Abstract

Solgel phenyl functionalized silica thin films were used as a host matrix to embed photochromic molecules (1,3,3,5,6-pentamethyl-spiro[indoline-2-3-[quinolino]oxazine], 3-(2,4-dimethoxyphenyl)-3-(4-methoxyphenyl)-3H-naphtho[2,1-b]pyran and 3,3-diphenyl-3H-naphtho[2,1-b]pyran). The coatings were doped with individual dyes and mixtures of them. The optical properties of the colored and colorless forms of these photochromic materials were studied using variable angle spectroscopic ellipsometry. Light polarization analyses allowed an exhaustive ellipsometric characterization of these materials. Important changes were obtained in the refractive indices of the colored and colorless samples, with differences of up to 0.012 and 0.018 in the real and imaginary components, respectively. Good correlation was observed on the optical parameters of samples doped with individual dyes and mixtures of them. Standard transmission measurements were used to study the dynamic photochromic transitions and obtain the kinetic constants. The high capabilities of ellipsometry for the high-accuracy characterization of dynamic photochromic transitions were demonstrated. This technique allowed measuring variations in the populations of colored and colorless molecules, resulting from variations of temperature lower than ±0.1°C.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. B. Van Gemert and M. P. Bergoni, "Photochromic naphthopyran compounds," U.S. patent 5,066,818 (November 19, 1991).
  2. D. B. Knowles, "Photochromic naphthopyrans," U.S. patent 5,238,981 (August 24, 1993).
  3. D. Levy, F. de Monte, J. M. Otón, G. Fiskman, I. Matías, P. Datta, and M. López-Amo, "Photochromic doped sol-gel materials for fiber-optic devices," J. Sol-Gel Sci. Technol. 8, 931-935 (1997).
    [CrossRef]
  4. D. Levy, M. López-Amo, J. M. Otón, F. del Monte, P. Datta, and I. Matías, "Optically tunable fiber optic delay generator utilizing photochromic doped sol-gel gel-glass delay-line," J. Appl. Phys. 77, 2804-2805 (1995).
    [CrossRef]
  5. D. Levy, "Recent applications of photochromic sol-gel materials," Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 297, 31-39 (1997).
    [CrossRef]
  6. O. Levi, S. Shalom, I. Benjamin, G. Perepelitsa, A. J. Agranat, R. Neumann, Y. Avny, and D. Davidov, "Conjugated polymeric composites for holographic storage," Synth. Met. 102, 1178-1181 (1999).
    [CrossRef]
  7. V. Weiss, A. A. Friesem, and V. A. Krongauz, "Organic materials for real-time holographic recording," J. Imaging Sci. Technol. 41, 371-382 (1997).
  8. X. D. Sun, X. J. Wang, W. Shan, J. J. Song, M. G. Fan, and E. T. Knobbe, "Nonlinear effects in chromophore doped sol-gel photonic materials," J. Sol-Gel Sci. Technol. 9, 169-181 (1997).
    [CrossRef]
  9. P. Feneyrou, F. Soyer, P. Le Barny, E. Ishow, M. Sliwa, and J. A. Delaire, "Photochromic compounds as optical limiters in the nanosecond time range: the example of mercury dithizonate complex," Photochem. Photobiol. Sci. 2, 195-202 (2003).
    [CrossRef] [PubMed]
  10. K. Goudjil and R. Sandoval, "Photochromic ultraviolet light sensor and applications," Sens. Rev. 18, 176-177 (1998).
    [CrossRef]
  11. K. Goudjil, "Photochromic ultraviolet detector," U.S. patent 5,581,090 (December 3, 1996).
  12. J. C. Crano, T. Flood, D. Knowles, A. Kumar, and B. Van Gemert, "Photochromic compounds: chemistry and application in ophthalmic lenses," Pure Appl. Chem. 68, 1395-1398 (1996).
    [CrossRef]
  13. C. B. McArdle, Applied Photochromic Polymer Systems, (Springer, 1992).
  14. B. Van Gemert, Organic Photochromic and Thermochromic Compounds, J.C.Crano and R.Guglielmetti, eds., (Plenum, 1999), Vol. 1, Chap. 3.
  15. C. J. Brinker and G. W. Sherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic, 1990).
  16. D. Levy and L. Esquivias, "Sol-gel processing of optical and electrooptical materials," Adv. Mater. (Weinheim, Ger.) 7, 120-129 (1995).
    [CrossRef]
  17. G. Philipp and H. Schmidt, "New materials for contact-lenses prepared from si-alkoxides and ti-alkoxides by the sol-gel process," J. Non-Cryst. Solids 63, 283-292 (1984).
