency-doubled diode laser radiation at 308nm," Chem. Phys. Lett. 319, 125-130 (2000).
[CrossRef]

Chem. Soc. Rev. (1)

P. A. Martin, "Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring," Chem. Soc. Rev. 31, 201-210 (2002).
[CrossRef] [PubMed]

Chemosphere (1)

S. Zandaryaa, R. Gavasci, F. Lombardi, and A. Fiore, "Nitrogen oxides from waste incineration: control by selective non-catalytic reduction," Chemosphere 42, 491-497 (2001).
[CrossRef] [PubMed]

Chin. Phys. (1)

J. Shao, W. J. Zhang, X. M. Gao, L. X. Ning, and Y. Q. Yuan, "Absorption measurements for highly sensitive diode laser of CO2 near 1.3μm at room temperature," Chin. Phys. 14, 482-486 (2005).
[CrossRef]

Combust. Sci. Technol. (1)

P. K. Falcone, R. K. Hansson, and C. H. Kruger, "Tunable diode laser absorption measurements of nitric oxide in combustion gases," Combust. Sci. Technol. 35, 81-99 (1983).
[CrossRef]

Critical Rev. Environ. Sci. Technol. (1)

K. C. Clemitshaw, "A review of instrumentation and measurement techniques for ground-based and airborne field studies of gas-phase tropospheric chemistry," Critical Rev. Environ. Sci. Technol. 34, 1-108 (2004).
[CrossRef]

Environ. Pollut. (1)

M. Radojevic, "Reduction of nitrogen oxides in flue gases," Environ. Pollut. 102, 685-689 (1998).
[CrossRef]

Environ. Sci. Technol. (3)

R. K. Lyon, "Thermal DeNOx," Environ. Sci. Technol. 21, 231-236 (1987).
[CrossRef] [PubMed]

J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, "Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers," Environ. Sci. Technol. 34, 2380-2387 (2000).
[CrossRef]

S. C. Herndon, J. H. Shorter, M. S. Zahniser, D. D. Nelson, J. Jayne, R. C. Brown, R. C. Miake-Lye, I. Waitz, P. Silva, T. Lanni, K. Demerjian, and C. E. Kolb, "NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff," Environ. Sci. Technol. 38, 6078-6084 (2004).
[CrossRef] [PubMed]

Infrared Phys. Technol. (1)

P. Werle, "Tunable diode laser absorption spectroscopy: recent findings and novel approaches," Infrared Phys. Technol. 37, 59-66 (1996).
[CrossRef]

Int. J. Environ. Pollut. (2)

T. J. Feeley, A. E. Mayne, and S. I. Plasynski, "The US Department of Energy's NOx control technology R&D program for existing power plants," Int. J. Environ. Pollut. 17, 66-81 (2002).

L. J. Muzio, G. C. Quartucy, and J. E. Cichanowicz, "Overview and status of post-combustion NOx control: SNCR, SCR, and hybrid technologies," Int. J. Environ. Pollut. 17, 4-30 (2002).

J. Air Waste Manage. Assoc. (1)

J. L. Jimenez, M. D. Koplow, D. D. Nelson, M. S. Zahniser, and S. E. Schmidt, "Characterization of on-road vehicle NO emissions by a TILDAS remote sensor," J. Air Waste Manage. Assoc. 49, 463-470 (1999).

J. Chem. Phys. (3)

L. G. Piper and L. M. Cowles, "Einstein coefficients and transition-moment variation for the NO(A2Σ+−X2Π) transition," J. Chem. Phys. 85, 2419-2422 (1986).
[CrossRef]

M.-S. Chou, A. M. Dean, and D. Stern, "Laser induced fluorescence and absorption measurements of NO in NH3/O2 and CH4/air flames," J. Chem. Phys. 78, 5962-5970 (1983).
[CrossRef]

W. G. Mallard, J. H. Miller, and K. C. Smyth, "Resonantly enhanced two-photon photoionization of NO in an atmospheric flame," J. Chem. Phys. 76, 3483-3492 (1982).
[CrossRef]

J. Lightwave Technol. (1)

J. Mol. Spectrosc. (1)

R. Freedman and R. W. Nicholls, "Molecular constants for the ν″=0(X2Π) and ν′=0(A2Σ+) levels of the NO molecule and its isotopes," J. Mol. Spectrosc. 83, 223-227 (1980).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (5)

