Abstract

We suggest an efficient mechanism for all-optical switching in one-dimensional photonic heterostructures based on the combined use of two resonant modes that have strong enhancement of their electric fields in the same defect region. By exciting the low-quality resonant mode with the low-intensity pump beam, one can very efficiently shift the spectral position of the high-quality resonant mode and thus control the propagation of a signal beam. For a AlGaAsSiO2 heterostructure with two GaAs defect layers, we numerically demonstrate all-optical switching at a peak pumping intensity lower than 20mWmm2. Moreover, it is of great benefit to practical application that the frequency interval between the two resonant modes is adjustable in a wide range.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. H. Yang, P. Xie, S. K. Chan, Z. Q. Zhang, I. K. Sou, G. K. L. Wong, and K. S. Wong, "Efficient second harmonic generation from large band gap II-VI semiconductor photonic crystal," Appl. Phys. Lett. 87, 131106 (2005).
    [CrossRef]
  4. A. V. Andreev, A. V. Balakin, I. A. Ozheredov, A. P. Shkurinov, P. Masselin, G. Mouret, and D. Boucher, "Compression of femtosecond laser pulses in thin one-dimensional photonic crystals," Phys. Rev. E 63, 016602 (2001).
    [CrossRef]
  5. F. Qiao, C. Zhang, J. Wan, and J. Zi, "Photonic quantum-well structures: multiple channeled filtering phenomena," Appl. Phys. Lett. 77, 3698-3700 (2000).
    [CrossRef]
  6. G. Q. Liang, P. Han, and H. Z. Wang, "Narrow frequency and sharp angular defect mode in one-dimensional photonic crystals from a photonic heterostructure," Opt. Lett. 29, 192-194 (2004).
    [CrossRef] [PubMed]
  7. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
    [CrossRef]
  8. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials," Phys. Rev. Lett. 73, 1368-1371 (1994).
    [CrossRef] [PubMed]
  9. P. R. Villeneuve, D. S. Abrams, S. H. Fan, and J. D. Joannopoulos, "Single-mode waveguide microcavity for fast optical switching," Opt. Lett. 21, 2017-2019 (1996).
    [CrossRef] [PubMed]
  10. A. Hache and M. Bourgeois, "Ultrafast all-optical switching in a silicon-based photonic crystal," Appl. Phys. Lett. 77, 4089-4091 (2000).
    [CrossRef]
  11. P. Tran, "Optical limiting and switching of short pulses by use of a nonlinear photonic bandgap structure with a defect," J. Opt. Soc. Am. B 14, 2589-2595 (1997).
    [CrossRef]
  12. S. Lan, S. Nishikawa, and O. Wade, "Leveraging deep photonic band gaps in photonic crystal impurity bands," Appl. Phys. Lett. 78, 2101-2103 (2001).
    [CrossRef]
  13. M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos, "All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry," Opt. Lett. 28, 2506-2608 (2003).
    [CrossRef] [PubMed]
  14. S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, "Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection," Phys. Rev. B 66, 161102(R) (2002).
    [CrossRef]
  15. X. Y. Hu, Q. Zhang, Y. H. Liu, B. Y. Cheng, and D. Z. Zhang, "Ultrafast three-dimensional tunable photonic crystal," Appl. Phys. Lett. 83, 2518-2520 (2003).
    [CrossRef]
  16. F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, "Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal," Appl. Phys. Lett. 85, 1880-1882 (2004).
    [CrossRef]
  17. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, "All-optical nonlinear switching in GaAs-AlGaAs microring resonators," IEEE Photon. Technol. Lett. 14, 74-76 (2002).
    [CrossRef]
  18. M. Bayindir, C. Kural, and E. Ozbay, "Coupled optical microcavities in one-dimensional photonic bandgap structure," J. Opt. A, Pure Appl. Opt. 3, S184-S189 (2001).
    [CrossRef]
  19. H. A. Macleod, Thin Film Optical Filters (Institute of Physics, 2001).
    [CrossRef]
  20. T. Hattori, N. Tsurumachi, and H. Nakatsuka, "Analysis of optical nonlinearity by defect states in one-dimensional photonic crystals," J. Opt. Soc. Am. B 14, 348-355 (1997).
    [CrossRef]
  21. B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, "Resonant cavity enhanced detectors embedded in photonic crystals," Appl. Phys. Lett. 72, 2376-2378 (1998).
    [CrossRef]
  22. Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, "Room-temperature optical nonlinearities in GaAs," Phys. Rev. Lett. 57, 2446-2449 (1986).
    [CrossRef] [PubMed]

2005 (1)