    [CrossRef]
  18. D. Levy and D. Avnir, "Effects of the changes in the properties of silica cage along the gel/xerogel transition on the photochromic behavior of trapped spiropyrans," J. Phys. Chem. 92, 4734-4738 (1988).
    [CrossRef]
  19. D. Levy, S. Einhorn, and D. Avnir, "Applications of the sol-gel process for the preparation of photochromic information-recording materials--synthesis, properties, mechanisms," J. Non-Cryst. Solids 113, 137-145 (1989).
    [CrossRef]
  20. M. Zayat and D. Levy, "Photochromic naphthopyrans in sol-gel ormosil coatings," J. Mater. Chem. 13, 727-730 (2003).
    [CrossRef]
  21. M. Zayat, R. Pardo, and D. Levy, "The role of organic groups in ormosil matrices in the photochromism of naphthopyrans in sol-gel thin films," J. Mater. Chem. 13, 2899-2903 (2003).
    [CrossRef]
  22. R. Pardo, M. Zayat, and D. Levy, "The influence of sol-gel processing parameters on the photochromic spectral and dynamic behaviour of a naphthopyran dye in an ormosil coating," J. Mater. Chem. 15, 703-708 (2005).
    [CrossRef]
  23. R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).
  24. Y. G. Mo, R. O. Dillon, and P. G. Snyder, "Spectroscopic analysis of photochromic films," J. Vac. Sci. Technol. A 17, 170-175 (1999).
    [CrossRef]
  25. Y. G. Mo, R. O. Dillon, and P. G. Snyder, "Visible and infrared photochromic properties of amorphous WO3-X films," J. Vac. Sci. Technol. A 17, 2933-2938 (1999).
    [CrossRef]
  26. Y. G. Mo, R. O. Dillon, P. G. Snyder, and T. E. Tiwald, "Optical properties of photochromic organic-inorganic composites," Thin Solid Films 355-356, 1-5 (1999).
    [CrossRef]
  27. C. Bertarelli, A. Bianco, F. D'Amore, M. C. Gallazzi, and G. Zerbi, "Effect of substitution on the change of refractive index in dithienylethenes: an ellipsometric study," Adv. Funct. Mater. 14, 357-363 (2004).
    [CrossRef]
  28. H. Knobloch, S. Katholy, H. Orendi, J. Hesse, D. Prescher, and L. Brehmer, "Ellipsometric studies of photochromic ultra thin polymer films," Proc. SPIE 3094, 276-280 (1997).
    [CrossRef]
  29. E. Ortyl, S. Kurcharski, and T. Gotszalk, "Refractive index modulation in the polyurethane films containing diazosulfonamide chromophores," Thin Solid Films 479, 288-296 (2005).
    [CrossRef]
  30. M. Serwadczak and S. Kurchasky, "Photochromic gratings in sol-gel hybrid materials containing cyanobenzene chromophores," J. Sol-Gel Sci. Technol. 37, 57-62 (2006).
    [CrossRef]
  31. B. Paci, J. M. Nunzi, N. Sertova, and I. Petkov, "Picosecond anisotropy of the transient absorption of photochromic mercury dithizone complex in solution," J. Photochem. Photobiol., A 137, 141-144 (2000).
    [CrossRef]
  32. R. Jansson, S. Zangooie, T. Kugler, and H. Arwin, "Optical and microstructural characterization of thin films of photochromic fulgides," J. Phys. Chem. Solids 62, 1219-1228 (2001).
    [CrossRef]
  33. E. Ortyl, R. Janik, and S. Kucharski, "Methylacrylate polymers with photochromic side chains containing heterocyclic sulphonamide substituted azobenzene," Eur. Polym. J. 38, 1871-1879 (2002).
    [CrossRef]
  34. E. Ortyl and S. Kucharski, "Kinetics of refractive index changes in polymeric photochromic films," Macromol. Symp. 212, 321-326 (2004).
    [CrossRef]
  35. S. Kucharski and R. Janik, "Photochromic gratings in sol-gel films containing diazo sulphonamide chromophore," Opt. Mater. 27, 1637-1641 (2005).
    [CrossRef]
  36. G. E. Jellinson, Jr. and T. W. Mcomy, "Sample depolarization effects from thin films of ZnS on GaAs as measured by spectroscopic ellipsometry," Appl. Phys. Lett. 61, 512-514 (1992).
    [CrossRef]
  37. J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
  38. J. Biteau, F. Chaput, and J. P. Boilot, "Photochromism of spirooxazine-doped gels," J. Phys. Chem. 100, 9024-9031 (1996).
    [CrossRef]
  39. B. B. Schaudel, C. Guermeur, C. Sanchez, K. Nakatani, and J. A. Delaire, "Spirooxazine- and spiropyran-doped hybrid organic-inorganic matrices with very fast photochromic responses," J. Mater. Chem. 7, 61-65 (1997).
    [CrossRef]

