Abstract

The nonlinear (NL) optical properties of silver nanoparticles (NPs) colloids stabilized using sodium citrate, poly(N-vinylpyrrolidone), and polyvinyl alcohol in aqueous solutions were investigated. The characterization of the colloids was made through linear absorption, transmission electron microscopy, and the Z-scan technique at 532nm. Changes in the NL optical response of the samples were observed due to different molecules adsorbed on the NPs’ surface. The third-order nonlinearity of the silver NPs with different stabilizers is discussed, and the results are associated with the scattering parameter A, which is related to the shift and broadening of the NPs’ surface plasmon resonance. The NL susceptibility of the NPs was determined for each colloid, and from the results the influence of the stabilizing agents on the NPs’ susceptibility is clear.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. See, for example, S. Link and M. A. El-Sayed, "Optical properties and ultrafast dynamics of metallic nanocrystals," Annu. Rev. Phys. Chem. 54, 331-366 (2003).
    [CrossRef] [PubMed]
  2. S. Link and M. A. El-Sayed, "Spectral properties and relaxation dynamics of surface plasmon electronics oscillations in gold and silver nanodots and nanorods," J. Phys. Chem. B 103, 8410-8426 (1999), and references therein.
    [CrossRef]
  3. U. Kreibig, "Electronic properties of small silver particles: the optical constants and their temperature dependence," J. Phys. F: Met. Phys. 4, 999-1014 (1974).
    [CrossRef]
  4. H. Hövel, S. Fritz, A. Hilger, and U. Kreibig, "Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping," Phys. Rev. B 48, 18178-18188 (1993).
    [CrossRef]
  5. A. Pinchuck, U. Kreibig, and A. Hilger, "Optical properties of metallic nanoparticles: influence of interface effects and interband transitions," Surf. Sci. 557, 269-280 (2004).
    [CrossRef]
  6. U. Kreibig, G. Bour, A. Hilger, and M. Gartz, "Optical properties of cluster-matter: influences of interfaces," Phys. Status Solidi A 175, 351-366 (1999).
    [CrossRef]
  7. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokisaki, and A. Nakamura, "Optical nonlinearities of high concentration of small metal particles dispersed in glass: copper and silver particles," J. Opt. Soc. Am. B 11, 1236-1243 (1994).
    [CrossRef]
  8. R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, "Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals," J. Phys. D 34, 1602-1611 (2001).
    [CrossRef]
  9. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47, 347-357 (1998).
    [CrossRef]
  10. J. W. Sipe and R. W. Boyd, "Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model," Phys. Rev. A 46, 1614-1629 (1992).
    [CrossRef] [PubMed]
  11. P. C. Lee and D. Meisel, "Adsorption and surface-enhanced Raman of dyes on silver and gold sols," J. Phys. Chem. 86, 3391-3395 (1982).
    [CrossRef]
  12. P. V. Kamat, M. Flumiani, and G. V. Hartland, "Picosecond dynamics of silver nanoclusters. Photoejection of electrons and fragmentation," J. Phys. Chem. B 102, 3123-3128 (1998).
    [CrossRef]
  13. W. C. Bell and M. L. Myrick, "Preparation and characterization of nanoscale silver colloids by two novel synthetic routes," J. Colloid Interface Sci. 242, 300-305 (2001).
    [CrossRef]
  14. M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues, Jr., C. B. de Araújo, and L. H. Acioli, "Ultrafast light-induced dichroism in silver nanoparticles," Phys. Rev. B 70, 161401(R) (2004).
    [CrossRef]
  15. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  16. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
    [CrossRef]
  17. H. Ma, A. S. Gomes, and C. B. de Araújo, "Measurement of nondegenerate optical nonlinearity using a two-color single beam method," Appl. Phys. Lett. 59, 2666-2668 (1991).
    [CrossRef]
  18. E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, "Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide," J. Opt. Soc. Am. B 22, 2444-2449 (2005).
    [CrossRef]
  19. D. D. Smith, G. Fischer, R. W. Boyd, and D. A. Gregory, "Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects," J. Opt. Soc. Am. B 14, 1625-1631 (1997).
    [CrossRef]
  20. C. G. Blatchford, O. Sliman, and M. Kerker, "Potential dependence of surface-enhanced Raman scattering from citrate on colloidal silver," J. Phys. Chem. 87, 2503-2508 (1983).
    [CrossRef]
  21. G. Carotenuto, G. P. Pepe, and L. Nicolais, "Preparation and characterization of nanosized Ag/PVP composites for optical applications," Eur. Phys. J. B 16, 11-17 (2000).
    [CrossRef]
  22. M. K. Temgire and S. S. Joshi, "Optical and structural studies of silver nanoparticles," Radiat. Phys. Chem. 71, 1039-1044 (2004).
    [CrossRef]
  23. P. Mulvaney, "Surface plasmon spectroscopy of nanosized metal particles," Langmuir 12, 788-800 (1996).
    [CrossRef]
  24. C. R. Berry and D. C. Skillman, "Optical absorption of small silver spheres in water," J. Appl. Phys. 42, 2818-2822 (1971).
    [CrossRef]
  25. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001).
    [CrossRef]
  26. S. Kapoor, "Preparation, characterization, and surface modification of silver particles," Langmuir 14, 1021-1025 (1998).
    [CrossRef]
  27. H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loh, J. F. Deng, and G. Q. Xu, "Photochemical formation of silver nanoparticles in poly(N-vinylpyrolidone)," Langmuir 12, 909-912 (1996).
    [CrossRef]
  28. V. A. Karavanskii, A. V. Simakin, V. I. Krasovskii, and P. V. Ivanchenko, "Nonlinear optical properties of colloidal silver nanoparticles produced by laser ablation in liquids," Quantum Electron. 34, 644-648 (2004).
    [CrossRef]

