Abstract

We study the requirements imposed on organic photochromes for two-photon absorption (2PA) terabyte volumetric optical storage. We present a quantitative model of signal-to-noise ratio (SNR) and signal-to-background ratio (SBR) when 2PA-induced photochromic switching is used for writing, and 2PA-induced fluorescence is used for readout. We show that single-channel data access rate >100MHz at minimum SNR>4 implies minimum intrinsic 2PA cross section, σ2>103GM. Resonance enhancement allows σ2105GM, however, it also lowers SBR due to thermally-activated one-photon absorption. We model the critical trade-off between SNR and SBR as a function of laser frequency, intensity, and temperature. Acceptable parameter space may be achieved by careful choice of the above variables. We perform experiments with nonsymmetrical free-base phthalocyanines, which show efficient 2PA-induced photochromic switching between two tautomer forms and large σ2104GM, and show good potential for high-capacity data storage.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Parthenopoulos and P. M. Rentzepis, "Three-dimensional optical storage," Science 245, 843-845 (1989).
    [CrossRef] [PubMed]
  2. J. H. Strickler and W. W. Webb, "3-D optical data storage by two-photon excitation," Adv. Mater. (Weinheim, Ger.) 5, 1479-481 (1993).
    [CrossRef]
  3. S. Kawata and Y. Kawata, "Three-dimensional optical data storage using photochromic materials," Chem. Rev. (Washington, D.C.) 100, 1777-1788 (2000), and references therein.
    [CrossRef]
  4. G. W. Burr, "Volumetric storage," in Encyclopedia of Optical Engineering, R.B.Johnson and R.G.Driggers, eds. (Dekker, 2003), and references therein.
  5. A. McDonagh, M. G. Humphrey, M. Samoc, and B. Luther-Davies, "Organometallic complexes for nonlinear optics. 17. Synthesis, third-order optical nonlinearities, and two-photon absorption cross section of an alkylruthenium dendrimer," Organometallics 18, 5195-5197 (1999).
    [CrossRef]
  6. M. Drobizhev, A. Karotki, A. Rebane, and C. W. Spangler, "Dendrimer molecules with record large two-photon absorption cross section," Opt. Lett. 26, 1081-1083 (2001).
    [CrossRef]
  7. A. Hohenau, C. Cagran, G. Kranzelbinder, U. Scherf, and G. Leising, "Efficient continuous-wave two-photon absorption in para-phenylene-type polymers," Adv. Mater. (Weinheim, Ger.) 13, 1303-1307 (2001).
    [CrossRef]
  8. P. Najechalski, Y. Morrel, O. Stéphan, and P. L. Baldeck, "Two-photon absorption spectrum of poly(fluorene)," Chem. Phys. Lett. 343, 44-48, (2001).
    [CrossRef]
  9. B. R. Cho, M. J. Piao, K. H. Son, S. H. Lee, S. J. Yoon, S.-J. Jeon, and M. Cho, "Nonlinear optical and two-photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene-containing octupolar oligomers," Chem.-Eur. J. 8, 3908-3916 (2002).
    [CrossRef]
  10. D. Scherer, R. Dörfler, A. Feldner, T. Vogtmann, M. Schwoerer, U. Lawrentz, W. Grahn, and C. Lambert, "Two-photon states in squaraine monomers and oligomers," Chem. Phys. 279, 179-207 (2002).
    [CrossRef]
  11. M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, "Understanding strong two-photon absorption in π-conjugated porphyrin dimers via double-resonance enhancement in a three-level model," J. Am. Chem. Soc. 126, 15352-15353 (2004).
    [CrossRef] [PubMed]
  12. M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, "Extremely strong near-IR two-photon absorption in conjugated porphyrin dimers: quantitative description with three-essential-states model," J. Phys. Chem. B 109, 7223-7236 (2005).
    [CrossRef]
  13. M. Drobizhev, A. Rebane, Z. Suo, and C. W. Spangler, "One-, two- and three-photon spectroscopy of π-conjugated dendrimers: cooperative enhancement and coherent domains," J. Lumin. 111, 291-305 (2005).
    [CrossRef]
  14. O. Mongin, T. R. Krishna, M. H. V. Werts, A.-M. Caminade, J.-P. Majoral, and M. Blanchard-Desce, "A modular approach to two-photon absorbing organic nanodots: Brilliant dendrimers as an alternative to semiconductor dots?," Chem. Commun. (Cambridge) 8, 915-917 (2006).
    [CrossRef]
  15. M. Drobizhev, Y. Stepanenko, A. Rebane, C. J. Wilson, T. E. O. Screen, and H. L. Anderson, "Strong cooperative enhancement of two-photon absorption in double-strand conjugated porphyrin ladder arrays," J. Am. Chem. Soc. 128, 12432-12433 (2006).
    [CrossRef] [PubMed]
  16. M. Irie, guest ed., "Photochromism: memories and switches," Chem. Rev. (Washington, D.C.) 100(5), Special Issue (2000).
  17. V. F. Mandzhikov, V. A. Murin, and V. A. Barachevskii, "Nonlinear coloration of photochromic spiropyran solutions," Sov. J. Quantum Electron. 3, 128-129 (1973).
    [CrossRef]
  18. A. A. Angeluts, N. I. Koroteev, S. A. Magnitskii, M. M. Nazarov, I. A. Ozheredov, and A. P. Shkurinov, "An experimental setup for studying photochromic compounds exposed to two-photon excitation," Instrum. Exp. Tech. 41, 94-98 (1998).
  19. S. Saita, T. Yamaguchi, T. Kawai, and M. Irie, "Two-photon photochromism of diarylethene dimer derivatives," ChemPhysChem 6, 2300-2306 (2005).
    [CrossRef] [PubMed]
  20. Y. Feng, Y. Yan, S. Wang, W. Zhu, S. Qian, and H. Tian, "Photochromic thiophene oligomers based on bisthienylethene: synthesis, photochromic and two-photon properties," J. Mater. Chem. 16, 3685-3692 (2006).
    [CrossRef]
  21. C. Corredor, Z.-L. Huang, and K. D. Belfield, "Two-photon 3-D optical data storage in a photochromic diarylethene polymer composite," Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 47, 1058-1059 (2006).
  22. M. Drobizhev, A. Karotki, M. Kruk, N. Zh. Mamardashvili, and A. Rebane, "Drastic enhancement of two-photon absorption in porphyrins associated with symmetrical electron-accepting substitution," Chem. Phys. Lett. 361, 504-512 (2002).
    [CrossRef]
  23. A. Karotki, M. Drobizhev, Y. Dzenis, P. N. Taylor, H. L. Anderson, and A. Rebane, "Dramatic enhancement of intrinsic two-photon absorption in a conjugated porphyrin dimer," Phys. Chem. Chem. Phys. 6, 7-10 (2004).
    [CrossRef]
  24. M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, "Strong two-photon absorption in new asymmetrically substituted porphyrins: interference between charge-transfer and intermediate-resonance pathways," J. Phys. Chem. B 110, 9802-9814 (2006).
    [CrossRef] [PubMed]
  25. S. F. Shkirman, S. M. Arabei, and G. D. Egorova, "Photoinduced molecular transformations of tetrapropylchlorin in an n-octane matrix," J. Appl. Spectrosc. 31, 1370-1373 (1980).
    [CrossRef]
  26. S. Völker and R. Macfarlane, "Laser photochemistry and hole-burning of chlorine in crystalline n-alkanes at low temperatures," J. Chem. Phys. 73, 4476-4482 (1980).
    [CrossRef]
  27. E. I. Zenkevich, A. M. Shulga, I. V. Filatov, A. V. Chernook, and G. P. Gurinovich, "NH tautomerism and visible absorption spectra of porphyrins with asymmetrical substitution: oscillator model and MO calculations," Chem. Phys. Lett. 120, 63-68 (1985).
    [CrossRef]
  28. I. Renge, H. Wolleb, H. Spahni, and U. P. Wild, "Phthalonaphthalocyanines: new far-red dyes for spectral hole burning," J. Phys. Chem. A 101, 6202-6213 (1997).
    [CrossRef]
  29. M. Drobizhev, C. Sigel, and A. Rebane, "Photo-tautomer of Br-porphyrin: A new frequency-selective material for ultrafast time-space holographic storage," J. Lumin. 86, 391-3972000).
    [CrossRef]
  30. M. Drobizhev, A. Karotki, M. Kruk, A. Krivokapic, H. L. Anderson, and A. Rebane, "Photon energy upconversion in porphyrins: one-photon hot-band absorption versus two-photon absorption," Chem. Phys. Lett. 370, 690-699 (2003).
    [CrossRef]
  31. A. S. Dvornikov, Y. C. Liang, and P. M. Rentzepis, "Ultra-high-density non-destructive readout, rewritable molecular memory," Res. Chem. Intermed. 30, 545-561 (2004).
    [CrossRef]
  32. D. A. Parthenopoulos and P. M. Rentzepis, "Two-photon volume information storage in doped polymer systems," J. Appl. Phys. 68, 5814-5818 (1990).
    [CrossRef]
  33. A. S. Dvornikov, J. Malkin, and P. M. Rentzepis, "Spectroscopy and kinetics of photochromic materials for 3D optical memory devices," J. Phys. Chem. 98, 6746-6752 (1994).
    [CrossRef]
  34. A. S. Dvornikov, I. Cokgor, F. McCormick, R. Piyaket, S. Esener, and P. M. Rentzepis, "Molecular transformation as a means for 3D optical memory devices," Opt. Commun. 128, 205-210 (1996).
    [CrossRef]
  35. R. R. Birge, B. Parsons, Q. W. Song, and J. R. Tallent, "Protein-based three-dimensional memories and associative processors," in Molecular Electronics, M.A.Ratner and J.Jortner, eds. (Blackwell Science, 1997), pp. 439-471.
  36. A. S. Dvornikov and P. M. Rentzepis, "Novel organic ROM materials for optical 3D memory devices," Opt. Commun. 136, 1-6 (1997).
    [CrossRef]
  37. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
    [CrossRef]
  38. D. Day, M. Gu, and A. Smallridge, "Use of two-photon excitation for erasable-rewritable three-dimensional bit optical data storage in a photorefractive polymer," Opt. Lett. 24, 948-950 (1999).
    [CrossRef]
  39. H. E. Pudavar, M. P. Joshi, P. N. Prasad, and B. A. Reinhardt, "High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout," Appl. Phys. Lett. 74, 1338-1340 (1999).
    [CrossRef]
  40. K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E.W. Van Stryland, "Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging," J. Phys. Org. Chem. 13, 837-849 (2000).
    [CrossRef]
  41. Y. Shen, J. Swiatkiewicz, D. Jakubczyk, F. Xu, P. N. Prasad, R. A Vaia, and B. A. Reinhardt, "High-density optical data storage with one-photon and two-photon near-field fluorescence microscopy," Appl. Opt. 40, 938-940 (2001).
    [CrossRef]
  42. K. D. Belfield and K. J. Schafer, "A new photosensitive polymer material for WORM optical data storage," Chem. Mater. 14, 3656-3662 (2002).
    [CrossRef]
  43. B. Yao, Y. Wang, N. Menke, M. Lei, Y. Zheng, L. Ren, G. Chen, Y. Chen, and M. Fan, "Optical properties and applications of photochromic fulgides," Mol. Cryst. Liq. Cryst. 430, 211-219 (2005).
    [CrossRef]
  44. W.-Y. Liao, S.-S. Wang, H.-H. Yao, C.-W. Chen, H.-P. Tasi, W.-P. Chu, J.-H. Chen, and S.-B. Lee, "Three-dimensional optical disks using fluorescent oligomer recording material," IEEE Trans. Magn. 41, 1019-1021 (2005).
    [CrossRef]
  45. M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, "Femtosecond two-photon stereo-lithography," Appl. Phys. A 73, 561-566 (2001).
    [CrossRef]
  46. Y. Liang, A. S. Dvornikov, and P. M. Rentzepis, "Photochemistry of photochromic 2-indolylfulgides with substituents at the 1′-position of the indolylmethylene moiety," J. Photochem. Photobiol., A 146, 83-93 (2001).
    [CrossRef]
  47. K. Teuchner, A. Pfarrherr, H. Stiel, W. Freyer, and D. Leupold, "Spectroscopic properties of potential sensitizers for new photodynamic therapy start mechanisms via 2-step excited electronic states," Photochem. Photobiol. 57, 465-471 (1993).
    [CrossRef] [PubMed]
  48. A. Karotki, "Simultaneous two-photon absorption of tetrapyrrolic molecules: from femtosecond coherence experiments to photodynamic therapy," Ph.D. dissertation (Montana State University, 2003).
  49. M. Drobizhev, A. Karotki, M. Kruk, and A. Rebane, "Resonance enhancement of two-photon absorption in porphyrins," Chem. Phys. Lett. 355, 175-182 (2002).
    [CrossRef]
  50. K. Kamada, K. Ohta, Y. Iwase, and K. Kondo, "Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak," Chem. Phys. Lett. 372, 386-393 (2003).
    [CrossRef]
  51. J. M. Hales, D. J. Hagan, E. W. Van Stryland, K. J. Schafer, A. R. Morales, K. D. Belfield, P. Pacher, O. Kwon, E. Zojer, and J. L. Bredas, "Resonant enhancement of two-photon absorption in substituted fluorine molecules," J. Chem. Phys. 121, 3152-3160 (2004).
    [CrossRef] [PubMed]
  52. M. G. Kuzyk, "Doubly resonant two-photon absorption cross-sections: it does not get any bigger than this," J. Nonlinear Opt. Phys. Mater. 13, 461-466 (2004).
    [CrossRef]
  53. K. K. Rebane, Impurity Spectra of Solids (Plenum, 1970).
  54. A. S. Davydov and A. F. Lubchenko, "Urbach rule for localized excitations in crystals," Sov. Phys. Dokl. 13, 325-327 (1968).
  55. D. W. Posener, "The shape of spectral lines: Tables of the Voigt profile," Aust. J. Phys. 12, 184-196 (1959).
    [CrossRef]
  56. I. Rückmann, A. Zeug, R. Herter, and B. Röder, "On the influence of higher excited states in the ISC quantum yield of octa-α-alkyloxy-substituted Zn-phthalocyanine molecules studied by nonlinear absorption," Photochem. Photobiol. 66, 576-584 (1997).
    [CrossRef]
  57. J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, "Effect of axial substitution on the optical limiting properties of indium phthalocyanines," J. Phys. Chem. A 104, 1438-1449 (2000).
    [CrossRef]
  58. E. M. Maya, A. W. Snow, J. S. Shirk, R. G. S. Pong, S. R. Flom, and G. L. Roberts, "Synthesis, aggregation, behavior and nonlinear absorption properties of lead phthalocyanines substituted with siloxane chains," J. Mater. Chem. 13, 1601-1613 (2003).
    [CrossRef]
  59. A. Zeug, M. Meyer, P.-C. Lo, D. K. P. Ng, and B. Röder, "Fluorescence anisotropy and transient absorption of halogenated silicon(IV) phthalocyanines with axial poly(ethyleneglycol) substituents," J. Porphyr. Phthalocyanines 9, 298-302 (2005).
    [CrossRef]
  60. M. Drobizhev, N. S. Makarov, A. Rebane, H. Wolleb, and H. Spahni, "Very efficient two-photon induced photo-tautomerization in non-symmetrical phthalocyanines," J. Lumin. (to be published).
  61. M. Gouterman, "Spectra of porphyrins," J. Mol. Spectrosc. 6, 138-163 (1961).
    [CrossRef]
  62. A. Karotki, M. Drobizhev, M. Kruk, C. Spangler, E. Nickel, N. Mamardashvili, and A. Rebane, "Enhancement of two-photon absorption in tetrapyrrolic compounds," J. Opt. Soc. Am. B 20, 321-332 (2003).
    [CrossRef]
  63. M. Drobizhev, N. S. Makarov, Y. Stepanenko, and A. Rebane, "Near-infrared two-photon absorption in phthalocyanines: Enhancement of lowest gerade-gerade transition by symmetrical electron-accepting substitution," J. Chem. Phys. 124, 224701 (2006).
    [CrossRef] [PubMed]
  64. M. D. Frank-Kamenetskii and A. V. Lukashin, "Electron-oscillatory interactions in polyatomic-molecules," Usp. Fiz. Nauk 116, 193-229 (1975) (in Russian).
    [CrossRef]