A. Y. Chang, M. D. Dirosa, and R. K. Hanson, "Temperature dependence of collision broadening and shift in the NO A-X (0,0) band in the presence of argon and nitrogen," J. Quant. Spectrosc. Radiat. Transf. 47, 375-390 (1992).
[CrossRef]

J. R. Reisel, C. D. Carter, and N. M. Laurendeau, "Einstein coefficients for rotational lines of the (0,0) band of the NOA2Σ+−X2Π system," J. Quant. Spectrosc. Radiat. Transf. 47, 43-54 (1992).
[CrossRef]

M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, "Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database," J. Quant. Spectrosc. Radiat. Transf. 98, 130-155 (2006).
[CrossRef]

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, "The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001," J. Quant. Spectrosc. Radiat. Transf. 82, 5-44 (2003).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, "The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition," J. Quant. Spectrosc. Radiat. Transf. 60, 665-710 (1998).
[CrossRef]

Meas. Sci. Technol. (2)

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, "A diode-laser absorption sensor system for combustion emission measurements," Meas. Sci. Technol. 9, 327-338 (1998).
[CrossRef]

M. G. Allen, "Diode laser absorption sensors for gas-dynamic and combustion flows," Meas. Sci. Technol. 9, 545-562 (1998).
[CrossRef]

Opt. Commun. (2)

M. Snels, C. Corsi, F. D'Amato, M. De Rosa, and G. Modugno, "Pressure broadening in the second overtone of NO, measured with a near infrared DFB diode laser," Opt. Commun. 159, 80-83 (1999).
[CrossRef]

A. Timmermann and R. Wallenstein, "Doppler-free two-photon excitation of nitric oxide with frequency-stabilized cw dye laser radiation," Opt. Commun. 39, 239-242 (1981).
[CrossRef]

Opt. Lasers Eng. (2)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, "Near- and mid-infrared laser-optical sensors for gas analysis," Opt. Lasers Eng. 37, 101-114 (2002).
[CrossRef]

G. Gagliardi and L. Gianfrani, "Trace-gas analysis using diode lasers in the near-IR and long-path techniques," Opt. Lasers Eng. 37, 509-520 (2002).
[CrossRef]

Opt. Lett. (5)

Phys. Scr. (1)

A. Sasso, G. Pesce, and G. Rusciano, "High-resolution and high-sensitivity laser spectroscopy of atoms and molecules in the near- and mid-IR spectral regions," Phys. Scr. T105, 76-84 (2003).
[CrossRef]

Spectrochim. Acta, Part A (3)

P. Werle, K. Maurer, R. Kormann, R. Mucke, F. D'Amato, T. Lancia, and A. Popov, "Spectroscopic gas analyzers based on indium-phosphide antimonide, and lead-salt diode-lasers," Spectrochim. Acta, Part A 58, 2361-2372 (2002).
[CrossRef]

P. Werle, "A review of recent advances in semiconductor laser based gas monitors," Spectrochim. Acta, Part A 54, 197-236 (1998).
[CrossRef]

P. Werle, "Spectroscopic trace gas analysis using semiconductor diode lasers," Spectrochim. Acta, Part A 52, 805-822 (1996).
[CrossRef]

Spectrochim. Acta, Part B (1)

P. Kluczynski, J. Gustafsson, Å. M. Lindberg, and O. Axner, "Wavelength modulation absorption spectrometry--an extensive scrutiny of the generation of signals," Spectrochim. Acta, Part B 56, 1277-1354 (2001).
[CrossRef]

Other (3)

U.S. Environmental Protection Agency, "National air quality and emission trends report, 1998," EPA 454/R-01-004 (U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, 2001).

F. K. Tittel, D. Richter, and A. Fried, "Mid-infrared laser applications in spectroscopy," in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer, 2003), pp. 445-510.