2006 (1)

M. Serwadczak and S. Kurchasky, "Photochromic gratings in sol-gel hybrid materials containing cyanobenzene chromophores," J. Sol-Gel Sci. Technol. 37, 57-62 (2006).
[CrossRef]

2005 (3)

E. Ortyl, S. Kurcharski, and T. Gotszalk, "Refractive index modulation in the polyurethane films containing diazosulfonamide chromophores," Thin Solid Films 479, 288-296 (2005).
[CrossRef]

S. Kucharski and R. Janik, "Photochromic gratings in sol-gel films containing diazo sulphonamide chromophore," Opt. Mater. 27, 1637-1641 (2005).
[CrossRef]

R. Pardo, M. Zayat, and D. Levy, "The influence of sol-gel processing parameters on the photochromic spectral and dynamic behaviour of a naphthopyran dye in an ormosil coating," J. Mater. Chem. 15, 703-708 (2005).
[CrossRef]

2004 (2)

E. Ortyl and S. Kucharski, "Kinetics of refractive index changes in polymeric photochromic films," Macromol. Symp. 212, 321-326 (2004).
[CrossRef]

C. Bertarelli, A. Bianco, F. D'Amore, M. C. Gallazzi, and G. Zerbi, "Effect of substitution on the change of refractive index in dithienylethenes: an ellipsometric study," Adv. Funct. Mater. 14, 357-363 (2004).
[CrossRef]

2003 (3)

M. Zayat and D. Levy, "Photochromic naphthopyrans in sol-gel ormosil coatings," J. Mater. Chem. 13, 727-730 (2003).
[CrossRef]

M. Zayat, R. Pardo, and D. Levy, "The role of organic groups in ormosil matrices in the photochromism of naphthopyrans in sol-gel thin films," J. Mater. Chem. 13, 2899-2903 (2003).
[CrossRef]

P. Feneyrou, F. Soyer, P. Le Barny, E. Ishow, M. Sliwa, and J. A. Delaire, "Photochromic compounds as optical limiters in the nanosecond time range: the example of mercury dithizonate complex," Photochem. Photobiol. Sci. 2, 195-202 (2003).
[CrossRef] [PubMed]

2002 (1)

E. Ortyl, R. Janik, and S. Kucharski, "Methylacrylate polymers with photochromic side chains containing heterocyclic sulphonamide substituted azobenzene," Eur. Polym. J. 38, 1871-1879 (2002).
[CrossRef]

2001 (1)

R. Jansson, S. Zangooie, T. Kugler, and H. Arwin, "Optical and microstructural characterization of thin films of photochromic fulgides," J. Phys. Chem. Solids 62, 1219-1228 (2001).
[CrossRef]

2000 (1)

B. Paci, J. M. Nunzi, N. Sertova, and I. Petkov, "Picosecond anisotropy of the transient absorption of photochromic mercury dithizone complex in solution," J. Photochem. Photobiol., A 137, 141-144 (2000).
[CrossRef]

1999 (4)