2006 (6)

O. Mongin, T. R. Krishna, M. H. V. Werts, A.-M. Caminade, J.-P. Majoral, and M. Blanchard-Desce, "A modular approach to two-photon absorbing organic nanodots: Brilliant dendrimers as an alternative to semiconductor dots?," Chem. Commun. (Cambridge) 8, 915-917 (2006).
[CrossRef]

M. Drobizhev, Y. Stepanenko, A. Rebane, C. J. Wilson, T. E. O. Screen, and H. L. Anderson, "Strong cooperative enhancement of two-photon absorption in double-strand conjugated porphyrin ladder arrays," J. Am. Chem. Soc. 128, 12432-12433 (2006).
[CrossRef] [PubMed]

Y. Feng, Y. Yan, S. Wang, W. Zhu, S. Qian, and H. Tian, "Photochromic thiophene oligomers based on bisthienylethene: synthesis, photochromic and two-photon properties," J. Mater. Chem. 16, 3685-3692 (2006).
[CrossRef]

C. Corredor, Z.-L. Huang, and K. D. Belfield, "Two-photon 3-D optical data storage in a photochromic diarylethene polymer composite," Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 47, 1058-1059 (2006).

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, "Strong two-photon absorption in new asymmetrically substituted porphyrins: interference between charge-transfer and intermediate-resonance pathways," J. Phys. Chem. B 110, 9802-9814 (2006).
[CrossRef] [PubMed]

M. Drobizhev, N. S. Makarov, Y. Stepanenko, and A. Rebane, "Near-infrared two-photon absorption in phthalocyanines: Enhancement of lowest gerade-gerade transition by symmetrical electron-accepting substitution," J. Chem. Phys. 124, 224701 (2006).
[CrossRef] [PubMed]

2005 (6)

A. Zeug, M. Meyer, P.-C. Lo, D. K. P. Ng, and B. Röder, "Fluorescence anisotropy and transient absorption of halogenated silicon(IV) phthalocyanines with axial poly(ethyleneglycol) substituents," J. Porphyr. Phthalocyanines 9, 298-302 (2005).
[CrossRef]

B. Yao, Y. Wang, N. Menke, M. Lei, Y. Zheng, L. Ren, G. Chen, Y. Chen, and M. Fan, "Optical properties and applications of photochromic fulgides," Mol. Cryst. Liq. Cryst. 430, 211-219 (2005).
[CrossRef]

W.-Y. Liao, S.-S. Wang, H.-H. Yao, C.-W. Chen, H.-P. Tasi, W.-P. Chu, J.-H. Chen, and S.-B. Lee, "Three-dimensional optical disks using fluorescent oligomer recording material," IEEE Trans. Magn. 41, 1019-1021 (2005).
[CrossRef]

S. Saita, T. Yamaguchi, T. Kawai, and M. Irie, "Two-photon photochromism of diarylethene dimer derivatives," ChemPhysChem 6, 2300-2306 (2005).
[CrossRef] [PubMed]

M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, "Extremely strong near-IR two-photon absorption in conjugated porphyrin dimers: quantitative description with three-essential-states model," J. Phys. Chem. B 109, 7223-7236 (2005).
[CrossRef]

M. Drobizhev, A. Rebane, Z. Suo, and C. W. Spangler, "One-, two- and three-photon spectroscopy of π-conjugated dendrimers: cooperative enhancement and coherent domains," J. Lumin. 111, 291-305 (2005).
[CrossRef]

2004 (5)

M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, "Understanding strong two-photon absorption in π-conjugated porphyrin dimers via double-resonance enhancement in a three-level model," J. Am. Chem. Soc. 126, 15352-15353 (2004).
[CrossRef] [PubMed]

A. Karotki, M. Drobizhev, Y. Dzenis, P. N. Taylor, H. L. Anderson, and A. Rebane, "Dramatic enhancement of intrinsic two-photon absorption in a conjugated porphyrin dimer," Phys. Chem. Chem. Phys. 6, 7-10 (2004).
[CrossRef]

A. S. Dvornikov, Y. C. Liang, and P. M. Rentzepis, "Ultra-high-density non-destructive readout, rewritable molecular memory," Res. Chem. Intermed. 30, 545-561 (2004).
[CrossRef]

J. M. Hales, D. J. Hagan, E. W. Van Stryland, K. J. Schafer, A. R. Morales, K. D. Belfield, P. Pacher, O. Kwon, E. Zojer, and J. L. Bredas, "Resonant enhancement of two-photon absorption in substituted fluorine molecules," J. Chem. Phys. 121, 3152-3160 (2004).
[CrossRef] [PubMed]

M. G. Kuzyk, "Doubly resonant two-photon absorption cross-sections: it does not get any bigger than this," J. Nonlinear Opt. Phys. Mater. 13, 461-466 (2004).
[CrossRef]

2003 (4)

K. Kamada, K. Ohta, Y. Iwase, and K. Kondo, "Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak," Chem. Phys. Lett. 372, 386-393 (2003).
[CrossRef]

E. M. Maya, A. W. Snow, J. S. Shirk, R. G. S. Pong, S. R. Flom, and G. L. Roberts, "Synthesis, aggregation, behavior and nonlinear absorption properties of lead phthalocyanines substituted with siloxane chains," J. Mater. Chem. 13, 1601-1613 (2003).
[CrossRef]

A. Karotki, M. Drobizhev, M. Kruk, C. Spangler, E. Nickel, N. Mamardashvili, and A. Rebane, "Enhancement of two-photon absorption in tetrapyrrolic compounds," J. Opt. Soc. Am. B 20, 321-332 (2003).
[CrossRef]

M. Drobizhev, A. Karotki, M. Kruk, A. Krivokapic, H. L. Anderson, and A. Rebane, "Photon energy upconversion in porphyrins: one-photon hot-band absorption versus two-photon absorption," Chem. Phys. Lett. 370, 690-699 (2003).
[CrossRef]

2002 (5)

M. Drobizhev, A. Karotki, M. Kruk, N. Zh. Mamardashvili, and A. Rebane, "Drastic enhancement of two-photon absorption in porphyrins associated with symmetrical electron-accepting substitution," Chem. Phys. Lett. 361, 504-512 (2002).
[CrossRef]

B. R. Cho, M. J. Piao, K. H. Son, S. H. Lee, S. J. Yoon, S.-J. Jeon, and M. Cho, "Nonlinear optical and two-photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene-containing octupolar oligomers," Chem.-Eur. J. 8, 3908-3916 (2002).
[CrossRef]

D. Scherer, R. Dörfler, A. Feldner, T. Vogtmann, M. Schwoerer, U. Lawrentz, W. Grahn, and C. Lambert, "Two-photon states in squaraine monomers and oligomers," Chem. Phys. 279, 179-207 (2002).
[CrossRef]

M. Drobizhev, A. Karotki, M. Kruk, and A. Rebane, "Resonance enhancement of two-photon absorption in porphyrins," Chem. Phys. Lett. 355, 175-182 (2002).
[CrossRef]

K. D. Belfield and K. J. Schafer, "A new photosensitive polymer material for WORM optical data storage," Chem. Mater. 14, 3656-3662 (2002).
[CrossRef]

2001 (6)

Y. Shen, J. Swiatkiewicz, D. Jakubczyk, F. Xu, P. N. Prasad, R. A Vaia, and B. A. Reinhardt, "High-density optical data storage with one-photon and two-photon near-field fluorescence microscopy," Appl. Opt. 40, 938-940 (2001).
[CrossRef]

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, "Femtosecond two-photon stereo-lithography," Appl. Phys. A 73, 561-566 (2001).
[CrossRef]

Y. Liang, A. S. Dvornikov, and P. M. Rentzepis, "Photochemistry of photochromic 2-indolylfulgides with substituents at the 1′-position of the indolylmethylene moiety," J. Photochem. Photobiol., A 146, 83-93 (2001).
[CrossRef]

M. Drobizhev, A. Karotki, A. Rebane, and C. W. Spangler, "Dendrimer molecules with record large two-photon absorption cross section," Opt. Lett. 26, 1081-1083 (2001).
[CrossRef]

A. Hohenau, C. Cagran, G. Kranzelbinder, U. Scherf, and G. Leising, "Efficient continuous-wave two-photon absorption in para-phenylene-type polymers," Adv. Mater. (Weinheim, Ger.) 13, 1303-1307 (2001).
[CrossRef]

P. Najechalski, Y. Morrel, O. Stéphan, and P. L. Baldeck, "Two-photon absorption spectrum of poly(fluorene)," Chem. Phys. Lett. 343, 44-48, (2001).
[CrossRef]

2000 (5)

S. Kawata and Y. Kawata, "Three-dimensional optical data storage using photochromic materials," Chem. Rev. (Washington, D.C.) 100, 1777-1788 (2000), and references therein.
[CrossRef]

M. Irie, guest ed., "Photochromism: memories and switches," Chem. Rev. (Washington, D.C.) 100(5), Special Issue (2000).

M. Drobizhev, C. Sigel, and A. Rebane, "Photo-tautomer of Br-porphyrin: A new frequency-selective material for ultrafast time-space holographic storage," J. Lumin. 86, 391-3972000).
[CrossRef]

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E.W. Van Stryland, "Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging," J. Phys. Org. Chem. 13, 837-849 (2000).
[CrossRef]

J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, "Effect of axial substitution on the optical limiting properties of indium phthalocyanines," J. Phys. Chem. A 104, 1438-1449 (2000).
[CrossRef]

1999 (4)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

D. Day, M. Gu, and A. Smallridge, "Use of two-photon excitation for erasable-rewritable three-dimensional bit optical data storage in a photorefractive polymer," Opt. Lett. 24, 948-950 (1999).
[CrossRef]

H. E. Pudavar, M. P. Joshi, P. N. Prasad, and B. A. Reinhardt, "High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout," Appl. Phys. Lett. 74, 1338-1340 (1999).
[CrossRef]

A. McDonagh, M. G. Humphrey, M. Samoc, and B. Luther-Davies, "Organometallic complexes for nonlinear optics. 17. Synthesis, third-order optical nonlinearities, and two-photon absorption cross section of an alkylruthenium dendrimer," Organometallics 18, 5195-5197 (1999).
[CrossRef]

1998 (1)

A. A. Angeluts, N. I. Koroteev, S. A. Magnitskii, M. M. Nazarov, I. A. Ozheredov, and A. P. Shkurinov, "An experimental setup for studying photochromic compounds exposed to two-photon excitation," Instrum. Exp. Tech. 41, 94-98 (1998).

1997 (3)

I. Renge, H. Wolleb, H. Spahni, and U. P. Wild, "Phthalonaphthalocyanines: new far-red dyes for spectral hole burning," J. Phys. Chem. A 101, 6202-6213 (1997).
[CrossRef]

I. Rückmann, A. Zeug, R. Herter, and B. Röder, "On the influence of higher excited states in the ISC quantum yield of octa-α-alkyloxy-substituted Zn-phthalocyanine molecules studied by nonlinear absorption," Photochem. Photobiol. 66, 576-584 (1997).
[CrossRef]

A. S. Dvornikov and P. M. Rentzepis, "Novel organic ROM materials for optical 3D memory devices," Opt. Commun. 136, 1-6 (1997).
[CrossRef]

1996 (1)

A. S. Dvornikov, I. Cokgor, F. McCormick, R. Piyaket, S. Esener, and P. M. Rentzepis, "Molecular transformation as a means for 3D optical memory devices," Opt. Commun. 128, 205-210 (1996).
[CrossRef]

1994 (1)

A. S. Dvornikov, J. Malkin, and P. M. Rentzepis, "Spectroscopy and kinetics of photochromic materials for 3D optical memory devices," J. Phys. Chem. 98, 6746-6752 (1994).
[CrossRef]

1993 (2)

J. H. Strickler and W. W. Webb, "3-D optical data storage by two-photon excitation," Adv. Mater. (Weinheim, Ger.) 5, 1479-481 (1993).
[CrossRef]

K. Teuchner, A. Pfarrherr, H. Stiel, W. Freyer, and D. Leupold, "Spectroscopic properties of potential sensitizers for new photodynamic therapy start mechanisms via 2-step excited electronic states," Photochem. Photobiol. 57, 465-471 (1993).
[CrossRef] [PubMed]

1990 (1)

D. A. Parthenopoulos and P. M. Rentzepis, "Two-photon volume information storage in doped polymer systems," J. Appl. Phys. 68, 5814-5818 (1990).
[CrossRef]

1989 (1)

D. A. Parthenopoulos and P. M. Rentzepis, "Three-dimensional optical storage," Science 245, 843-845 (1989).
[CrossRef] [PubMed]

1985 (1)

E. I. Zenkevich, A. M. Shulga, I. V. Filatov, A. V. Chernook, and G. P. Gurinovich, "NH tautomerism and visible absorption spectra of porphyrins with asymmetrical substitution: oscillator model and MO calculations," Chem. Phys. Lett. 120, 63-68 (1985).
[CrossRef]

1980 (2)

S. F. Shkirman, S. M. Arabei, and G. D. Egorova, "Photoinduced molecular transformations of tetrapropylchlorin in an n-octane matrix," J. Appl. Spectrosc. 31, 1370-1373 (1980).
[CrossRef]

S. Völker and R. Macfarlane, "Laser photochemistry and hole-burning of chlorine in crystalline n-alkanes at low temperatures," J. Chem. Phys. 73, 4476-4482 (1980).
[CrossRef]

1975 (1)

M. D. Frank-Kamenetskii and A. V. Lukashin, "Electron-oscillatory interactions in polyatomic-molecules," Usp. Fiz. Nauk 116, 193-229 (1975) (in Russian).
[CrossRef]

1973 (1)

V. F. Mandzhikov, V. A. Murin, and V. A. Barachevskii, "Nonlinear coloration of photochromic spiropyran solutions," Sov. J. Quantum Electron. 3, 128-129 (1973).
[CrossRef]

1968 (1)

A. S. Davydov and A. F. Lubchenko, "Urbach rule for localized excitations in crystals," Sov. Phys. Dokl. 13, 325-327 (1968).