In addition, QC lasers have not proved to be problem-free to utilize for spectroscopic applications. They have a few drawbacks that need to be circumvented before their full potential can be used. One is that they require exceptionally large driving currents from several hundreds milliamperes to several amperes. This makes cw operation so far difficult. This implies also that they have a significant "chirping" of the wavelength during a pulse, which can complicate spectroscopic investigations.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Simulated Doppler broadened absorption spectrum from 0.01 atm of 300 ppm NO in N 2 in the 226.55 226.61 nm range under room-temperature conditions for an interaction length of 10 cm (thus corresponding to 300 ppb m ).

Fig. 2
Fig. 2

Schematic of the instrumentation. FG, function generator; ECDL, external cavity diode laser; OI, optical isolator; OS, optical splitter; M, mirror; TA, tapered amplifier; L, lens; PZT, piezoactuator; D, photo detector; KNbO 3 , potassium niobate frequency-doubling crystal; BBO, β–barium borate frequency-doubling crystal; FDC, frequency-doubling cavity; TIDA, transimpedance detector amplifier; PA, preamplifier; WM, wavelength meter. The parts within the solid curve constitute the UV-DLS.

Fig. 3
Fig. 3

Sinusoidal curve: modulation voltage from the function generator, controlling the PZT of the ECDL and thereby the frequency of the laser light. Sharply peaked curve: cavity etalon signal obtained by scanning the laser while holding the last cavity fixed. The peaks correspond to longitudinal cavity modes, separated by 0.0760 cm 1 in UV. These two curves were used to calibrate the modulation voltage in terms of frequency. Smooth continuous curve: the uncorrected detector signal (raw data) from the overlapping Q 22 ( 10.5 ) and R 12 Q ( 10.5 ) transitions from 30 Torr of 100 ppm of NO in N 2 .

Fig. 4
Fig. 4

Upper panel: measured and fitted NO absorption line shapes for the combined Q 22 ( 10.5 ) and R 12 Q ( 10.5 ) transition at 226.577 nm for 5 Torr of 100 ppm of NO in N 2 (thus corresponding to 0.066 ppm m ). Lower panel: the residual.

Fig. 5
Fig. 5

Normalized net-analytical spectra, S ̂ A B ( ν ) , for a set of total pressures of the 100 ppm NO N 2 gas mixture. The various curves represent total pressures of 0.5, 1.1, 2.1, 4.2, 16.1, 64.2, 100, 128, 148, 200, 256, 298, 349, 400, 448, 497, 554, and 650 Torr , respectively.

Fig. 6
Fig. 6

Integrated absorption, α, calculated from the set of measurements displayed in Fig. 5.

Fig. 7
Fig. 7

Collision broadening of the NO lines addressed, δ ν C , as a function of total pressure.

Fig. 8
Fig. 8

Collision shift of the NO lines addressed, δ ν 0 , as a function of total pressure.

Tables (1)

Tables Icon

Table 1 Predicted Transitions in the 226.55 226.61 nm Region of the γ ( 0 , 0 ) Band of NO Together with the Corresponding Transition Frequencies, Energies of the Lower State, Einstein Coefficients for Absorption, A J J , and Line Strengths, S J J and S J J , Calculated for a Temperature of 296 K a

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I ( ν ) = I 0 e α χ ( ν ) = I 0 e S χ ( ν ) p c r e l L ,
S = n x p c r e l S = 1.01325 × 10 5 k T S = 2.48 × 10 19 T 0 T S ,
χ V ( ν ) = 4 ln 2 π V ( x , a ) δ ν D ,
V ( x , a ) = a π exp ( y 2 ) a 2 + ( x y ) 2 d y ,
δ ν D = 2 ν 0 c 2 ln 2 k T m x = 7.16 × 10 7 ν 0 T M ,
δ ν C = i ζ i p i ,
δ ν 0 = i γ i p i ,
S J J = g g A J J 8 π c ν J J 2 N N t o t ( 1 g N g N ) ,
A J J = g n g n ( ν J J ν ν ν ) 2 A ν ν ( f J J 2 J + 1 ) .
N N = g g exp ( h c ν J J k T ) ,
N N t o t = g Q ( T ) exp ( h c E k T ) .
Q ( T ) = J g exp ( h c E k T ) ,
S J J ( T ) = A J J 8 π c ν J J 2 g Q ( T ) exp ( h c E k T ) ( 1 exp ( h c ν J J k T ) ) ,
f ( ν ) e α χ ( ν ) ,

Metrics