H. Yang, P. Xie, S. K. Chan, Z. Q. Zhang, I. K. Sou, G. K. L. Wong, and K. S. Wong, "Efficient second harmonic generation from large band gap II-VI semiconductor photonic crystal," Appl. Phys. Lett. 87, 131106 (2005).
[CrossRef]

2004 (2)

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, "Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal," Appl. Phys. Lett. 85, 1880-1882 (2004).
[CrossRef]

G. Q. Liang, P. Han, and H. Z. Wang, "Narrow frequency and sharp angular defect mode in one-dimensional photonic crystals from a photonic heterostructure," Opt. Lett. 29, 192-194 (2004).
[CrossRef] [PubMed]

2003 (2)

X. Y. Hu, Q. Zhang, Y. H. Liu, B. Y. Cheng, and D. Z. Zhang, "Ultrafast three-dimensional tunable photonic crystal," Appl. Phys. Lett. 83, 2518-2520 (2003).
[CrossRef]

M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos, "All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry," Opt. Lett. 28, 2506-2608 (2003).
[CrossRef] [PubMed]

2002 (2)

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, "All-optical nonlinear switching in GaAs-AlGaAs microring resonators," IEEE Photon. Technol. Lett. 14, 74-76 (2002).
[CrossRef]

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, "Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection," Phys. Rev. B 66, 161102(R) (2002).
[CrossRef]

2001 (3)

A. V. Andreev, A. V. Balakin, I. A. Ozheredov, A. P. Shkurinov, P. Masselin, G. Mouret, and D. Boucher, "Compression of femtosecond laser pulses in thin one-dimensional photonic crystals," Phys. Rev. E 63, 016602 (2001).
[CrossRef]

M. Bayindir, C. Kural, and E. Ozbay, "Coupled optical microcavities in one-dimensional photonic bandgap structure," J. Opt. A, Pure Appl. Opt. 3, S184-S189 (2001).
[CrossRef]

S. Lan, S. Nishikawa, and O. Wade, "Leveraging deep photonic band gaps in photonic crystal impurity bands," Appl. Phys. Lett. 78, 2101-2103 (2001).
[CrossRef]

2000 (2)

F. Qiao, C. Zhang, J. Wan, and J. Zi, "Photonic quantum-well structures: multiple channeled filtering phenomena," Appl. Phys. Lett. 77, 3698-3700 (2000).
[CrossRef]

A. Hache and M. Bourgeois, "Ultrafast all-optical switching in a silicon-based photonic crystal," Appl. Phys. Lett. 77, 4089-4091 (2000).
[CrossRef]

1998 (1)

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, "Resonant cavity enhanced detectors embedded in photonic crystals," Appl. Phys. Lett. 72, 2376-2378 (1998).
[CrossRef]

1997 (2)

1996 (1)

1994 (2)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials," Phys. Rev. Lett. 73, 1368-1371 (1994).
[CrossRef] [PubMed]

1987 (2)

E. Yablonovitch, "Inhibited spontaneous emission in solid state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

1986 (1)

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, "Room-temperature optical nonlinearities in GaAs," Phys. Rev. Lett. 57, 2446-2449 (1986).
[CrossRef] [PubMed]

Appl. Phys. Lett. (7)

H. Yang, P. Xie, S. K. Chan, Z. Q. Zhang, I. K. Sou, G. K. L. Wong, and K. S. Wong, "Efficient second harmonic generation from large band gap II-VI semiconductor photonic crystal," Appl. Phys. Lett. 87, 131106 (2005).
[CrossRef]

F. Qiao, C. Zhang, J. Wan, and J. Zi, "Photonic quantum-well structures: multiple channeled filtering phenomena," Appl. Phys. Lett. 77, 3698-3700 (2000).
[CrossRef]

A. Hache and M. Bourgeois, "Ultrafast all-optical switching in a silicon-based photonic crystal," Appl. Phys. Lett. 77, 4089-4091 (2000).
[CrossRef]

X. Y. Hu, Q. Zhang, Y. H. Liu, B. Y. Cheng, and D. Z. Zhang, "Ultrafast three-dimensional tunable photonic crystal," Appl. Phys. Lett. 83, 2518-2520 (2003).
[CrossRef]

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, "Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal," Appl. Phys. Lett. 85, 1880-1882 (2004).
[CrossRef]

S. Lan, S. Nishikawa, and O. Wade, "Leveraging deep photonic band gaps in photonic crystal impurity bands," Appl. Phys. Lett. 78, 2101-2103 (2001).
[CrossRef]

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, "Resonant cavity enhanced detectors embedded in photonic crystals," Appl. Phys. Lett. 72, 2376-2378 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, "All-optical nonlinear switching in GaAs-AlGaAs microring resonators," IEEE Photon. Technol. Lett. 14, 74-76 (2002).
[CrossRef]