1961 (1)

M. Gouterman, "Spectra of porphyrins," J. Mol. Spectrosc. 6, 138-163 (1961).
[CrossRef]

1959 (1)

D. W. Posener, "The shape of spectral lines: Tables of the Voigt profile," Aust. J. Phys. 12, 184-196 (1959).
[CrossRef]

A Vaia, R.

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Anderson, H. L.

M. Drobizhev, Y. Stepanenko, A. Rebane, C. J. Wilson, T. E. O. Screen, and H. L. Anderson, "Strong cooperative enhancement of two-photon absorption in double-strand conjugated porphyrin ladder arrays," J. Am. Chem. Soc. 128, 12432-12433 (2006).
[CrossRef] [PubMed]

M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, "Extremely strong near-IR two-photon absorption in conjugated porphyrin dimers: quantitative description with three-essential-states model," J. Phys. Chem. B 109, 7223-7236 (2005).
[CrossRef]

M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, "Understanding strong two-photon absorption in π-conjugated porphyrin dimers via double-resonance enhancement in a three-level model," J. Am. Chem. Soc. 126, 15352-15353 (2004).
[CrossRef] [PubMed]

A. Karotki, M. Drobizhev, Y. Dzenis, P. N. Taylor, H. L. Anderson, and A. Rebane, "Dramatic enhancement of intrinsic two-photon absorption in a conjugated porphyrin dimer," Phys. Chem. Chem. Phys. 6, 7-10 (2004).
[CrossRef]

M. Drobizhev, A. Karotki, M. Kruk, A. Krivokapic, H. L. Anderson, and A. Rebane, "Photon energy upconversion in porphyrins: one-photon hot-band absorption versus two-photon absorption," Chem. Phys. Lett. 370, 690-699 (2003).
[CrossRef]

Angeluts, A. A.

A. A. Angeluts, N. I. Koroteev, S. A. Magnitskii, M. M. Nazarov, I. A. Ozheredov, and A. P. Shkurinov, "An experimental setup for studying photochromic compounds exposed to two-photon excitation," Instrum. Exp. Tech. 41, 94-98 (1998).

Arabei, S. M.

S. F. Shkirman, S. M. Arabei, and G. D. Egorova, "Photoinduced molecular transformations of tetrapropylchlorin in an n-octane matrix," J. Appl. Spectrosc. 31, 1370-1373 (1980).
[CrossRef]

Baldeck, P. L.

P. Najechalski, Y. Morrel, O. Stéphan, and P. L. Baldeck, "Two-photon absorption spectrum of poly(fluorene)," Chem. Phys. Lett. 343, 44-48, (2001).
[CrossRef]

Barachevskii, V. A.

V. F. Mandzhikov, V. A. Murin, and V. A. Barachevskii, "Nonlinear coloration of photochromic spiropyran solutions," Sov. J. Quantum Electron. 3, 128-129 (1973).
[CrossRef]

Barlow, S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Belfield, K. D.

C. Corredor, Z.-L. Huang, and K. D. Belfield, "Two-photon 3-D optical data storage in a photochromic diarylethene polymer composite," Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 47, 1058-1059 (2006).

J. M. Hales, D. J. Hagan, E. W. Van Stryland, K. J. Schafer, A. R. Morales, K. D. Belfield, P. Pacher, O. Kwon, E. Zojer, and J. L. Bredas, "Resonant enhancement of two-photon absorption in substituted fluorine molecules," J. Chem. Phys. 121, 3152-3160 (2004).
[CrossRef] [PubMed]

K. D. Belfield and K. J. Schafer, "A new photosensitive polymer material for WORM optical data storage," Chem. Mater. 14, 3656-3662 (2002).
[CrossRef]

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E.W. Van Stryland, "Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging," J. Phys. Org. Chem. 13, 837-849 (2000).
[CrossRef]

Birge, R. R.

R. R. Birge, B. Parsons, Q. W. Song, and J. R. Tallent, "Protein-based three-dimensional memories and associative processors," in Molecular Electronics, M.A.Ratner and J.Jortner, eds. (Blackwell Science, 1997), pp. 439-471.

Blanchard-Desce, M.

O. Mongin, T. R. Krishna, M. H. V. Werts, A.-M. Caminade, J.-P. Majoral, and M. Blanchard-Desce, "A modular approach to two-photon absorbing organic nanodots: Brilliant dendrimers as an alternative to semiconductor dots?," Chem. Commun. (Cambridge) 8, 915-917 (2006).
[CrossRef]

Bredas, J. L.

J. M. Hales, D. J. Hagan, E. W. Van Stryland, K. J. Schafer, A. R. Morales, K. D. Belfield, P. Pacher, O. Kwon, E. Zojer, and J. L. Bredas, "Resonant enhancement of two-photon absorption in substituted fluorine molecules," J. Chem. Phys. 121, 3152-3160 (2004).
[CrossRef] [PubMed]

Burr, G. W.

G. W. Burr, "Volumetric storage," in Encyclopedia of Optical Engineering, R.B.Johnson and R.G.Driggers, eds. (Dekker, 2003), and references therein.

Cagran, C.

A. Hohenau, C. Cagran, G. Kranzelbinder, U. Scherf, and G. Leising, "Efficient continuous-wave two-photon absorption in para-phenylene-type polymers," Adv. Mater. (Weinheim, Ger.) 13, 1303-1307 (2001).
[CrossRef]

Caminade, A.-M.

O. Mongin, T. R. Krishna, M. H. V. Werts, A.-M. Caminade, J.-P. Majoral, and M. Blanchard-Desce, "A modular approach to two-photon absorbing organic nanodots: Brilliant dendrimers as an alternative to semiconductor dots?," Chem. Commun. (Cambridge) 8, 915-917 (2006).
[CrossRef]

Chen, C.-W.

W.-Y. Liao, S.-S. Wang, H.-H. Yao, C.-W. Chen, H.-P. Tasi, W.-P. Chu, J.-H. Chen, and S.-B. Lee, "Three-dimensional optical disks using fluorescent oligomer recording material," IEEE Trans. Magn. 41, 1019-1021 (2005).
[CrossRef]

Chen, G.

B. Yao, Y. Wang, N. Menke, M. Lei, Y. Zheng, L. Ren, G. Chen, Y. Chen, and M. Fan, "Optical properties and applications of photochromic fulgides," Mol. Cryst. Liq. Cryst. 430, 211-219 (2005).
[CrossRef]

Chen, J.-H.

W.-Y. Liao, S.-S. Wang, H.-H. Yao, C.-W. Chen, H.-P. Tasi, W.-P. Chu, J.-H. Chen, and S.-B. Lee, "Three-dimensional optical disks using fluorescent oligomer recording material," IEEE Trans. Magn. 41, 1019-1021 (2005).
[CrossRef]

Chen, Y.

B. Yao, Y. Wang, N. Menke, M. Lei, Y. Zheng, L. Ren, G. Chen, Y. Chen, and M. Fan, "Optical properties and applications of photochromic fulgides," Mol. Cryst. Liq. Cryst. 430, 211-219 (2005).
[CrossRef]

Chernook, A. V.

E. I. Zenkevich, A. M. Shulga, I. V. Filatov, A. V. Chernook, and G. P. Gurinovich, "NH tautomerism and visible absorption spectra of porphyrins with asymmetrical substitution: oscillator model and MO calculations," Chem. Phys. Lett. 120, 63-68 (1985).
[CrossRef]

Cho, B. R.

B. R. Cho, M. J. Piao, K. H. Son, S. H. Lee, S. J. Yoon, S.-J. Jeon, and M. Cho, "Nonlinear optical and two-photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene-containing octupolar oligomers," Chem.-Eur. J. 8, 3908-3916 (2002).
[CrossRef]

Cho, M.

B. R. Cho, M. J. Piao, K. H. Son, S. H. Lee, S. J. Yoon, S.-J. Jeon, and M. Cho, "Nonlinear optical and two-photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene-containing octupolar oligomers," Chem.-Eur. J. 8, 3908-3916 (2002).
[CrossRef]

Chu, W.-P.

W.-Y. Liao, S.-S. Wang, H.-H. Yao, C.-W. Chen, H.-P. Tasi, W.-P. Chu, J.-H. Chen, and S.-B. Lee, "Three-dimensional optical disks using fluorescent oligomer recording material," IEEE Trans. Magn. 41, 1019-1021 (2005).
[CrossRef]

Cokgor, I.

A. S. Dvornikov, I. Cokgor, F. McCormick, R. Piyaket, S. Esener, and P. M. Rentzepis, "Molecular transformation as a means for 3D optical memory devices," Opt. Commun. 128, 205-210 (1996).
[CrossRef]

Corredor, C.

C. Corredor, Z.-L. Huang, and K. D. Belfield, "Two-photon 3-D optical data storage in a photochromic diarylethene polymer composite," Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 47, 1058-1059 (2006).

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Davydov, A. S.

A. S. Davydov and A. F. Lubchenko, "Urbach rule for localized excitations in crystals," Sov. Phys. Dokl. 13, 325-327 (1968).

Day, D.

Dörfler, R.

D. Scherer, R. Dörfler, A. Feldner, T. Vogtmann, M. Schwoerer, U. Lawrentz, W. Grahn, and C. Lambert, "Two-photon states in squaraine monomers and oligomers," Chem. Phys. 279, 179-207 (2002).
[CrossRef]

Drobizhev, M.

M. Drobizhev, Y. Stepanenko, A. Rebane, C. J. Wilson, T. E. O. Screen, and H. L. Anderson, "Strong cooperative enhancement of two-photon absorption in double-strand conjugated porphyrin ladder arrays," J. Am. Chem. Soc. 128, 12432-12433 (2006).
[CrossRef] [PubMed]

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, "Strong two-photon absorption in new asymmetrically substituted porphyrins: interference between charge-transfer and intermediate-resonance pathways," J. Phys. Chem. B 110, 9802-9814 (2006).
[CrossRef] [PubMed]

M. Drobizhev, N. S. Makarov, Y. Stepanenko, and A. Rebane, "Near-infrared two-photon absorption in phthalocyanines: Enhancement of lowest gerade-gerade transition by symmetrical electron-accepting substitution," J. Chem. Phys. 124, 224701 (2006).
[CrossRef] [PubMed]

M. Drobizhev, A. Rebane, Z. Suo, and C. W. Spangler, "One-, two- and three-photon spectroscopy of π-conjugated dendrimers: cooperative enhancement and coherent domains," J. Lumin. 111, 291-305 (2005).
[CrossRef]

M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, "Extremely strong near-IR two-photon absorption in conjugated porphyrin dimers: quantitative description with three-essential-states model," J. Phys. Chem. B 109, 7223-7236 (2005).
[CrossRef]

M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, "Understanding strong two-photon absorption in π-conjugated porphyrin dimers via double-resonance enhancement in a three-level model," J. Am. Chem. Soc. 126, 15352-15353 (2004).
[CrossRef] [PubMed]

A. Karotki, M. Drobizhev, Y. Dzenis, P. N. Taylor, H. L. Anderson, and A. Rebane, "Dramatic enhancement of intrinsic two-photon absorption in a conjugated porphyrin dimer," Phys. Chem. Chem. Phys. 6, 7-10 (2004).
[CrossRef]

M. Drobizhev, A. Karotki, M. Kruk, A. Krivokapic, H. L. Anderson, and A. Rebane, "Photon energy upconversion in porphyrins: one-photon hot-band absorption versus two-photon absorption," Chem. Phys. Lett. 370, 690-699 (2003).
[CrossRef]

A. Karotki, M. Drobizhev, M. Kruk, C. Spangler, E. Nickel, N. Mamardashvili, and A. Rebane, "Enhancement of two-photon absorption in tetrapyrrolic compounds," J. Opt. Soc. Am. B 20, 321-332 (2003).
[CrossRef]

M. Drobizhev, A. Karotki, M. Kruk, and A. Rebane, "Resonance enhancement of two-photon absorption in porphyrins," Chem. Phys. Lett. 355, 175-182 (2002).
[CrossRef]

M. Drobizhev, A. Karotki, M. Kruk, N. Zh. Mamardashvili, and A. Rebane, "Drastic enhancement of two-photon absorption in porphyrins associated with symmetrical electron-accepting substitution," Chem. Phys. Lett. 361, 504-512 (2002).
[CrossRef]

M. Drobizhev, A. Karotki, A. Rebane, and C. W. Spangler, "Dendrimer molecules with record large two-photon absorption cross section," Opt. Lett. 26, 1081-1083 (2001).
[CrossRef]

M. Drobizhev, C. Sigel, and A. Rebane, "Photo-tautomer of Br-porphyrin: A new frequency-selective material for ultrafast time-space holographic storage," J. Lumin. 86, 391-3972000).
[CrossRef]

M. Drobizhev, N. S. Makarov, A. Rebane, H. Wolleb, and H. Spahni, "Very efficient two-photon induced photo-tautomerization in non-symmetrical phthalocyanines," J. Lumin. (to be published).

Dvornikov, A. S.

A. S. Dvornikov, Y. C. Liang, and P. M. Rentzepis, "Ultra-high-density non-destructive readout, rewritable molecular memory," Res. Chem. Intermed. 30, 545-561 (2004).
[CrossRef]

Y. Liang, A. S. Dvornikov, and P. M. Rentzepis, "Photochemistry of photochromic 2-indolylfulgides with substituents at the 1′-position of the indolylmethylene moiety," J. Photochem. Photobiol., A 146, 83-93 (2001).
[CrossRef]

A. S. Dvornikov and P. M. Rentzepis, "Novel organic ROM materials for optical 3D memory devices," Opt. Commun. 136, 1-6 (1997).
[CrossRef]

A. S. Dvornikov, I. Cokgor, F. McCormick, R. Piyaket, S. Esener, and P. M. Rentzepis, "Molecular transformation as a means for 3D optical memory devices," Opt. Commun. 128, 205-210 (1996).
[CrossRef]

A. S. Dvornikov, J. Malkin, and P. M. Rentzepis, "Spectroscopy and kinetics of photochromic materials for 3D optical memory devices," J. Phys. Chem. 98, 6746-6752 (1994).
[CrossRef]

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Dzenis, Y.