O. Levi, S. Shalom, I. Benjamin, G. Perepelitsa, A. J. Agranat, R. Neumann, Y. Avny, and D. Davidov, "Conjugated polymeric composites for holographic storage," Synth. Met. 102, 1178-1181 (1999).
[CrossRef]

Y. G. Mo, R. O. Dillon, and P. G. Snyder, "Spectroscopic analysis of photochromic films," J. Vac. Sci. Technol. A 17, 170-175 (1999).
[CrossRef]

Y. G. Mo, R. O. Dillon, and P. G. Snyder, "Visible and infrared photochromic properties of amorphous WO3-X films," J. Vac. Sci. Technol. A 17, 2933-2938 (1999).
[CrossRef]

Y. G. Mo, R. O. Dillon, P. G. Snyder, and T. E. Tiwald, "Optical properties of photochromic organic-inorganic composites," Thin Solid Films 355-356, 1-5 (1999).
[CrossRef]

1998 (1)

K. Goudjil and R. Sandoval, "Photochromic ultraviolet light sensor and applications," Sens. Rev. 18, 176-177 (1998).
[CrossRef]

1997 (6)

V. Weiss, A. A. Friesem, and V. A. Krongauz, "Organic materials for real-time holographic recording," J. Imaging Sci. Technol. 41, 371-382 (1997).

X. D. Sun, X. J. Wang, W. Shan, J. J. Song, M. G. Fan, and E. T. Knobbe, "Nonlinear effects in chromophore doped sol-gel photonic materials," J. Sol-Gel Sci. Technol. 9, 169-181 (1997).
[CrossRef]

D. Levy, F. de Monte, J. M. Otón, G. Fiskman, I. Matías, P. Datta, and M. López-Amo, "Photochromic doped sol-gel materials for fiber-optic devices," J. Sol-Gel Sci. Technol. 8, 931-935 (1997).
[CrossRef]

D. Levy, "Recent applications of photochromic sol-gel materials," Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 297, 31-39 (1997).
[CrossRef]

H. Knobloch, S. Katholy, H. Orendi, J. Hesse, D. Prescher, and L. Brehmer, "Ellipsometric studies of photochromic ultra thin polymer films," Proc. SPIE 3094, 276-280 (1997).
[CrossRef]

B. B. Schaudel, C. Guermeur, C. Sanchez, K. Nakatani, and J. A. Delaire, "Spirooxazine- and spiropyran-doped hybrid organic-inorganic matrices with very fast photochromic responses," J. Mater. Chem. 7, 61-65 (1997).
[CrossRef]

1996 (2)

J. Biteau, F. Chaput, and J. P. Boilot, "Photochromism of spirooxazine-doped gels," J. Phys. Chem. 100, 9024-9031 (1996).
[CrossRef]

J. C. Crano, T. Flood, D. Knowles, A. Kumar, and B. Van Gemert, "Photochromic compounds: chemistry and application in ophthalmic lenses," Pure Appl. Chem. 68, 1395-1398 (1996).
[CrossRef]

1995 (2)

D. Levy and L. Esquivias, "Sol-gel processing of optical and electrooptical materials," Adv. Mater. (Weinheim, Ger.) 7, 120-129 (1995).
[CrossRef]

D. Levy, M. López-Amo, J. M. Otón, F. del Monte, P. Datta, and I. Matías, "Optically tunable fiber optic delay generator utilizing photochromic doped sol-gel gel-glass delay-line," J. Appl. Phys. 77, 2804-2805 (1995).
[CrossRef]

1992 (1)

G. E. Jellinson, Jr. and T. W. Mcomy, "Sample depolarization effects from thin films of ZnS on GaAs as measured by spectroscopic ellipsometry," Appl. Phys. Lett. 61, 512-514 (1992).
[CrossRef]

1989 (1)

D. Levy, S. Einhorn, and D. Avnir, "Applications of the sol-gel process for the preparation of photochromic information-recording materials--synthesis, properties, mechanisms," J. Non-Cryst. Solids 113, 137-145 (1989).
[CrossRef]

1988 (1)

D. Levy and D. Avnir, "Effects of the changes in the properties of silica cage along the gel/xerogel transition on the photochromic behavior of trapped spiropyrans," J. Phys. Chem. 92, 4734-4738 (1988).
[CrossRef]