J. Appl. Phys. (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

M. Bayindir, C. Kural, and E. Ozbay, "Coupled optical microcavities in one-dimensional photonic bandgap structure," J. Opt. A, Pure Appl. Opt. 3, S184-S189 (2001).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (3)

Phys. Rev. B (1)

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, "Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection," Phys. Rev. B 66, 161102(R) (2002).
[CrossRef]

Phys. Rev. E (1)

A. V. Andreev, A. V. Balakin, I. A. Ozheredov, A. P. Shkurinov, P. Masselin, G. Mouret, and D. Boucher, "Compression of femtosecond laser pulses in thin one-dimensional photonic crystals," Phys. Rev. E 63, 016602 (2001).
[CrossRef]

Phys. Rev. Lett. (4)

E. Yablonovitch, "Inhibited spontaneous emission in solid state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials," Phys. Rev. Lett. 73, 1368-1371 (1994).
[CrossRef] [PubMed]

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, "Room-temperature optical nonlinearities in GaAs," Phys. Rev. Lett. 57, 2446-2449 (1986).
[CrossRef] [PubMed]

Other (1)

H. A. Macleod, Thin Film Optical Filters (Institute of Physics, 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Transmission spectrum of the CFPCs: air ( H L ) 3 ( 2 H ) L H L ( 2 H ) ( L H ) 3 L ( H L ) 3 ( 2 H ) L H L ( 2 H ) ( L H ) 3 glass . Incident medium and substrate are air and glass respectively. Normalized electric field intensity distribution of frequencies in the two R-bands (b) R1 and (c) R2 supported by the CFPCs, taking 0.9647 f 0 in R1 and 1.0353 f 0 in R2 as examples.

Fig. 2
Fig. 2

(a) Transmission spectrum of heterostructure air∣SWP∣C∣CFPCs∣glass with A = ( H L ) 3 ( 2 H ) L H L ( 2 H ) ( L H ) 3 and ( α , β ) = ( 1.238 , 1.235 ) . Incident medium and substrate are air and glass, respectively. The S-band is at frequency f s = 0.96188 f 0 , and the interval between the S-band and R2 is 0.07345 f 0 . Normalized electric field intensity distribution of the frequency (b) 0.96188 f 0 (the S-band), (c) 0.9647 f 0 (a frequency in R1) (d) 1.0353 f 0 (a frequency in R2).

Fig. 3
Fig. 3

Solid curves are the transmission spectra of the (a) S-band and the (b) R2 of the heterostructure air 1.238 [ ( 0.5 L ) H ( 0.5 L ) ] 8 ( 1.244 L ) ( H L ) 3 ( 1.998 H Ga As L H L ( 1.998 H Ga As ) ( L H ) 3 L ( H L ) 3 ( 2 H ) L H L ( 2 H ) ( L H ) 3 glass . Incident medium and substrate are air and glass, respectively. The dashed curves in (a) and (b) are for Δ n = 5 × 10 4 . Normalized electric field intensity distribution of frequencies (c) 0.96248 f 0 (the S-band) and (d) 1.0354 f 0 (a frequency in R2).

Fig. 4
Fig. 4

(a) Transmission spectrum of heterostructure air 1.335 [ ( 0.5 L ) H ( 0.5 L ) ] 8 ( 1.28 L ) ( H L ) 3 ( 1.996 H Ga As ) L ( 1.996 H Ga As ) ( L H ) 3 L ( H L ) 3 ( 2 H ) L ( 2 H ) ( L H ) 3 glass . Incident medium and substrate are air and glass, respectively. The S-band is at frequency 0.91468 f 0 , and the interval between the S-band and R2 is 0.1694 f 0 . Solid curves in (b) and (c) show the close up of the S-band and the R2, respectively, and the dashed curves are for Δ n = -1.5 × 10 3 . (d), (e) Normalized electric field intensity distribution of frequencies 0.91468 f 0 (the S-band) and 1.0841 f 0 (a frequency in R2), respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

air SWP C CFPCs glass .
T = T A T B ( 1 R A R B ) 2 + 4 R A R B sin 2 1 2 ( ϕ A + ϕ B 2 δ C ) ,
T A ( f s ) = T B ( f s ) ,
ϕ A ( f s ) + ϕ B ( f s ) 2 δ C ( f s ) = 2 k π , ( k = ± 1 , 2 , 3 ) .
air α [ ( 0.5 L ) H ( 0.5 L ) ] 8 ( β L ) A Ga As L A glass .

Metrics