M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, "Extremely strong near-IR two-photon absorption in conjugated porphyrin dimers: quantitative description with three-essential-states model," J. Phys. Chem. B 109, 7223-7236 (2005).
[CrossRef]

M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, "Understanding strong two-photon absorption in π-conjugated porphyrin dimers via double-resonance enhancement in a three-level model," J. Am. Chem. Soc. 126, 15352-15353 (2004).
[CrossRef] [PubMed]

A. Karotki, M. Drobizhev, Y. Dzenis, P. N. Taylor, H. L. Anderson, and A. Rebane, "Dramatic enhancement of intrinsic two-photon absorption in a conjugated porphyrin dimer," Phys. Chem. Chem. Phys. 6, 7-10 (2004).
[CrossRef]

Egorova, G. D.

S. F. Shkirman, S. M. Arabei, and G. D. Egorova, "Photoinduced molecular transformations of tetrapropylchlorin in an n-octane matrix," J. Appl. Spectrosc. 31, 1370-1373 (1980).
[CrossRef]

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Esener, S.

A. S. Dvornikov, I. Cokgor, F. McCormick, R. Piyaket, S. Esener, and P. M. Rentzepis, "Molecular transformation as a means for 3D optical memory devices," Opt. Commun. 128, 205-210 (1996).
[CrossRef]

Fan, M.

B. Yao, Y. Wang, N. Menke, M. Lei, Y. Zheng, L. Ren, G. Chen, Y. Chen, and M. Fan, "Optical properties and applications of photochromic fulgides," Mol. Cryst. Liq. Cryst. 430, 211-219 (2005).
[CrossRef]

Feldner, A.

D. Scherer, R. Dörfler, A. Feldner, T. Vogtmann, M. Schwoerer, U. Lawrentz, W. Grahn, and C. Lambert, "Two-photon states in squaraine monomers and oligomers," Chem. Phys. 279, 179-207 (2002).
[CrossRef]

Feng, Y.

Y. Feng, Y. Yan, S. Wang, W. Zhu, S. Qian, and H. Tian, "Photochromic thiophene oligomers based on bisthienylethene: synthesis, photochromic and two-photon properties," J. Mater. Chem. 16, 3685-3692 (2006).
[CrossRef]

Filatov, I. V.

E. I. Zenkevich, A. M. Shulga, I. V. Filatov, A. V. Chernook, and G. P. Gurinovich, "NH tautomerism and visible absorption spectra of porphyrins with asymmetrical substitution: oscillator model and MO calculations," Chem. Phys. Lett. 120, 63-68 (1985).
[CrossRef]

Flom, S. R.

E. M. Maya, A. W. Snow, J. S. Shirk, R. G. S. Pong, S. R. Flom, and G. L. Roberts, "Synthesis, aggregation, behavior and nonlinear absorption properties of lead phthalocyanines substituted with siloxane chains," J. Mater. Chem. 13, 1601-1613 (2003).
[CrossRef]

J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, "Effect of axial substitution on the optical limiting properties of indium phthalocyanines," J. Phys. Chem. A 104, 1438-1449 (2000).
[CrossRef]

Frank-Kamenetskii, M. D.

M. D. Frank-Kamenetskii and A. V. Lukashin, "Electron-oscillatory interactions in polyatomic-molecules," Usp. Fiz. Nauk 116, 193-229 (1975) (in Russian).
[CrossRef]

Freyer, W.

K. Teuchner, A. Pfarrherr, H. Stiel, W. Freyer, and D. Leupold, "Spectroscopic properties of potential sensitizers for new photodynamic therapy start mechanisms via 2-step excited electronic states," Photochem. Photobiol. 57, 465-471 (1993).
[CrossRef] [PubMed]

Gouterman, M.

M. Gouterman, "Spectra of porphyrins," J. Mol. Spectrosc. 6, 138-163 (1961).
[CrossRef]

Grahn, W.

D. Scherer, R. Dörfler, A. Feldner, T. Vogtmann, M. Schwoerer, U. Lawrentz, W. Grahn, and C. Lambert, "Two-photon states in squaraine monomers and oligomers," Chem. Phys. 279, 179-207 (2002).
[CrossRef]

Gu, M.

Gurinovich, G. P.

E. I. Zenkevich, A. M. Shulga, I. V. Filatov, A. V. Chernook, and G. P. Gurinovich, "NH tautomerism and visible absorption spectra of porphyrins with asymmetrical substitution: oscillator model and MO calculations," Chem. Phys. Lett. 120, 63-68 (1985).
[CrossRef]

Hagan, D. J.

J. M. Hales, D. J. Hagan, E. W. Van Stryland, K. J. Schafer, A. R. Morales, K. D. Belfield, P. Pacher, O. Kwon, E. Zojer, and J. L. Bredas, "Resonant enhancement of two-photon absorption in substituted fluorine molecules," J. Chem. Phys. 121, 3152-3160 (2004).
[CrossRef] [PubMed]

Hales, J. M.

J. M. Hales, D. J. Hagan, E. W. Van Stryland, K. J. Schafer, A. R. Morales, K. D. Belfield, P. Pacher, O. Kwon, E. Zojer, and J. L. Bredas, "Resonant enhancement of two-photon absorption in substituted fluorine molecules," J. Chem. Phys. 121, 3152-3160 (2004).
[CrossRef] [PubMed]

Hanack, M.

J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, "Effect of axial substitution on the optical limiting properties of indium phthalocyanines," J. Phys. Chem. A 104, 1438-1449 (2000).
[CrossRef]

Heckmann, H.

J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, "Effect of axial substitution on the optical limiting properties of indium phthalocyanines," J. Phys. Chem. A 104, 1438-1449 (2000).
[CrossRef]

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Herter, R.

I. Rückmann, A. Zeug, R. Herter, and B. Röder, "On the influence of higher excited states in the ISC quantum yield of octa-α-alkyloxy-substituted Zn-phthalocyanine molecules studied by nonlinear absorption," Photochem. Photobiol. 66, 576-584 (1997).
[CrossRef]

Hohenau, A.

A. Hohenau, C. Cagran, G. Kranzelbinder, U. Scherf, and G. Leising, "Efficient continuous-wave two-photon absorption in para-phenylene-type polymers," Adv. Mater. (Weinheim, Ger.) 13, 1303-1307 (2001).
[CrossRef]

Huang, Z.-L.

C. Corredor, Z.-L. Huang, and K. D. Belfield, "Two-photon 3-D optical data storage in a photochromic diarylethene polymer composite," Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 47, 1058-1059 (2006).

Humphrey, M. G.

A. McDonagh, M. G. Humphrey, M. Samoc, and B. Luther-Davies, "Organometallic complexes for nonlinear optics. 17. Synthesis, third-order optical nonlinearities, and two-photon absorption cross section of an alkylruthenium dendrimer," Organometallics 18, 5195-5197 (1999).
[CrossRef]

Irie, M.

S. Saita, T. Yamaguchi, T. Kawai, and M. Irie, "Two-photon photochromism of diarylethene dimer derivatives," ChemPhysChem 6, 2300-2306 (2005).
[CrossRef] [PubMed]

M. Irie, guest ed., "Photochromism: memories and switches," Chem. Rev. (Washington, D.C.) 100(5), Special Issue (2000).

Iwase, Y.

K. Kamada, K. Ohta, Y. Iwase, and K. Kondo, "Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak," Chem. Phys. Lett. 372, 386-393 (2003).
[CrossRef]

Jakubczyk, D.

Jeon, S.-J.

B. R. Cho, M. J. Piao, K. H. Son, S. H. Lee, S. J. Yoon, S.-J. Jeon, and M. Cho, "Nonlinear optical and two-photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene-containing octupolar oligomers," Chem.-Eur. J. 8, 3908-3916 (2002).
[CrossRef]

Joshi, M. P.

H. E. Pudavar, M. P. Joshi, P. N. Prasad, and B. A. Reinhardt, "High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout," Appl. Phys. Lett. 74, 1338-1340 (1999).
[CrossRef]

Juodkazis, S.

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, "Femtosecond two-photon stereo-lithography," Appl. Phys. A 73, 561-566 (2001).
[CrossRef]

Kamada, K.

K. Kamada, K. Ohta, Y. Iwase, and K. Kondo, "Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak," Chem. Phys. Lett. 372, 386-393 (2003).
[CrossRef]

Karotki, A.

M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, "Extremely strong near-IR two-photon absorption in conjugated porphyrin dimers: quantitative description with three-essential-states model," J. Phys. Chem. B 109, 7223-7236 (2005).
[CrossRef]

M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, "Understanding strong two-photon absorption in π-conjugated porphyrin dimers via double-resonance enhancement in a three-level model," J. Am. Chem. Soc. 126, 15352-15353 (2004).
[CrossRef] [PubMed]

A. Karotki, M. Drobizhev, Y. Dzenis, P. N. Taylor, H. L. Anderson, and A. Rebane, "Dramatic enhancement of intrinsic two-photon absorption in a conjugated porphyrin dimer," Phys. Chem. Chem. Phys. 6, 7-10 (2004).
[CrossRef]

M. Drobizhev, A. Karotki, M. Kruk, A. Krivokapic, H. L. Anderson, and A. Rebane, "Photon energy upconversion in porphyrins: one-photon hot-band absorption versus two-photon absorption," Chem. Phys. Lett. 370, 690-699 (2003).
[CrossRef]

A. Karotki, M. Drobizhev, M. Kruk, C. Spangler, E. Nickel, N. Mamardashvili, and A. Rebane, "Enhancement of two-photon absorption in tetrapyrrolic compounds," J. Opt. Soc. Am. B 20, 321-332 (2003).
[CrossRef]

M. Drobizhev, A. Karotki, M. Kruk, and A. Rebane, "Resonance enhancement of two-photon absorption in porphyrins," Chem. Phys. Lett. 355, 175-182 (2002).
[CrossRef]

M. Drobizhev, A. Karotki, M. Kruk, N. Zh. Mamardashvili, and A. Rebane, "Drastic enhancement of two-photon absorption in porphyrins associated with symmetrical electron-accepting substitution," Chem. Phys. Lett. 361, 504-512 (2002).
[CrossRef]

M. Drobizhev, A. Karotki, A. Rebane, and C. W. Spangler, "Dendrimer molecules with record large two-photon absorption cross section," Opt. Lett. 26, 1081-1083 (2001).
[CrossRef]

A. Karotki, "Simultaneous two-photon absorption of tetrapyrrolic molecules: from femtosecond coherence experiments to photodynamic therapy," Ph.D. dissertation (Montana State University, 2003).

Kawai, T.

S. Saita, T. Yamaguchi, T. Kawai, and M. Irie, "Two-photon photochromism of diarylethene dimer derivatives," ChemPhysChem 6, 2300-2306 (2005).
[CrossRef] [PubMed]

Kawakami, T.

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, "Femtosecond two-photon stereo-lithography," Appl. Phys. A 73, 561-566 (2001).
[CrossRef]

Kawata, S.

S. Kawata and Y. Kawata, "Three-dimensional optical data storage using photochromic materials," Chem. Rev. (Washington, D.C.) 100, 1777-1788 (2000), and references therein.
[CrossRef]

Kawata, Y.

S. Kawata and Y. Kawata, "Three-dimensional optical data storage using photochromic materials," Chem. Rev. (Washington, D.C.) 100, 1777-1788 (2000), and references therein.
[CrossRef]

Kondo, K.

K. Kamada, K. Ohta, Y. Iwase, and K. Kondo, "Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak," Chem. Phys. Lett. 372, 386-393 (2003).
[CrossRef]

Koroteev, N. I.

A. A. Angeluts, N. I. Koroteev, S. A. Magnitskii, M. M. Nazarov, I. A. Ozheredov, and A. P. Shkurinov, "An experimental setup for studying photochromic compounds exposed to two-photon excitation," Instrum. Exp. Tech. 41, 94-98 (1998).

Kranzelbinder, G.

A. Hohenau, C. Cagran, G. Kranzelbinder, U. Scherf, and G. Leising, "Efficient continuous-wave two-photon absorption in para-phenylene-type polymers," Adv. Mater. (Weinheim, Ger.) 13, 1303-1307 (2001).
[CrossRef]

Krishna, T. R.

O. Mongin, T. R. Krishna, M. H. V. Werts, A.-M. Caminade, J.-P. Majoral, and M. Blanchard-Desce, "A modular approach to two-photon absorbing organic nanodots: Brilliant dendrimers as an alternative to semiconductor dots?," Chem. Commun. (Cambridge) 8, 915-917 (2006).
[CrossRef]

Krivokapic, A.

M. Drobizhev, A. Karotki, M. Kruk, A. Krivokapic, H. L. Anderson, and A. Rebane, "Photon energy upconversion in porphyrins: one-photon hot-band absorption versus two-photon absorption," Chem. Phys. Lett. 370, 690-699 (2003).
[CrossRef]

Kruk, M.

M. Drobizhev, A. Karotki, M. Kruk, A. Krivokapic, H. L. Anderson, and A. Rebane, "Photon energy upconversion in porphyrins: one-photon hot-band absorption versus two-photon absorption," Chem. Phys. Lett. 370, 690-699 (2003).
[CrossRef]

A. Karotki, M. Drobizhev, M. Kruk, C. Spangler, E. Nickel, N. Mamardashvili, and A. Rebane, "Enhancement of two-photon absorption in tetrapyrrolic compounds," J. Opt. Soc. Am. B 20, 321-332 (2003).
[CrossRef]

M. Drobizhev, A. Karotki, M. Kruk, and A. Rebane, "Resonance enhancement of two-photon absorption in porphyrins," Chem. Phys. Lett. 355, 175-182 (2002).
[CrossRef]

M. Drobizhev, A. Karotki, M. Kruk, N. Zh. Mamardashvili, and A. Rebane, "Drastic enhancement of two-photon absorption in porphyrins associated with symmetrical electron-accepting substitution," Chem. Phys. Lett. 361, 504-512 (2002).
[CrossRef]

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Kuzyk, M. G.

M. G. Kuzyk, "Doubly resonant two-photon absorption cross-sections: it does not get any bigger than this," J. Nonlinear Opt. Phys. Mater. 13, 461-466 (2004).
[CrossRef]

Kwon, O.

J. M. Hales, D. J. Hagan, E. W. Van Stryland, K. J. Schafer, A. R. Morales, K. D. Belfield, P. Pacher, O. Kwon, E. Zojer, and J. L. Bredas, "Resonant enhancement of two-photon absorption in substituted fluorine molecules," J. Chem. Phys. 121, 3152-3160 (2004).
[CrossRef] [PubMed]

Lambert, C.

D. Scherer, R. Dörfler, A. Feldner, T. Vogtmann, M. Schwoerer, U. Lawrentz, W. Grahn, and C. Lambert, "Two-photon states in squaraine monomers and oligomers," Chem. Phys. 279, 179-207 (2002).
[CrossRef]

Lawrentz, U.