2005 (1)

2004 (4)

A. Pinchuck, U. Kreibig, and A. Hilger, "Optical properties of metallic nanoparticles: influence of interface effects and interband transitions," Surf. Sci. 557, 269-280 (2004).
[CrossRef]

M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues, Jr., C. B. de Araújo, and L. H. Acioli, "Ultrafast light-induced dichroism in silver nanoparticles," Phys. Rev. B 70, 161401(R) (2004).
[CrossRef]

M. K. Temgire and S. S. Joshi, "Optical and structural studies of silver nanoparticles," Radiat. Phys. Chem. 71, 1039-1044 (2004).
[CrossRef]

V. A. Karavanskii, A. V. Simakin, V. I. Krasovskii, and P. V. Ivanchenko, "Nonlinear optical properties of colloidal silver nanoparticles produced by laser ablation in liquids," Quantum Electron. 34, 644-648 (2004).
[CrossRef]

2003 (1)

See, for example, S. Link and M. A. El-Sayed, "Optical properties and ultrafast dynamics of metallic nanocrystals," Annu. Rev. Phys. Chem. 54, 331-366 (2003).
[CrossRef] [PubMed]

2001 (3)

W. C. Bell and M. L. Myrick, "Preparation and characterization of nanoscale silver colloids by two novel synthetic routes," J. Colloid Interface Sci. 242, 300-305 (2001).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, "Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals," J. Phys. D 34, 1602-1611 (2001).
[CrossRef]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001).
[CrossRef]

2000 (1)

G. Carotenuto, G. P. Pepe, and L. Nicolais, "Preparation and characterization of nanosized Ag/PVP composites for optical applications," Eur. Phys. J. B 16, 11-17 (2000).
[CrossRef]

1999 (2)

U. Kreibig, G. Bour, A. Hilger, and M. Gartz, "Optical properties of cluster-matter: influences of interfaces," Phys. Status Solidi A 175, 351-366 (1999).
[CrossRef]

S. Link and M. A. El-Sayed, "Spectral properties and relaxation dynamics of surface plasmon electronics oscillations in gold and silver nanodots and nanorods," J. Phys. Chem. B 103, 8410-8426 (1999), and references therein.
[CrossRef]

1998 (3)

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47, 347-357 (1998).
[CrossRef]

P. V. Kamat, M. Flumiani, and G. V. Hartland, "Picosecond dynamics of silver nanoclusters. Photoejection of electrons and fragmentation," J. Phys. Chem. B 102, 3123-3128 (1998).
[CrossRef]

S. Kapoor, "Preparation, characterization, and surface modification of silver particles," Langmuir 14, 1021-1025 (1998).
[CrossRef]