1984 (1)

G. Philipp and H. Schmidt, "New materials for contact-lenses prepared from si-alkoxides and ti-alkoxides by the sol-gel process," J. Non-Cryst. Solids 63, 283-292 (1984).
[CrossRef]

Adv. Funct. Mater. (1)

C. Bertarelli, A. Bianco, F. D'Amore, M. C. Gallazzi, and G. Zerbi, "Effect of substitution on the change of refractive index in dithienylethenes: an ellipsometric study," Adv. Funct. Mater. 14, 357-363 (2004).
[CrossRef]

Adv. Mater. (Weinheim, Ger.) (1)

D. Levy and L. Esquivias, "Sol-gel processing of optical and electrooptical materials," Adv. Mater. (Weinheim, Ger.) 7, 120-129 (1995).
[CrossRef]

Appl. Phys. Lett. (1)

G. E. Jellinson, Jr. and T. W. Mcomy, "Sample depolarization effects from thin films of ZnS on GaAs as measured by spectroscopic ellipsometry," Appl. Phys. Lett. 61, 512-514 (1992).
[CrossRef]

Eur. Polym. J. (1)

E. Ortyl, R. Janik, and S. Kucharski, "Methylacrylate polymers with photochromic side chains containing heterocyclic sulphonamide substituted azobenzene," Eur. Polym. J. 38, 1871-1879 (2002).
[CrossRef]

J. Appl. Phys. (1)

D. Levy, M. López-Amo, J. M. Otón, F. del Monte, P. Datta, and I. Matías, "Optically tunable fiber optic delay generator utilizing photochromic doped sol-gel gel-glass delay-line," J. Appl. Phys. 77, 2804-2805 (1995).
[CrossRef]

J. Imaging Sci. Technol. (1)

V. Weiss, A. A. Friesem, and V. A. Krongauz, "Organic materials for real-time holographic recording," J. Imaging Sci. Technol. 41, 371-382 (1997).

J. Mater. Chem. (4)

M. Zayat and D. Levy, "Photochromic naphthopyrans in sol-gel ormosil coatings," J. Mater. Chem. 13, 727-730 (2003).
[CrossRef]

M. Zayat, R. Pardo, and D. Levy, "The role of organic groups in ormosil matrices in the photochromism of naphthopyrans in sol-gel thin films," J. Mater. Chem. 13, 2899-2903 (2003).
[CrossRef]

R. Pardo, M. Zayat, and D. Levy, "The influence of sol-gel processing parameters on the photochromic spectral and dynamic behaviour of a naphthopyran dye in an ormosil coating," J. Mater. Chem. 15, 703-708 (2005).
[CrossRef]

B. B. Schaudel, C. Guermeur, C. Sanchez, K. Nakatani, and J. A. Delaire, "Spirooxazine- and spiropyran-doped hybrid organic-inorganic matrices with very fast photochromic responses," J. Mater. Chem. 7, 61-65 (1997).
[CrossRef]

J. Non-Cryst. Solids (2)

G. Philipp and H. Schmidt, "New materials for contact-lenses prepared from si-alkoxides and ti-alkoxides by the sol-gel process," J. Non-Cryst. Solids 63, 283-292 (1984).
[CrossRef]

D. Levy, S. Einhorn, and D. Avnir, "Applications of the sol-gel process for the preparation of photochromic information-recording materials--synthesis, properties, mechanisms," J. Non-Cryst. Solids 113, 137-145 (1989).
[CrossRef]

J. Photochem. Photobiol., A (1)

B. Paci, J. M. Nunzi, N. Sertova, and I. Petkov, "Picosecond anisotropy of the transient absorption of photochromic mercury dithizone complex in solution," J. Photochem. Photobiol., A 137, 141-144 (2000).
[CrossRef]

J. Phys. Chem. (2)

J. Biteau, F. Chaput, and J. P. Boilot, "Photochromism of spirooxazine-doped gels," J. Phys. Chem. 100, 9024-9031 (1996).
[CrossRef]

D. Levy and D. Avnir, "Effects of the changes in the properties of silica cage along the gel/xerogel transition on the photochromic behavior of trapped spiropyrans," J. Phys. Chem. 92, 4734-4738 (1988).
[CrossRef]