D. Scherer, R. Dörfler, A. Feldner, T. Vogtmann, M. Schwoerer, U. Lawrentz, W. Grahn, and C. Lambert, "Two-photon states in squaraine monomers and oligomers," Chem. Phys. 279, 179-207 (2002).
[CrossRef]

Lee, I.-Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Lee, S. H.

B. R. Cho, M. J. Piao, K. H. Son, S. H. Lee, S. J. Yoon, S.-J. Jeon, and M. Cho, "Nonlinear optical and two-photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene-containing octupolar oligomers," Chem.-Eur. J. 8, 3908-3916 (2002).
[CrossRef]

Lee, S.-B.

W.-Y. Liao, S.-S. Wang, H.-H. Yao, C.-W. Chen, H.-P. Tasi, W.-P. Chu, J.-H. Chen, and S.-B. Lee, "Three-dimensional optical disks using fluorescent oligomer recording material," IEEE Trans. Magn. 41, 1019-1021 (2005).
[CrossRef]

Lei, M.

B. Yao, Y. Wang, N. Menke, M. Lei, Y. Zheng, L. Ren, G. Chen, Y. Chen, and M. Fan, "Optical properties and applications of photochromic fulgides," Mol. Cryst. Liq. Cryst. 430, 211-219 (2005).
[CrossRef]

Leising, G.

A. Hohenau, C. Cagran, G. Kranzelbinder, U. Scherf, and G. Leising, "Efficient continuous-wave two-photon absorption in para-phenylene-type polymers," Adv. Mater. (Weinheim, Ger.) 13, 1303-1307 (2001).
[CrossRef]

Leupold, D.

K. Teuchner, A. Pfarrherr, H. Stiel, W. Freyer, and D. Leupold, "Spectroscopic properties of potential sensitizers for new photodynamic therapy start mechanisms via 2-step excited electronic states," Photochem. Photobiol. 57, 465-471 (1993).
[CrossRef] [PubMed]

Liang, Y.

Y. Liang, A. S. Dvornikov, and P. M. Rentzepis, "Photochemistry of photochromic 2-indolylfulgides with substituents at the 1′-position of the indolylmethylene moiety," J. Photochem. Photobiol., A 146, 83-93 (2001).
[CrossRef]

Liang, Y. C.

A. S. Dvornikov, Y. C. Liang, and P. M. Rentzepis, "Ultra-high-density non-destructive readout, rewritable molecular memory," Res. Chem. Intermed. 30, 545-561 (2004).
[CrossRef]

Liao, W.-Y.

W.-Y. Liao, S.-S. Wang, H.-H. Yao, C.-W. Chen, H.-P. Tasi, W.-P. Chu, J.-H. Chen, and S.-B. Lee, "Three-dimensional optical disks using fluorescent oligomer recording material," IEEE Trans. Magn. 41, 1019-1021 (2005).
[CrossRef]

Liu, J.

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E.W. Van Stryland, "Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging," J. Phys. Org. Chem. 13, 837-849 (2000).
[CrossRef]

Liu, Y.

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E.W. Van Stryland, "Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging," J. Phys. Org. Chem. 13, 837-849 (2000).
[CrossRef]

Lo, P.-C.

A. Zeug, M. Meyer, P.-C. Lo, D. K. P. Ng, and B. Röder, "Fluorescence anisotropy and transient absorption of halogenated silicon(IV) phthalocyanines with axial poly(ethyleneglycol) substituents," J. Porphyr. Phthalocyanines 9, 298-302 (2005).
[CrossRef]

Lubchenko, A. F.

A. S. Davydov and A. F. Lubchenko, "Urbach rule for localized excitations in crystals," Sov. Phys. Dokl. 13, 325-327 (1968).

Lukashin, A. V.

M. D. Frank-Kamenetskii and A. V. Lukashin, "Electron-oscillatory interactions in polyatomic-molecules," Usp. Fiz. Nauk 116, 193-229 (1975) (in Russian).
[CrossRef]

Luther-Davies, B.

A. McDonagh, M. G. Humphrey, M. Samoc, and B. Luther-Davies, "Organometallic complexes for nonlinear optics. 17. Synthesis, third-order optical nonlinearities, and two-photon absorption cross section of an alkylruthenium dendrimer," Organometallics 18, 5195-5197 (1999).
[CrossRef]

Macfarlane, R.

S. Völker and R. Macfarlane, "Laser photochemistry and hole-burning of chlorine in crystalline n-alkanes at low temperatures," J. Chem. Phys. 73, 4476-4482 (1980).
[CrossRef]

Magnitskii, S. A.

A. A. Angeluts, N. I. Koroteev, S. A. Magnitskii, M. M. Nazarov, I. A. Ozheredov, and A. P. Shkurinov, "An experimental setup for studying photochromic compounds exposed to two-photon excitation," Instrum. Exp. Tech. 41, 94-98 (1998).

Majoral, J.-P.

O. Mongin, T. R. Krishna, M. H. V. Werts, A.-M. Caminade, J.-P. Majoral, and M. Blanchard-Desce, "A modular approach to two-photon absorbing organic nanodots: Brilliant dendrimers as an alternative to semiconductor dots?," Chem. Commun. (Cambridge) 8, 915-917 (2006).
[CrossRef]

Makarov, N. S.

M. Drobizhev, N. S. Makarov, Y. Stepanenko, and A. Rebane, "Near-infrared two-photon absorption in phthalocyanines: Enhancement of lowest gerade-gerade transition by symmetrical electron-accepting substitution," J. Chem. Phys. 124, 224701 (2006).
[CrossRef] [PubMed]

M. Drobizhev, N. S. Makarov, A. Rebane, H. Wolleb, and H. Spahni, "Very efficient two-photon induced photo-tautomerization in non-symmetrical phthalocyanines," J. Lumin. (to be published).

Malkin, J.

A. S. Dvornikov, J. Malkin, and P. M. Rentzepis, "Spectroscopy and kinetics of photochromic materials for 3D optical memory devices," J. Phys. Chem. 98, 6746-6752 (1994).
[CrossRef]

Mamardashvili, N.

Mamardashvili, N. Zh.

M. Drobizhev, A. Karotki, M. Kruk, N. Zh. Mamardashvili, and A. Rebane, "Drastic enhancement of two-photon absorption in porphyrins associated with symmetrical electron-accepting substitution," Chem. Phys. Lett. 361, 504-512 (2002).
[CrossRef]

Mandzhikov, V. F.

V. F. Mandzhikov, V. A. Murin, and V. A. Barachevskii, "Nonlinear coloration of photochromic spiropyran solutions," Sov. J. Quantum Electron. 3, 128-129 (1973).
[CrossRef]

Marder, S. R.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Matsuo, S.

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, "Femtosecond two-photon stereo-lithography," Appl. Phys. A 73, 561-566 (2001).
[CrossRef]

Maya, E. M.

E. M. Maya, A. W. Snow, J. S. Shirk, R. G. S. Pong, S. R. Flom, and G. L. Roberts, "Synthesis, aggregation, behavior and nonlinear absorption properties of lead phthalocyanines substituted with siloxane chains," J. Mater. Chem. 13, 1601-1613 (2003).
[CrossRef]

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

McCormick, F.

A. S. Dvornikov, I. Cokgor, F. McCormick, R. Piyaket, S. Esener, and P. M. Rentzepis, "Molecular transformation as a means for 3D optical memory devices," Opt. Commun. 128, 205-210 (1996).
[CrossRef]

McDonagh, A.

A. McDonagh, M. G. Humphrey, M. Samoc, and B. Luther-Davies, "Organometallic complexes for nonlinear optics. 17. Synthesis, third-order optical nonlinearities, and two-photon absorption cross section of an alkylruthenium dendrimer," Organometallics 18, 5195-5197 (1999).
[CrossRef]

Meng, F.

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, "Strong two-photon absorption in new asymmetrically substituted porphyrins: interference between charge-transfer and intermediate-resonance pathways," J. Phys. Chem. B 110, 9802-9814 (2006).
[CrossRef] [PubMed]

Menke, N.

B. Yao, Y. Wang, N. Menke, M. Lei, Y. Zheng, L. Ren, G. Chen, Y. Chen, and M. Fan, "Optical properties and applications of photochromic fulgides," Mol. Cryst. Liq. Cryst. 430, 211-219 (2005).
[CrossRef]

Meyer, M.

A. Zeug, M. Meyer, P.-C. Lo, D. K. P. Ng, and B. Röder, "Fluorescence anisotropy and transient absorption of halogenated silicon(IV) phthalocyanines with axial poly(ethyleneglycol) substituents," J. Porphyr. Phthalocyanines 9, 298-302 (2005).
[CrossRef]

Misawa, H.

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, "Femtosecond two-photon stereo-lithography," Appl. Phys. A 73, 561-566 (2001).
[CrossRef]

Miwa, M.

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, "Femtosecond two-photon stereo-lithography," Appl. Phys. A 73, 561-566 (2001).
[CrossRef]

Mongin, O.

O. Mongin, T. R. Krishna, M. H. V. Werts, A.-M. Caminade, J.-P. Majoral, and M. Blanchard-Desce, "A modular approach to two-photon absorbing organic nanodots: Brilliant dendrimers as an alternative to semiconductor dots?," Chem. Commun. (Cambridge) 8, 915-917 (2006).
[CrossRef]

Morales, A. R.

J. M. Hales, D. J. Hagan, E. W. Van Stryland, K. J. Schafer, A. R. Morales, K. D. Belfield, P. Pacher, O. Kwon, E. Zojer, and J. L. Bredas, "Resonant enhancement of two-photon absorption in substituted fluorine molecules," J. Chem. Phys. 121, 3152-3160 (2004).
[CrossRef] [PubMed]

Morrel, Y.

P. Najechalski, Y. Morrel, O. Stéphan, and P. L. Baldeck, "Two-photon absorption spectrum of poly(fluorene)," Chem. Phys. Lett. 343, 44-48, (2001).
[CrossRef]

Murin, V. A.

V. F. Mandzhikov, V. A. Murin, and V. A. Barachevskii, "Nonlinear coloration of photochromic spiropyran solutions," Sov. J. Quantum Electron. 3, 128-129 (1973).
[CrossRef]

Najechalski, P.

P. Najechalski, Y. Morrel, O. Stéphan, and P. L. Baldeck, "Two-photon absorption spectrum of poly(fluorene)," Chem. Phys. Lett. 343, 44-48, (2001).
[CrossRef]

Nazarov, M. M.

A. A. Angeluts, N. I. Koroteev, S. A. Magnitskii, M. M. Nazarov, I. A. Ozheredov, and A. P. Shkurinov, "An experimental setup for studying photochromic compounds exposed to two-photon excitation," Instrum. Exp. Tech. 41, 94-98 (1998).

Ng, D. K. P.

A. Zeug, M. Meyer, P.-C. Lo, D. K. P. Ng, and B. Röder, "Fluorescence anisotropy and transient absorption of halogenated silicon(IV) phthalocyanines with axial poly(ethyleneglycol) substituents," J. Porphyr. Phthalocyanines 9, 298-302 (2005).
[CrossRef]

Nickel, E.

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, "Strong two-photon absorption in new asymmetrically substituted porphyrins: interference between charge-transfer and intermediate-resonance pathways," J. Phys. Chem. B 110, 9802-9814 (2006).
[CrossRef] [PubMed]

A. Karotki, M. Drobizhev, M. Kruk, C. Spangler, E. Nickel, N. Mamardashvili, and A. Rebane, "Enhancement of two-photon absorption in tetrapyrrolic compounds," J. Opt. Soc. Am. B 20, 321-332 (2003).
[CrossRef]

Ohta, K.

K. Kamada, K. Ohta, Y. Iwase, and K. Kondo, "Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak," Chem. Phys. Lett. 372, 386-393 (2003).
[CrossRef]

Ozheredov, I. A.

A. A. Angeluts, N. I. Koroteev, S. A. Magnitskii, M. M. Nazarov, I. A. Ozheredov, and A. P. Shkurinov, "An experimental setup for studying photochromic compounds exposed to two-photon excitation," Instrum. Exp. Tech. 41, 94-98 (1998).

Pacher, P.

J. M. Hales, D. J. Hagan, E. W. Van Stryland, K. J. Schafer, A. R. Morales, K. D. Belfield, P. Pacher, O. Kwon, E. Zojer, and J. L. Bredas, "Resonant enhancement of two-photon absorption in substituted fluorine molecules," J. Chem. Phys. 121, 3152-3160 (2004).
[CrossRef] [PubMed]

Parsons, B.

R. R. Birge, B. Parsons, Q. W. Song, and J. R. Tallent, "Protein-based three-dimensional memories and associative processors," in Molecular Electronics, M.A.Ratner and J.Jortner, eds. (Blackwell Science, 1997), pp. 439-471.

Parthenopoulos, D. A.

D. A. Parthenopoulos and P. M. Rentzepis, "Two-photon volume information storage in doped polymer systems," J. Appl. Phys. 68, 5814-5818 (1990).
[CrossRef]

D. A. Parthenopoulos and P. M. Rentzepis, "Three-dimensional optical storage," Science 245, 843-845 (1989).
[CrossRef] [PubMed]

Perry, J. W.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Pfarrherr, A.

K. Teuchner, A. Pfarrherr, H. Stiel, W. Freyer, and D. Leupold, "Spectroscopic properties of potential sensitizers for new photodynamic therapy start mechanisms via 2-step excited electronic states," Photochem. Photobiol. 57, 465-471 (1993).
[CrossRef] [PubMed]

Piao, M. J.

B. R. Cho, M. J. Piao, K. H. Son, S. H. Lee, S. J. Yoon, S.-J. Jeon, and M. Cho, "Nonlinear optical and two-photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene-containing octupolar oligomers," Chem.-Eur. J. 8, 3908-3916 (2002).
[CrossRef]

Piyaket, R.

A. S. Dvornikov, I. Cokgor, F. McCormick, R. Piyaket, S. Esener, and P. M. Rentzepis, "Molecular transformation as a means for 3D optical memory devices," Opt. Commun. 128, 205-210 (1996).
[CrossRef]

Pong, R. G. S.

E. M. Maya, A. W. Snow, J. S. Shirk, R. G. S. Pong, S. R. Flom, and G. L. Roberts, "Synthesis, aggregation, behavior and nonlinear absorption properties of lead phthalocyanines substituted with siloxane chains," J. Mater. Chem. 13, 1601-1613 (2003).
[CrossRef]

J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, "Effect of axial substitution on the optical limiting properties of indium phthalocyanines," J. Phys. Chem. A 104, 1438-1449 (2000).
[CrossRef]

Posener, D. W.

D. W. Posener, "The shape of spectral lines: Tables of the Voigt profile," Aust. J. Phys. 12, 184-196 (1959).
[CrossRef]

Prasad, P. N.