1997 (1)

1996 (2)

H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loh, J. F. Deng, and G. Q. Xu, "Photochemical formation of silver nanoparticles in poly(N-vinylpyrolidone)," Langmuir 12, 909-912 (1996).
[CrossRef]

P. Mulvaney, "Surface plasmon spectroscopy of nanosized metal particles," Langmuir 12, 788-800 (1996).
[CrossRef]

1994 (1)

1993 (1)

H. Hövel, S. Fritz, A. Hilger, and U. Kreibig, "Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping," Phys. Rev. B 48, 18178-18188 (1993).
[CrossRef]

1992 (1)

J. W. Sipe and R. W. Boyd, "Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model," Phys. Rev. A 46, 1614-1629 (1992).
[CrossRef] [PubMed]

1991 (1)

H. Ma, A. S. Gomes, and C. B. de Araújo, "Measurement of nondegenerate optical nonlinearity using a two-color single beam method," Appl. Phys. Lett. 59, 2666-2668 (1991).
[CrossRef]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

1983 (1)

C. G. Blatchford, O. Sliman, and M. Kerker, "Potential dependence of surface-enhanced Raman scattering from citrate on colloidal silver," J. Phys. Chem. 87, 2503-2508 (1983).
[CrossRef]

1982 (1)

P. C. Lee and D. Meisel, "Adsorption and surface-enhanced Raman of dyes on silver and gold sols," J. Phys. Chem. 86, 3391-3395 (1982).
[CrossRef]

1974 (1)

U. Kreibig, "Electronic properties of small silver particles: the optical constants and their temperature dependence," J. Phys. F: Met. Phys. 4, 999-1014 (1974).
[CrossRef]

1971 (1)

C. R. Berry and D. C. Skillman, "Optical absorption of small silver spheres in water," J. Appl. Phys. 42, 2818-2822 (1971).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

See, for example, S. Link and M. A. El-Sayed, "Optical properties and ultrafast dynamics of metallic nanocrystals," Annu. Rev. Phys. Chem. 54, 331-366 (2003).
[CrossRef] [PubMed]

Appl. Phys. A (1)

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47, 347-357 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

H. Ma, A. S. Gomes, and C. B. de Araújo, "Measurement of nondegenerate optical nonlinearity using a two-color single beam method," Appl. Phys. Lett. 59, 2666-2668 (1991).
[CrossRef]

Eur. Phys. J. B (1)

G. Carotenuto, G. P. Pepe, and L. Nicolais, "Preparation and characterization of nanosized Ag/PVP composites for optical applications," Eur. Phys. J. B 16, 11-17 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

J. Am. Chem. Soc. (1)

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001).
[CrossRef]

J. Appl. Phys. (1)

C. R. Berry and D. C. Skillman, "Optical absorption of small silver spheres in water," J. Appl. Phys. 42, 2818-2822 (1971).
[CrossRef]

J. Colloid Interface Sci. (1)

W. C. Bell and M. L. Myrick, "Preparation and characterization of nanoscale silver colloids by two novel synthetic routes," J. Colloid Interface Sci. 242, 300-305 (2001).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. (2)

P. C. Lee and D. Meisel, "Adsorption and surface-enhanced Raman of dyes on silver and gold sols," J. Phys. Chem. 86, 3391-3395 (1982).
[CrossRef]

C. G. Blatchford, O. Sliman, and M. Kerker, "Potential dependence of surface-enhanced Raman scattering from citrate on colloidal silver," J. Phys. Chem. 87, 2503-2508 (1983).
[CrossRef]

J. Phys. Chem. B (2)

P. V. Kamat, M. Flumiani, and G. V. Hartland, "Picosecond dynamics of silver nanoclusters. Photoejection of electrons and fragmentation," J. Phys. Chem. B 102, 3123-3128 (1998).
[CrossRef]

S. Link and M. A. El-Sayed, "Spectral properties and relaxation dynamics of surface plasmon electronics oscillations in gold and silver nanodots and nanorods," J. Phys. Chem. B 103, 8410-8426 (1999), and references therein.
[CrossRef]

J. Phys. D (1)

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, "Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals," J. Phys. D 34, 1602-1611 (2001).
[CrossRef]