J. Phys. Chem. Solids (1)

R. Jansson, S. Zangooie, T. Kugler, and H. Arwin, "Optical and microstructural characterization of thin films of photochromic fulgides," J. Phys. Chem. Solids 62, 1219-1228 (2001).
[CrossRef]

J. Sol-Gel Sci. Technol. (3)

M. Serwadczak and S. Kurchasky, "Photochromic gratings in sol-gel hybrid materials containing cyanobenzene chromophores," J. Sol-Gel Sci. Technol. 37, 57-62 (2006).
[CrossRef]

D. Levy, F. de Monte, J. M. Otón, G. Fiskman, I. Matías, P. Datta, and M. López-Amo, "Photochromic doped sol-gel materials for fiber-optic devices," J. Sol-Gel Sci. Technol. 8, 931-935 (1997).
[CrossRef]

X. D. Sun, X. J. Wang, W. Shan, J. J. Song, M. G. Fan, and E. T. Knobbe, "Nonlinear effects in chromophore doped sol-gel photonic materials," J. Sol-Gel Sci. Technol. 9, 169-181 (1997).
[CrossRef]

J. Vac. Sci. Technol. A (2)

Y. G. Mo, R. O. Dillon, and P. G. Snyder, "Spectroscopic analysis of photochromic films," J. Vac. Sci. Technol. A 17, 170-175 (1999).
[CrossRef]

Y. G. Mo, R. O. Dillon, and P. G. Snyder, "Visible and infrared photochromic properties of amorphous WO3-X films," J. Vac. Sci. Technol. A 17, 2933-2938 (1999).
[CrossRef]

Macromol. Symp. (1)

E. Ortyl and S. Kucharski, "Kinetics of refractive index changes in polymeric photochromic films," Macromol. Symp. 212, 321-326 (2004).
[CrossRef]

Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A (1)

D. Levy, "Recent applications of photochromic sol-gel materials," Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 297, 31-39 (1997).
[CrossRef]

Opt. Mater. (1)

S. Kucharski and R. Janik, "Photochromic gratings in sol-gel films containing diazo sulphonamide chromophore," Opt. Mater. 27, 1637-1641 (2005).
[CrossRef]

Photochem. Photobiol. Sci. (1)

P. Feneyrou, F. Soyer, P. Le Barny, E. Ishow, M. Sliwa, and J. A. Delaire, "Photochromic compounds as optical limiters in the nanosecond time range: the example of mercury dithizonate complex," Photochem. Photobiol. Sci. 2, 195-202 (2003).
[CrossRef] [PubMed]

Proc. SPIE (1)

H. Knobloch, S. Katholy, H. Orendi, J. Hesse, D. Prescher, and L. Brehmer, "Ellipsometric studies of photochromic ultra thin polymer films," Proc. SPIE 3094, 276-280 (1997).
[CrossRef]

Pure Appl. Chem. (1)

J. C. Crano, T. Flood, D. Knowles, A. Kumar, and B. Van Gemert, "Photochromic compounds: chemistry and application in ophthalmic lenses," Pure Appl. Chem. 68, 1395-1398 (1996).
[CrossRef]

Sens. Rev. (1)

K. Goudjil and R. Sandoval, "Photochromic ultraviolet light sensor and applications," Sens. Rev. 18, 176-177 (1998).
[CrossRef]

Synth. Met. (1)

O. Levi, S. Shalom, I. Benjamin, G. Perepelitsa, A. J. Agranat, R. Neumann, Y. Avny, and D. Davidov, "Conjugated polymeric composites for holographic storage," Synth. Met. 102, 1178-1181 (1999).
[CrossRef]

Thin Solid Films (2)

E. Ortyl, S. Kurcharski, and T. Gotszalk, "Refractive index modulation in the polyurethane films containing diazosulfonamide chromophores," Thin Solid Films 479, 288-296 (2005).
[CrossRef]

Y. G. Mo, R. O. Dillon, P. G. Snyder, and T. E. Tiwald, "Optical properties of photochromic organic-inorganic composites," Thin Solid Films 355-356, 1-5 (1999).
[CrossRef]

Other (8)