Y. Shen, J. Swiatkiewicz, D. Jakubczyk, F. Xu, P. N. Prasad, R. A Vaia, and B. A. Reinhardt, "High-density optical data storage with one-photon and two-photon near-field fluorescence microscopy," Appl. Opt. 40, 938-940 (2001).
[CrossRef]

H. E. Pudavar, M. P. Joshi, P. N. Prasad, and B. A. Reinhardt, "High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout," Appl. Phys. Lett. 74, 1338-1340 (1999).
[CrossRef]

Pudavar, H. E.

H. E. Pudavar, M. P. Joshi, P. N. Prasad, and B. A. Reinhardt, "High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout," Appl. Phys. Lett. 74, 1338-1340 (1999).
[CrossRef]

Qian, S.

Y. Feng, Y. Yan, S. Wang, W. Zhu, S. Qian, and H. Tian, "Photochromic thiophene oligomers based on bisthienylethene: synthesis, photochromic and two-photon properties," J. Mater. Chem. 16, 3685-3692 (2006).
[CrossRef]

Qin, J.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Rebane, A.

M. Drobizhev, N. S. Makarov, Y. Stepanenko, and A. Rebane, "Near-infrared two-photon absorption in phthalocyanines: Enhancement of lowest gerade-gerade transition by symmetrical electron-accepting substitution," J. Chem. Phys. 124, 224701 (2006).
[CrossRef] [PubMed]

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, "Strong two-photon absorption in new asymmetrically substituted porphyrins: interference between charge-transfer and intermediate-resonance pathways," J. Phys. Chem. B 110, 9802-9814 (2006).
[CrossRef] [PubMed]

M. Drobizhev, Y. Stepanenko, A. Rebane, C. J. Wilson, T. E. O. Screen, and H. L. Anderson, "Strong cooperative enhancement of two-photon absorption in double-strand conjugated porphyrin ladder arrays," J. Am. Chem. Soc. 128, 12432-12433 (2006).
[CrossRef] [PubMed]

M. Drobizhev, A. Rebane, Z. Suo, and C. W. Spangler, "One-, two- and three-photon spectroscopy of π-conjugated dendrimers: cooperative enhancement and coherent domains," J. Lumin. 111, 291-305 (2005).
[CrossRef]

M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, "Extremely strong near-IR two-photon absorption in conjugated porphyrin dimers: quantitative description with three-essential-states model," J. Phys. Chem. B 109, 7223-7236 (2005).
[CrossRef]

M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, "Understanding strong two-photon absorption in π-conjugated porphyrin dimers via double-resonance enhancement in a three-level model," J. Am. Chem. Soc. 126, 15352-15353 (2004).
[CrossRef] [PubMed]

A. Karotki, M. Drobizhev, Y. Dzenis, P. N. Taylor, H. L. Anderson, and A. Rebane, "Dramatic enhancement of intrinsic two-photon absorption in a conjugated porphyrin dimer," Phys. Chem. Chem. Phys. 6, 7-10 (2004).
[CrossRef]

M. Drobizhev, A. Karotki, M. Kruk, A. Krivokapic, H. L. Anderson, and A. Rebane, "Photon energy upconversion in porphyrins: one-photon hot-band absorption versus two-photon absorption," Chem. Phys. Lett. 370, 690-699 (2003).
[CrossRef]

A. Karotki, M. Drobizhev, M. Kruk, C. Spangler, E. Nickel, N. Mamardashvili, and A. Rebane, "Enhancement of two-photon absorption in tetrapyrrolic compounds," J. Opt. Soc. Am. B 20, 321-332 (2003).
[CrossRef]

M. Drobizhev, A. Karotki, M. Kruk, and A. Rebane, "Resonance enhancement of two-photon absorption in porphyrins," Chem. Phys. Lett. 355, 175-182 (2002).
[CrossRef]

M. Drobizhev, A. Karotki, M. Kruk, N. Zh. Mamardashvili, and A. Rebane, "Drastic enhancement of two-photon absorption in porphyrins associated with symmetrical electron-accepting substitution," Chem. Phys. Lett. 361, 504-512 (2002).
[CrossRef]

M. Drobizhev, A. Karotki, A. Rebane, and C. W. Spangler, "Dendrimer molecules with record large two-photon absorption cross section," Opt. Lett. 26, 1081-1083 (2001).
[CrossRef]

M. Drobizhev, C. Sigel, and A. Rebane, "Photo-tautomer of Br-porphyrin: A new frequency-selective material for ultrafast time-space holographic storage," J. Lumin. 86, 391-3972000).
[CrossRef]

M. Drobizhev, N. S. Makarov, A. Rebane, H. Wolleb, and H. Spahni, "Very efficient two-photon induced photo-tautomerization in non-symmetrical phthalocyanines," J. Lumin. (to be published).

Rebane, K. K.

K. K. Rebane, Impurity Spectra of Solids (Plenum, 1970).

Reinhardt, B. A.

Y. Shen, J. Swiatkiewicz, D. Jakubczyk, F. Xu, P. N. Prasad, R. A Vaia, and B. A. Reinhardt, "High-density optical data storage with one-photon and two-photon near-field fluorescence microscopy," Appl. Opt. 40, 938-940 (2001).
[CrossRef]

H. E. Pudavar, M. P. Joshi, P. N. Prasad, and B. A. Reinhardt, "High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout," Appl. Phys. Lett. 74, 1338-1340 (1999).
[CrossRef]

Ren, L.

B. Yao, Y. Wang, N. Menke, M. Lei, Y. Zheng, L. Ren, G. Chen, Y. Chen, and M. Fan, "Optical properties and applications of photochromic fulgides," Mol. Cryst. Liq. Cryst. 430, 211-219 (2005).
[CrossRef]

Ren, X.

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E.W. Van Stryland, "Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging," J. Phys. Org. Chem. 13, 837-849 (2000).
[CrossRef]

Renge, I.

I. Renge, H. Wolleb, H. Spahni, and U. P. Wild, "Phthalonaphthalocyanines: new far-red dyes for spectral hole burning," J. Phys. Chem. A 101, 6202-6213 (1997).
[CrossRef]

Rentzepis, P. M.

A. S. Dvornikov, Y. C. Liang, and P. M. Rentzepis, "Ultra-high-density non-destructive readout, rewritable molecular memory," Res. Chem. Intermed. 30, 545-561 (2004).
[CrossRef]

Y. Liang, A. S. Dvornikov, and P. M. Rentzepis, "Photochemistry of photochromic 2-indolylfulgides with substituents at the 1′-position of the indolylmethylene moiety," J. Photochem. Photobiol., A 146, 83-93 (2001).
[CrossRef]

A. S. Dvornikov and P. M. Rentzepis, "Novel organic ROM materials for optical 3D memory devices," Opt. Commun. 136, 1-6 (1997).
[CrossRef]

A. S. Dvornikov, I. Cokgor, F. McCormick, R. Piyaket, S. Esener, and P. M. Rentzepis, "Molecular transformation as a means for 3D optical memory devices," Opt. Commun. 128, 205-210 (1996).
[CrossRef]

A. S. Dvornikov, J. Malkin, and P. M. Rentzepis, "Spectroscopy and kinetics of photochromic materials for 3D optical memory devices," J. Phys. Chem. 98, 6746-6752 (1994).
[CrossRef]

D. A. Parthenopoulos and P. M. Rentzepis, "Two-photon volume information storage in doped polymer systems," J. Appl. Phys. 68, 5814-5818 (1990).
[CrossRef]

D. A. Parthenopoulos and P. M. Rentzepis, "Three-dimensional optical storage," Science 245, 843-845 (1989).
[CrossRef] [PubMed]

Roberts, G. L.

E. M. Maya, A. W. Snow, J. S. Shirk, R. G. S. Pong, S. R. Flom, and G. L. Roberts, "Synthesis, aggregation, behavior and nonlinear absorption properties of lead phthalocyanines substituted with siloxane chains," J. Mater. Chem. 13, 1601-1613 (2003).
[CrossRef]

Röckel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Röder, B.

A. Zeug, M. Meyer, P.-C. Lo, D. K. P. Ng, and B. Röder, "Fluorescence anisotropy and transient absorption of halogenated silicon(IV) phthalocyanines with axial poly(ethyleneglycol) substituents," J. Porphyr. Phthalocyanines 9, 298-302 (2005).
[CrossRef]

I. Rückmann, A. Zeug, R. Herter, and B. Röder, "On the influence of higher excited states in the ISC quantum yield of octa-α-alkyloxy-substituted Zn-phthalocyanine molecules studied by nonlinear absorption," Photochem. Photobiol. 66, 576-584 (1997).
[CrossRef]

Rückmann, I.

I. Rückmann, A. Zeug, R. Herter, and B. Röder, "On the influence of higher excited states in the ISC quantum yield of octa-α-alkyloxy-substituted Zn-phthalocyanine molecules studied by nonlinear absorption," Photochem. Photobiol. 66, 576-584 (1997).
[CrossRef]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Saita, S.

S. Saita, T. Yamaguchi, T. Kawai, and M. Irie, "Two-photon photochromism of diarylethene dimer derivatives," ChemPhysChem 6, 2300-2306 (2005).
[CrossRef] [PubMed]

Samoc, M.

A. McDonagh, M. G. Humphrey, M. Samoc, and B. Luther-Davies, "Organometallic complexes for nonlinear optics. 17. Synthesis, third-order optical nonlinearities, and two-photon absorption cross section of an alkylruthenium dendrimer," Organometallics 18, 5195-5197 (1999).
[CrossRef]

Schafer, K. J.

J. M. Hales, D. J. Hagan, E. W. Van Stryland, K. J. Schafer, A. R. Morales, K. D. Belfield, P. Pacher, O. Kwon, E. Zojer, and J. L. Bredas, "Resonant enhancement of two-photon absorption in substituted fluorine molecules," J. Chem. Phys. 121, 3152-3160 (2004).
[CrossRef] [PubMed]

K. D. Belfield and K. J. Schafer, "A new photosensitive polymer material for WORM optical data storage," Chem. Mater. 14, 3656-3662 (2002).
[CrossRef]

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E.W. Van Stryland, "Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging," J. Phys. Org. Chem. 13, 837-849 (2000).
[CrossRef]

Scherer, D.

D. Scherer, R. Dörfler, A. Feldner, T. Vogtmann, M. Schwoerer, U. Lawrentz, W. Grahn, and C. Lambert, "Two-photon states in squaraine monomers and oligomers," Chem. Phys. 279, 179-207 (2002).
[CrossRef]

Scherf, U.

A. Hohenau, C. Cagran, G. Kranzelbinder, U. Scherf, and G. Leising, "Efficient continuous-wave two-photon absorption in para-phenylene-type polymers," Adv. Mater. (Weinheim, Ger.) 13, 1303-1307 (2001).
[CrossRef]

Schwoerer, M.

D. Scherer, R. Dörfler, A. Feldner, T. Vogtmann, M. Schwoerer, U. Lawrentz, W. Grahn, and C. Lambert, "Two-photon states in squaraine monomers and oligomers," Chem. Phys. 279, 179-207 (2002).
[CrossRef]

Screen, T. E. O.

M. Drobizhev, Y. Stepanenko, A. Rebane, C. J. Wilson, T. E. O. Screen, and H. L. Anderson, "Strong cooperative enhancement of two-photon absorption in double-strand conjugated porphyrin ladder arrays," J. Am. Chem. Soc. 128, 12432-12433 (2006).
[CrossRef] [PubMed]

Shen, Y.

Shirk, J. S.

E. M. Maya, A. W. Snow, J. S. Shirk, R. G. S. Pong, S. R. Flom, and G. L. Roberts, "Synthesis, aggregation, behavior and nonlinear absorption properties of lead phthalocyanines substituted with siloxane chains," J. Mater. Chem. 13, 1601-1613 (2003).
[CrossRef]

J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, "Effect of axial substitution on the optical limiting properties of indium phthalocyanines," J. Phys. Chem. A 104, 1438-1449 (2000).
[CrossRef]

Shkirman, S. F.

S. F. Shkirman, S. M. Arabei, and G. D. Egorova, "Photoinduced molecular transformations of tetrapropylchlorin in an n-octane matrix," J. Appl. Spectrosc. 31, 1370-1373 (1980).
[CrossRef]

Shkurinov, A. P.

A. A. Angeluts, N. I. Koroteev, S. A. Magnitskii, M. M. Nazarov, I. A. Ozheredov, and A. P. Shkurinov, "An experimental setup for studying photochromic compounds exposed to two-photon excitation," Instrum. Exp. Tech. 41, 94-98 (1998).

Shulga, A. M.

E. I. Zenkevich, A. M. Shulga, I. V. Filatov, A. V. Chernook, and G. P. Gurinovich, "NH tautomerism and visible absorption spectra of porphyrins with asymmetrical substitution: oscillator model and MO calculations," Chem. Phys. Lett. 120, 63-68 (1985).
[CrossRef]

Sigel, C.

M. Drobizhev, C. Sigel, and A. Rebane, "Photo-tautomer of Br-porphyrin: A new frequency-selective material for ultrafast time-space holographic storage," J. Lumin. 86, 391-3972000).
[CrossRef]

Smallridge, A.

Snow, A. W.

E. M. Maya, A. W. Snow, J. S. Shirk, R. G. S. Pong, S. R. Flom, and G. L. Roberts, "Synthesis, aggregation, behavior and nonlinear absorption properties of lead phthalocyanines substituted with siloxane chains," J. Mater. Chem. 13, 1601-1613 (2003).
[CrossRef]

Son, K. H.

B. R. Cho, M. J. Piao, K. H. Son, S. H. Lee, S. J. Yoon, S.-J. Jeon, and M. Cho, "Nonlinear optical and two-photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene-containing octupolar oligomers," Chem.-Eur. J. 8, 3908-3916 (2002).
[CrossRef]

Song, Q. W.

R. R. Birge, B. Parsons, Q. W. Song, and J. R. Tallent, "Protein-based three-dimensional memories and associative processors," in Molecular Electronics, M.A.Ratner and J.Jortner, eds. (Blackwell Science, 1997), pp. 439-471.

Spahni, H.

I. Renge, H. Wolleb, H. Spahni, and U. P. Wild, "Phthalonaphthalocyanines: new far-red dyes for spectral hole burning," J. Phys. Chem. A 101, 6202-6213 (1997).
[CrossRef]

M. Drobizhev, N. S. Makarov, A. Rebane, H. Wolleb, and H. Spahni, "Very efficient two-photon induced photo-tautomerization in non-symmetrical phthalocyanines," J. Lumin. (to be published).

Spangler, C.

Spangler, C. W.

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, "Strong two-photon absorption in new asymmetrically substituted porphyrins: interference between charge-transfer and intermediate-resonance pathways," J. Phys. Chem. B 110, 9802-9814 (2006).
[CrossRef] [PubMed]

M. Drobizhev, A. Rebane, Z. Suo, and C. W. Spangler, "One-, two- and three-photon spectroscopy of π-conjugated dendrimers: cooperative enhancement and coherent domains," J. Lumin. 111, 291-305 (2005).
[CrossRef]

M. Drobizhev, A. Karotki, A. Rebane, and C. W. Spangler, "Dendrimer molecules with record large two-photon absorption cross section," Opt. Lett. 26, 1081-1083 (2001).
[CrossRef]

Stepanenko, Y.