J. Phys. F: Met. Phys. (1)

U. Kreibig, "Electronic properties of small silver particles: the optical constants and their temperature dependence," J. Phys. F: Met. Phys. 4, 999-1014 (1974).
[CrossRef]

Langmuir (3)

P. Mulvaney, "Surface plasmon spectroscopy of nanosized metal particles," Langmuir 12, 788-800 (1996).
[CrossRef]

S. Kapoor, "Preparation, characterization, and surface modification of silver particles," Langmuir 14, 1021-1025 (1998).
[CrossRef]

H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loh, J. F. Deng, and G. Q. Xu, "Photochemical formation of silver nanoparticles in poly(N-vinylpyrolidone)," Langmuir 12, 909-912 (1996).
[CrossRef]

Phys. Rev. A (1)

J. W. Sipe and R. W. Boyd, "Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model," Phys. Rev. A 46, 1614-1629 (1992).
[CrossRef] [PubMed]

Phys. Rev. B (2)

M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues, Jr., C. B. de Araújo, and L. H. Acioli, "Ultrafast light-induced dichroism in silver nanoparticles," Phys. Rev. B 70, 161401(R) (2004).
[CrossRef]

H. Hövel, S. Fritz, A. Hilger, and U. Kreibig, "Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping," Phys. Rev. B 48, 18178-18188 (1993).
[CrossRef]

Phys. Status Solidi A (1)

U. Kreibig, G. Bour, A. Hilger, and M. Gartz, "Optical properties of cluster-matter: influences of interfaces," Phys. Status Solidi A 175, 351-366 (1999).
[CrossRef]

Quantum Electron. (1)

V. A. Karavanskii, A. V. Simakin, V. I. Krasovskii, and P. V. Ivanchenko, "Nonlinear optical properties of colloidal silver nanoparticles produced by laser ablation in liquids," Quantum Electron. 34, 644-648 (2004).
[CrossRef]

Radiat. Phys. Chem. (1)

M. K. Temgire and S. S. Joshi, "Optical and structural studies of silver nanoparticles," Radiat. Phys. Chem. 71, 1039-1044 (2004).
[CrossRef]

Surf. Sci. (1)

A. Pinchuck, U. Kreibig, and A. Hilger, "Optical properties of metallic nanoparticles: influence of interface effects and interband transitions," Surf. Sci. 557, 269-280 (2004).
[CrossRef]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Absorption spectra of the laser ablated silver colloids in aqueous solution. Colloid stabilized with sodium citrate (solid curve), PVP (dashed curve), PVA (dotted curve). Sample thickness: 5 mm .

Fig. 2
Fig. 2

Line shape of the surface plasmon resonance [the points indicate the predictions of Eq. (1)]. Colloid stabilization: (a) sodium citrate [ A = 0.5 i 0.3 ] ; (b) PVP [ A = 0.4 i 0.7 ] ; (c) PVA [ A = 0.65 i 0.7 ] .

Fig. 3
Fig. 3

TEM images and NPs size distribution of silver colloid stabilized with PVA. Similar results were obtained for samples with PVP and sodium citrate.

Fig. 4
Fig. 4

Z-scan results: (a) closed-aperture scheme; (b) open-aperture scheme. Silver colloid stabilized with (1) sodium citrate, (2) PVA, and (3) PVP. The data were normalized to unity and a shift in the baseline was introduced to prevent overlap among the curves.

Tables (2)

Tables Icon

Table 1 Surface Plasmon Resonance Wavelength ( λ S P ) and the Empirical Scattering Parameter A

Tables Icon

Table 2 Nonlinear Parameters

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

α = 18 π f λ ε h ( λ ) 3 2 ε m ( λ ) ( ε m ( λ ) + 2 ε h ( λ ) ) 2 + ε m 2 ( λ ) ,
n 2 ( m 2 W ) = 3 4 ϵ 0 n 0 2 c Re [ χ eff ( 3 ) ] ,
α 2 ( m W ) = 3 ω 2 ϵ 0 n 0 2 c 2 Im [ χ eff ( 3 ) ] ,
ϵ eff = ϵ h ( 1 + 2 β f 1 β f ) ,
β = ϵ m ϵ h ϵ m + 2 ϵ h .
χ eff ( 3 ) = f η 2 η 2 χ m ( 3 ) ,

Metrics