R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

J. D. Jackson, Classical Electrodynamics (Wiley, 1975).

B. Van Gemert and M. P. Bergoni, "Photochromic naphthopyran compounds," U.S. patent 5,066,818 (November 19, 1991).

D. B. Knowles, "Photochromic naphthopyrans," U.S. patent 5,238,981 (August 24, 1993).

K. Goudjil, "Photochromic ultraviolet detector," U.S. patent 5,581,090 (December 3, 1996).

C. B. McArdle, Applied Photochromic Polymer Systems, (Springer, 1992).

B. Van Gemert, Organic Photochromic and Thermochromic Compounds, J.C.Crano and R.Guglielmetti, eds., (Plenum, 1999), Vol. 1, Chap. 3.

C. J. Brinker and G. W. Sherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Closed and open structures of photochromic naphthopyrans and spiro-oxazines.

Fig. 2
Fig. 2

Chemical structure of the dyes used for the preparation of samples.

Fig. 3
Fig. 3

Regression results against experimental data of sample B during irradiation with UV light. Exp E 65° and Exp E 75° are the plots corresponding to the ellipsometric experimental data at incidence angles of 65° and 75°, respectively. Exp dpol E 65° and Exp dpol E 75° are the experimental data of the depolarization degree. Exp p T 0° corresponds to the transmission experimental data at normal incidence. Model fit are the fitted data using the theoretical model.

Fig. 4
Fig. 4

Regression results against experimental data of sample B during irradiation with UV light. Exp E 65° and Exp E 75° are the plots corresponding to the ellipsometric experimental data at incidence angles of 65° and 75°, respectively. Exp dpol E 65° and Exp dpol E 75° are the experimental data of the depolarization degree. Exp p T 0° corresponds to the transmission experimental data at normal incidence. Model fits are the fitted data using the theoretical model.

Fig. 5
Fig. 5

Complex refractive index of the samples B, R, and Y before (top) and during (bottom) UV irradiation.

Fig. 6
Fig. 6

Comparison of the complex refractive index of mixed-dye photochromic samples and the corresponding single-dye samples.

Fig. 7
Fig. 7

Thermal bleaching kinetics of photochromic samples prepared with different dyes and mixtures of them: (a) B and Y, (b) R and Y.

Fig. 8
Fig. 8

Calculation of the expected variation of the ellipsometric parameters ( δ Ψ and δ Δ ) due to absorption amplitude ( A ) changes of a Gaussian peak.

Fig. 9
Fig. 9

Calculation of the expected variation of the complex refractive index (n and κ) due to absorption amplitude ( A ) changes of a Gaussian peak.

Fig. 10
Fig. 10

Experimental results of the variation of the ellipsometric parameters ( δ Ψ and δ Δ ) with the temperature ( T ) for sample R in the colored and colorless states.

Tables (4)

Tables Icon

Table 1 Thickness Values of the Photochromic Films Obtained by Ellipsometry and Kinetic Constants of the Thermal Bleaching of Photochromic Samples Calculated from Transmission Measurements

Tables Icon

Table 2 Regression Results of the Ellipsometric Data of Samples Without UV Irradiation a

Tables Icon

Table 3 Regression Results of the Ellipsometric Data of Samples with UV Irradiation a

Tables Icon

Table 4 Regression Results of the Ellipsometric Data of Samples without and with UV Irradiation a

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ρ ̃ = r ̃ p r ̃ s = r p r s e i ( δ p δ s ) = tan Ψ e i Δ ,
tan Ψ = r p r s ,
Δ = δ p δ s ,
ε ̃ = ε ̃ C + ε ̃ L = ε 1 + i ε 2 ,
ε ̃ = n ̃ 2 ,
n ̃ = n + i κ ,
n C = A + B λ 2 + C λ 4 ,
κ C = α exp [ 1.24 β ( 1 λ 1 γ ) ] ,
ε ̃ L = A L B r L E L E L 2 E 2 i B r L E ,
ε ̃ G = ε 1 G + i ε 2 G ,
ε 2 G = A G exp ( ( E G E B r G 2 ln 2 ) 2 ) + A G exp ( ( E G + E B r G 2 ln 2 ) 2 ) ,

Metrics