M. Drobizhev, Y. Stepanenko, A. Rebane, C. J. Wilson, T. E. O. Screen, and H. L. Anderson, "Strong cooperative enhancement of two-photon absorption in double-strand conjugated porphyrin ladder arrays," J. Am. Chem. Soc. 128, 12432-12433 (2006).
[CrossRef] [PubMed]

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, "Strong two-photon absorption in new asymmetrically substituted porphyrins: interference between charge-transfer and intermediate-resonance pathways," J. Phys. Chem. B 110, 9802-9814 (2006).
[CrossRef] [PubMed]

M. Drobizhev, N. S. Makarov, Y. Stepanenko, and A. Rebane, "Near-infrared two-photon absorption in phthalocyanines: Enhancement of lowest gerade-gerade transition by symmetrical electron-accepting substitution," J. Chem. Phys. 124, 224701 (2006).
[CrossRef] [PubMed]

M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, "Extremely strong near-IR two-photon absorption in conjugated porphyrin dimers: quantitative description with three-essential-states model," J. Phys. Chem. B 109, 7223-7236 (2005).
[CrossRef]

M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, "Understanding strong two-photon absorption in π-conjugated porphyrin dimers via double-resonance enhancement in a three-level model," J. Am. Chem. Soc. 126, 15352-15353 (2004).
[CrossRef] [PubMed]

Stéphan, O.

P. Najechalski, Y. Morrel, O. Stéphan, and P. L. Baldeck, "Two-photon absorption spectrum of poly(fluorene)," Chem. Phys. Lett. 343, 44-48, (2001).
[CrossRef]

Stiel, H.

K. Teuchner, A. Pfarrherr, H. Stiel, W. Freyer, and D. Leupold, "Spectroscopic properties of potential sensitizers for new photodynamic therapy start mechanisms via 2-step excited electronic states," Photochem. Photobiol. 57, 465-471 (1993).
[CrossRef] [PubMed]

Strickler, J. H.

J. H. Strickler and W. W. Webb, "3-D optical data storage by two-photon excitation," Adv. Mater. (Weinheim, Ger.) 5, 1479-481 (1993).
[CrossRef]

Suo, Z.

M. Drobizhev, A. Rebane, Z. Suo, and C. W. Spangler, "One-, two- and three-photon spectroscopy of π-conjugated dendrimers: cooperative enhancement and coherent domains," J. Lumin. 111, 291-305 (2005).
[CrossRef]

Swiatkiewicz, J.

Tallent, J. R.

R. R. Birge, B. Parsons, Q. W. Song, and J. R. Tallent, "Protein-based three-dimensional memories and associative processors," in Molecular Electronics, M.A.Ratner and J.Jortner, eds. (Blackwell Science, 1997), pp. 439-471.

Tasi, H.-P.

W.-Y. Liao, S.-S. Wang, H.-H. Yao, C.-W. Chen, H.-P. Tasi, W.-P. Chu, J.-H. Chen, and S.-B. Lee, "Three-dimensional optical disks using fluorescent oligomer recording material," IEEE Trans. Magn. 41, 1019-1021 (2005).
[CrossRef]

Taylor, P. N.

M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, "Extremely strong near-IR two-photon absorption in conjugated porphyrin dimers: quantitative description with three-essential-states model," J. Phys. Chem. B 109, 7223-7236 (2005).
[CrossRef]

M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, "Understanding strong two-photon absorption in π-conjugated porphyrin dimers via double-resonance enhancement in a three-level model," J. Am. Chem. Soc. 126, 15352-15353 (2004).
[CrossRef] [PubMed]

A. Karotki, M. Drobizhev, Y. Dzenis, P. N. Taylor, H. L. Anderson, and A. Rebane, "Dramatic enhancement of intrinsic two-photon absorption in a conjugated porphyrin dimer," Phys. Chem. Chem. Phys. 6, 7-10 (2004).
[CrossRef]

Teuchner, K.

K. Teuchner, A. Pfarrherr, H. Stiel, W. Freyer, and D. Leupold, "Spectroscopic properties of potential sensitizers for new photodynamic therapy start mechanisms via 2-step excited electronic states," Photochem. Photobiol. 57, 465-471 (1993).
[CrossRef] [PubMed]

Tian, H.

Y. Feng, Y. Yan, S. Wang, W. Zhu, S. Qian, and H. Tian, "Photochromic thiophene oligomers based on bisthienylethene: synthesis, photochromic and two-photon properties," J. Mater. Chem. 16, 3685-3692 (2006).
[CrossRef]

Van Stryland, E. W.

J. M. Hales, D. J. Hagan, E. W. Van Stryland, K. J. Schafer, A. R. Morales, K. D. Belfield, P. Pacher, O. Kwon, E. Zojer, and J. L. Bredas, "Resonant enhancement of two-photon absorption in substituted fluorine molecules," J. Chem. Phys. 121, 3152-3160 (2004).
[CrossRef] [PubMed]

Van Stryland, E.W.

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E.W. Van Stryland, "Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging," J. Phys. Org. Chem. 13, 837-849 (2000).
[CrossRef]

Vogtmann, T.

D. Scherer, R. Dörfler, A. Feldner, T. Vogtmann, M. Schwoerer, U. Lawrentz, W. Grahn, and C. Lambert, "Two-photon states in squaraine monomers and oligomers," Chem. Phys. 279, 179-207 (2002).
[CrossRef]

Völker, S.

S. Völker and R. Macfarlane, "Laser photochemistry and hole-burning of chlorine in crystalline n-alkanes at low temperatures," J. Chem. Phys. 73, 4476-4482 (1980).
[CrossRef]

Wang, S.

Y. Feng, Y. Yan, S. Wang, W. Zhu, S. Qian, and H. Tian, "Photochromic thiophene oligomers based on bisthienylethene: synthesis, photochromic and two-photon properties," J. Mater. Chem. 16, 3685-3692 (2006).
[CrossRef]

Wang, S.-S.

W.-Y. Liao, S.-S. Wang, H.-H. Yao, C.-W. Chen, H.-P. Tasi, W.-P. Chu, J.-H. Chen, and S.-B. Lee, "Three-dimensional optical disks using fluorescent oligomer recording material," IEEE Trans. Magn. 41, 1019-1021 (2005).
[CrossRef]

Wang, Y.

B. Yao, Y. Wang, N. Menke, M. Lei, Y. Zheng, L. Ren, G. Chen, Y. Chen, and M. Fan, "Optical properties and applications of photochromic fulgides," Mol. Cryst. Liq. Cryst. 430, 211-219 (2005).
[CrossRef]

Webb, W. W.

J. H. Strickler and W. W. Webb, "3-D optical data storage by two-photon excitation," Adv. Mater. (Weinheim, Ger.) 5, 1479-481 (1993).
[CrossRef]

Werts, M. H. V.

O. Mongin, T. R. Krishna, M. H. V. Werts, A.-M. Caminade, J.-P. Majoral, and M. Blanchard-Desce, "A modular approach to two-photon absorbing organic nanodots: Brilliant dendrimers as an alternative to semiconductor dots?," Chem. Commun. (Cambridge) 8, 915-917 (2006).
[CrossRef]

Wild, U. P.

I. Renge, H. Wolleb, H. Spahni, and U. P. Wild, "Phthalonaphthalocyanines: new far-red dyes for spectral hole burning," J. Phys. Chem. A 101, 6202-6213 (1997).
[CrossRef]

Wilson, C. J.

M. Drobizhev, Y. Stepanenko, A. Rebane, C. J. Wilson, T. E. O. Screen, and H. L. Anderson, "Strong cooperative enhancement of two-photon absorption in double-strand conjugated porphyrin ladder arrays," J. Am. Chem. Soc. 128, 12432-12433 (2006).
[CrossRef] [PubMed]

Wolleb, H.

I. Renge, H. Wolleb, H. Spahni, and U. P. Wild, "Phthalonaphthalocyanines: new far-red dyes for spectral hole burning," J. Phys. Chem. A 101, 6202-6213 (1997).
[CrossRef]

M. Drobizhev, N. S. Makarov, A. Rebane, H. Wolleb, and H. Spahni, "Very efficient two-photon induced photo-tautomerization in non-symmetrical phthalocyanines," J. Lumin. (to be published).

Wu, X.-L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Xu, F.

Yamaguchi, T.

S. Saita, T. Yamaguchi, T. Kawai, and M. Irie, "Two-photon photochromism of diarylethene dimer derivatives," ChemPhysChem 6, 2300-2306 (2005).
[CrossRef] [PubMed]

Yan, Y.

Y. Feng, Y. Yan, S. Wang, W. Zhu, S. Qian, and H. Tian, "Photochromic thiophene oligomers based on bisthienylethene: synthesis, photochromic and two-photon properties," J. Mater. Chem. 16, 3685-3692 (2006).
[CrossRef]

Yao, B.

B. Yao, Y. Wang, N. Menke, M. Lei, Y. Zheng, L. Ren, G. Chen, Y. Chen, and M. Fan, "Optical properties and applications of photochromic fulgides," Mol. Cryst. Liq. Cryst. 430, 211-219 (2005).
[CrossRef]

Yao, H.-H.

W.-Y. Liao, S.-S. Wang, H.-H. Yao, C.-W. Chen, H.-P. Tasi, W.-P. Chu, J.-H. Chen, and S.-B. Lee, "Three-dimensional optical disks using fluorescent oligomer recording material," IEEE Trans. Magn. 41, 1019-1021 (2005).
[CrossRef]

Yoon, S. J.

B. R. Cho, M. J. Piao, K. H. Son, S. H. Lee, S. J. Yoon, S.-J. Jeon, and M. Cho, "Nonlinear optical and two-photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene-containing octupolar oligomers," Chem.-Eur. J. 8, 3908-3916 (2002).
[CrossRef]

Zenkevich, E. I.

E. I. Zenkevich, A. M. Shulga, I. V. Filatov, A. V. Chernook, and G. P. Gurinovich, "NH tautomerism and visible absorption spectra of porphyrins with asymmetrical substitution: oscillator model and MO calculations," Chem. Phys. Lett. 120, 63-68 (1985).
[CrossRef]

Zeug, A.

A. Zeug, M. Meyer, P.-C. Lo, D. K. P. Ng, and B. Röder, "Fluorescence anisotropy and transient absorption of halogenated silicon(IV) phthalocyanines with axial poly(ethyleneglycol) substituents," J. Porphyr. Phthalocyanines 9, 298-302 (2005).
[CrossRef]

I. Rückmann, A. Zeug, R. Herter, and B. Röder, "On the influence of higher excited states in the ISC quantum yield of octa-α-alkyloxy-substituted Zn-phthalocyanine molecules studied by nonlinear absorption," Photochem. Photobiol. 66, 576-584 (1997).
[CrossRef]

Zheng, Y.

B. Yao, Y. Wang, N. Menke, M. Lei, Y. Zheng, L. Ren, G. Chen, Y. Chen, and M. Fan, "Optical properties and applications of photochromic fulgides," Mol. Cryst. Liq. Cryst. 430, 211-219 (2005).
[CrossRef]

Zhu, W.

Y. Feng, Y. Yan, S. Wang, W. Zhu, S. Qian, and H. Tian, "Photochromic thiophene oligomers based on bisthienylethene: synthesis, photochromic and two-photon properties," J. Mater. Chem. 16, 3685-3692 (2006).
[CrossRef]

Zojer, E.

J. M. Hales, D. J. Hagan, E. W. Van Stryland, K. J. Schafer, A. R. Morales, K. D. Belfield, P. Pacher, O. Kwon, E. Zojer, and J. L. Bredas, "Resonant enhancement of two-photon absorption in substituted fluorine molecules," J. Chem. Phys. 121, 3152-3160 (2004).
[CrossRef] [PubMed]

Adv. Mater. (Weinheim, Ger.) (2)

J. H. Strickler and W. W. Webb, "3-D optical data storage by two-photon excitation," Adv. Mater. (Weinheim, Ger.) 5, 1479-481 (1993).
[CrossRef]

A. Hohenau, C. Cagran, G. Kranzelbinder, U. Scherf, and G. Leising, "Efficient continuous-wave two-photon absorption in para-phenylene-type polymers," Adv. Mater. (Weinheim, Ger.) 13, 1303-1307 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, "Femtosecond two-photon stereo-lithography," Appl. Phys. A 73, 561-566 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

H. E. Pudavar, M. P. Joshi, P. N. Prasad, and B. A. Reinhardt, "High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout," Appl. Phys. Lett. 74, 1338-1340 (1999).
[CrossRef]

Aust. J. Phys. (1)

D. W. Posener, "The shape of spectral lines: Tables of the Voigt profile," Aust. J. Phys. 12, 184-196 (1959).
[CrossRef]

Chem. Commun. (Cambridge) (1)

O. Mongin, T. R. Krishna, M. H. V. Werts, A.-M. Caminade, J.-P. Majoral, and M. Blanchard-Desce, "A modular approach to two-photon absorbing organic nanodots: Brilliant dendrimers as an alternative to semiconductor dots?," Chem. Commun. (Cambridge) 8, 915-917 (2006).
[CrossRef]

Chem. Mater. (1)

K. D. Belfield and K. J. Schafer, "A new photosensitive polymer material for WORM optical data storage," Chem. Mater. 14, 3656-3662 (2002).
[CrossRef]

Chem. Phys. (1)

D. Scherer, R. Dörfler, A. Feldner, T. Vogtmann, M. Schwoerer, U. Lawrentz, W. Grahn, and C. Lambert, "Two-photon states in squaraine monomers and oligomers," Chem. Phys. 279, 179-207 (2002).
[CrossRef]

Chem. Phys. Lett. (6)

P. Najechalski, Y. Morrel, O. Stéphan, and P. L. Baldeck, "Two-photon absorption spectrum of poly(fluorene)," Chem. Phys. Lett. 343, 44-48, (2001).
[CrossRef]

M. Drobizhev, A. Karotki, M. Kruk, N. Zh. Mamardashvili, and A. Rebane, "Drastic enhancement of two-photon absorption in porphyrins associated with symmetrical electron-accepting substitution," Chem. Phys. Lett. 361, 504-512 (2002).
[CrossRef]

E. I. Zenkevich, A. M. Shulga, I. V. Filatov, A. V. Chernook, and G. P. Gurinovich, "NH tautomerism and visible absorption spectra of porphyrins with asymmetrical substitution: oscillator model and MO calculations," Chem. Phys. Lett. 120, 63-68 (1985).
[CrossRef]

M. Drobizhev, A. Karotki, M. Kruk, A. Krivokapic, H. L. Anderson, and A. Rebane, "Photon energy upconversion in porphyrins: one-photon hot-band absorption versus two-photon absorption," Chem. Phys. Lett. 370, 690-699 (2003).
[CrossRef]

M. Drobizhev, A. Karotki, M. Kruk, and A. Rebane, "Resonance enhancement of two-photon absorption in porphyrins," Chem. Phys. Lett. 355, 175-182 (2002).
[CrossRef]

K. Kamada, K. Ohta, Y. Iwase, and K. Kondo, "Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak," Chem. Phys. Lett. 372, 386-393 (2003).
[CrossRef]

Chem. Rev. (Washington, D.C.) (2)

S. Kawata and Y. Kawata, "Three-dimensional optical data storage using photochromic materials," Chem. Rev. (Washington, D.C.) 100, 1777-1788 (2000), and references therein.
[CrossRef]

M. Irie, guest ed., "Photochromism: memories and switches," Chem. Rev. (Washington, D.C.) 100(5), Special Issue (2000).

Chem.-Eur. J. (1)

B. R. Cho, M. J. Piao, K. H. Son, S. H. Lee, S. J. Yoon, S.-J. Jeon, and M. Cho, "Nonlinear optical and two-photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene-containing octupolar oligomers," Chem.-Eur. J. 8, 3908-3916 (2002).
[CrossRef]

ChemPhysChem (1)

S. Saita, T. Yamaguchi, T. Kawai, and M. Irie, "Two-photon photochromism of diarylethene dimer derivatives," ChemPhysChem 6, 2300-2306 (2005).
[CrossRef] [PubMed]

IEEE Trans. Magn. (1)

W.-Y. Liao, S.-S. Wang, H.-H. Yao, C.-W. Chen, H.-P. Tasi, W.-P. Chu, J.-H. Chen, and S.-B. Lee, "Three-dimensional optical disks using fluorescent oligomer recording material," IEEE Trans. Magn. 41, 1019-1021 (2005).
[CrossRef]

Instrum. Exp. Tech. (1)

A. A. Angeluts, N. I. Koroteev, S. A. Magnitskii, M. M. Nazarov, I. A. Ozheredov, and A. P. Shkurinov, "An experimental setup for studying photochromic compounds exposed to two-photon excitation," Instrum. Exp. Tech. 41, 94-98 (1998).

J. Am. Chem. Soc. (2)

M. Drobizhev, Y. Stepanenko, A. Rebane, C. J. Wilson, T. E. O. Screen, and H. L. Anderson, "Strong cooperative enhancement of two-photon absorption in double-strand conjugated porphyrin ladder arrays," J. Am. Chem. Soc. 128, 12432-12433 (2006).
[CrossRef] [PubMed]

M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, "Understanding strong two-photon absorption in π-conjugated porphyrin dimers via double-resonance enhancement in a three-level model," J. Am. Chem. Soc. 126, 15352-15353 (2004).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

D. A. Parthenopoulos and P. M. Rentzepis, "Two-photon volume information storage in doped polymer systems," J. Appl. Phys. 68, 5814-5818 (1990).
[CrossRef]

J. Appl. Spectrosc. (1)

S. F. Shkirman, S. M. Arabei, and G. D. Egorova, "Photoinduced molecular transformations of tetrapropylchlorin in an n-octane matrix," J. Appl. Spectrosc. 31, 1370-1373 (1980).
[CrossRef]

J. Chem. Phys. (3)

S. Völker and R. Macfarlane, "Laser photochemistry and hole-burning of chlorine in crystalline n-alkanes at low temperatures," J. Chem. Phys. 73, 4476-4482 (1980).
[CrossRef]

J. M. Hales, D. J. Hagan, E. W. Van Stryland, K. J. Schafer, A. R. Morales, K. D. Belfield, P. Pacher, O. Kwon, E. Zojer, and J. L. Bredas, "Resonant enhancement of two-photon absorption in substituted fluorine molecules," J. Chem. Phys. 121, 3152-3160 (2004).
[CrossRef] [PubMed]

M. Drobizhev, N. S. Makarov, Y. Stepanenko, and A. Rebane, "Near-infrared two-photon absorption in phthalocyanines: Enhancement of lowest gerade-gerade transition by symmetrical electron-accepting substitution," J. Chem. Phys. 124, 224701 (2006).
[CrossRef] [PubMed]

J. Lumin. (2)

M. Drobizhev, C. Sigel, and A. Rebane, "Photo-tautomer of Br-porphyrin: A new frequency-selective material for ultrafast time-space holographic storage," J. Lumin. 86, 391-3972000).
[CrossRef]

M. Drobizhev, A. Rebane, Z. Suo, and C. W. Spangler, "One-, two- and three-photon spectroscopy of π-conjugated dendrimers: cooperative enhancement and coherent domains," J. Lumin. 111, 291-305 (2005).
[CrossRef]

J. Mater. Chem. (2)

Y. Feng, Y. Yan, S. Wang, W. Zhu, S. Qian, and H. Tian, "Photochromic thiophene oligomers based on bisthienylethene: synthesis, photochromic and two-photon properties," J. Mater. Chem. 16, 3685-3692 (2006).
[CrossRef]

E. M. Maya, A. W. Snow, J. S. Shirk, R. G. S. Pong, S. R. Flom, and G. L. Roberts, "Synthesis, aggregation, behavior and nonlinear absorption properties of lead phthalocyanines substituted with siloxane chains," J. Mater. Chem. 13, 1601-1613 (2003).
[CrossRef]

J. Mol. Spectrosc. (1)

M. Gouterman, "Spectra of porphyrins," J. Mol. Spectrosc. 6, 138-163 (1961).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

M. G. Kuzyk, "Doubly resonant two-photon absorption cross-sections: it does not get any bigger than this," J. Nonlinear Opt. Phys. Mater. 13, 461-466 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol., A (1)

Y. Liang, A. S. Dvornikov, and P. M. Rentzepis, "Photochemistry of photochromic 2-indolylfulgides with substituents at the 1′-position of the indolylmethylene moiety," J. Photochem. Photobiol., A 146, 83-93 (2001).
[CrossRef]

J. Phys. Chem. (1)

A. S. Dvornikov, J. Malkin, and P. M. Rentzepis, "Spectroscopy and kinetics of photochromic materials for 3D optical memory devices," J. Phys. Chem. 98, 6746-6752 (1994).
[CrossRef]

J. Phys. Chem. A (2)

I. Renge, H. Wolleb, H. Spahni, and U. P. Wild, "Phthalonaphthalocyanines: new far-red dyes for spectral hole burning," J. Phys. Chem. A 101, 6202-6213 (1997).
[CrossRef]

J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, "Effect of axial substitution on the optical limiting properties of indium phthalocyanines," J. Phys. Chem. A 104, 1438-1449 (2000).
[CrossRef]

J. Phys. Chem. B (2)

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, "Strong two-photon absorption in new asymmetrically substituted porphyrins: interference between charge-transfer and intermediate-resonance pathways," J. Phys. Chem. B 110, 9802-9814 (2006).
[CrossRef] [PubMed]

M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, "Extremely strong near-IR two-photon absorption in conjugated porphyrin dimers: quantitative description with three-essential-states model," J. Phys. Chem. B 109, 7223-7236 (2005).
[CrossRef]

J. Phys. Org. Chem. (1)

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E.W. Van Stryland, "Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging," J. Phys. Org. Chem. 13, 837-849 (2000).
[CrossRef]

J. Porphyr. Phthalocyanines (1)

A. Zeug, M. Meyer, P.-C. Lo, D. K. P. Ng, and B. Röder, "Fluorescence anisotropy and transient absorption of halogenated silicon(IV) phthalocyanines with axial poly(ethyleneglycol) substituents," J. Porphyr. Phthalocyanines 9, 298-302 (2005).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

B. Yao, Y. Wang, N. Menke, M. Lei, Y. Zheng, L. Ren, G. Chen, Y. Chen, and M. Fan, "Optical properties and applications of photochromic fulgides," Mol. Cryst. Liq. Cryst. 430, 211-219 (2005).
[CrossRef]

Nature (1)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Opt. Commun. (2)

A. S. Dvornikov, I. Cokgor, F. McCormick, R. Piyaket, S. Esener, and P. M. Rentzepis, "Molecular transformation as a means for 3D optical memory devices," Opt. Commun. 128, 205-210 (1996).
[CrossRef]

A. S. Dvornikov and P. M. Rentzepis, "Novel organic ROM materials for optical 3D memory devices," Opt. Commun. 136, 1-6 (1997).
[CrossRef]

Opt. Lett. (2)

Organometallics (1)

A. McDonagh, M. G. Humphrey, M. Samoc, and B. Luther-Davies, "Organometallic complexes for nonlinear optics. 17. Synthesis, third-order optical nonlinearities, and two-photon absorption cross section of an alkylruthenium dendrimer," Organometallics 18, 5195-5197 (1999).
[CrossRef]

Photochem. Photobiol. (2)

K. Teuchner, A. Pfarrherr, H. Stiel, W. Freyer, and D. Leupold, "Spectroscopic properties of potential sensitizers for new photodynamic therapy start mechanisms via 2-step excited electronic states," Photochem. Photobiol. 57, 465-471 (1993).
[CrossRef] [PubMed]

I. Rückmann, A. Zeug, R. Herter, and B. Röder, "On the influence of higher excited states in the ISC quantum yield of octa-α-alkyloxy-substituted Zn-phthalocyanine molecules studied by nonlinear absorption," Photochem. Photobiol. 66, 576-584 (1997).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

A. Karotki, M. Drobizhev, Y. Dzenis, P. N. Taylor, H. L. Anderson, and A. Rebane, "Dramatic enhancement of intrinsic two-photon absorption in a conjugated porphyrin dimer," Phys. Chem. Chem. Phys. 6, 7-10 (2004).
[CrossRef]

Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) (1)

C. Corredor, Z.-L. Huang, and K. D. Belfield, "Two-photon 3-D optical data storage in a photochromic diarylethene polymer composite," Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 47, 1058-1059 (2006).

Res. Chem. Intermed. (1)

A. S. Dvornikov, Y. C. Liang, and P. M. Rentzepis, "Ultra-high-density non-destructive readout, rewritable molecular memory," Res. Chem. Intermed. 30, 545-561 (2004).
[CrossRef]

Science (1)

D. A. Parthenopoulos and P. M. Rentzepis, "Three-dimensional optical storage," Science 245, 843-845 (1989).
[CrossRef] [PubMed]

Sov. J. Quantum Electron. (1)

V. F. Mandzhikov, V. A. Murin, and V. A. Barachevskii, "Nonlinear coloration of photochromic spiropyran solutions," Sov. J. Quantum Electron. 3, 128-129 (1973).
[CrossRef]

Sov. Phys. Dokl. (1)

A. S. Davydov and A. F. Lubchenko, "Urbach rule for localized excitations in crystals," Sov. Phys. Dokl. 13, 325-327 (1968).

Usp. Fiz. Nauk (1)

M. D. Frank-Kamenetskii and A. V. Lukashin, "Electron-oscillatory interactions in polyatomic-molecules," Usp. Fiz. Nauk 116, 193-229 (1975) (in Russian).
[CrossRef]

Other (5)

M. Drobizhev, N. S. Makarov, A. Rebane, H. Wolleb, and H. Spahni, "Very efficient two-photon induced photo-tautomerization in non-symmetrical phthalocyanines," J. Lumin. (to be published).

K. K. Rebane, Impurity Spectra of Solids (Plenum, 1970).

A. Karotki, "Simultaneous two-photon absorption of tetrapyrrolic molecules: from femtosecond coherence experiments to photodynamic therapy," Ph.D. dissertation (Montana State University, 2003).

G. W. Burr, "Volumetric storage," in Encyclopedia of Optical Engineering, R.B.Johnson and R.G.Driggers, eds. (Dekker, 2003), and references therein.

R. R. Birge, B. Parsons, Q. W. Song, and J. R. Tallent, "Protein-based three-dimensional memories and associative processors," in Molecular Electronics, M.A.Ratner and J.Jortner, eds. (Blackwell Science, 1997), pp. 439-471.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Basic principle of 2PA-based volumetric optical disk. T, d h , and d v are the thickness, horizontal, and vertical sizes of the voxel, respectively; h h is the distance between two neighboring voxels in a layer; h v is the distance between layers. (a) Writing. Upon 2PA excitation, form A switches to form B, which is separated by an energy barrier (insert). (b) Readout. Two-photon absorption of form B results in its fluorescence that is collected by the focusing lens. Dichroic mirror (DM) reflects the fluorescence to a photodetector (PD).

Fig. 2
Fig. 2

Energy level diagram for two different cases of 2PA. (a) Far off-resonance 2PA is described within a two-level system approximation by the transition dipole moment μ f g between the ground state ( g ) and excited final state ( f ) and by the difference between permanent dipole moments in the two states, Δ μ = μ f f μ g g . (b) Near-resonance 2PA is described within the three-level approximation by two transition dipole moments, μ i g and μ f i , between the ground state ( g ) , excited intermediate state ( i ) and exited final state ( f ) , and by the difference between the lowest transition and laser frequencies, Δ ν = ν i g ν L .

Fig. 3
Fig. 3

SNR versus SBR diagrams obtained for an “ideal” molecule as a result of model simulations for a set of parameters described in the text and presented in Table 2, column 1. Each marked data point represents a particular integer value of detuning, ν i g ν with the corresponding value in cm 1 shown on top of the curve. The desired parameter space, where SNR > 4 and SBR > 4 , is shown as a nonshaded area. (a) shows a family of curves with different peak 2PA cross section values, σ 2 ( ν i g ) with fixed temperature ( 300 K ) , and peak laser intensity ( 3 × 10 29 photons cm 2 s 1 ) . In (b) laser intensity was varied, with fixed temperature ( 300 K ) and σ 2 ( ν i g ) ( 10 4 GM ) . (c) presents the effect of temperature variation with constant cross section ( 10 4 GM ) and intensity ( I = 10 29 photons cm 2 s 1 ) .

Fig. 4
Fig. 4

Spectral changes observed upon 2PA-induced transformation of tautomer form T 1 into form T 2 in Pc 3 Nc in polyethylene film at 77 K . The sample was irradiated with 783 nm fs laser pulses of constant intensity and different exposure times. Laser spectrum is indicated with dotted curve. Peak laser intensity was 4 × 10 27 Photons s 1 cm 2 . Vertical arrows show the spectral changes during irradiation. Inset shows the structure of the two tautomers.

Fig. 5
Fig. 5

Kinetics of 2PA-induced T 1 T 2 phototransformation at two different laser intensities. Filled circles correspond to peak intensity of 4 × 10 27 photons s 1 cm 2 and open circles: to 8 × 10 27 photons s 1 cm 2 . The continuous curves represent the best fits with exponential function.

Fig. 6
Fig. 6

1PA (solid curve) and 2PA (symbols) spectra of Pc 3 Nc . One-photon-absorption spectrum is measured in methylene chloride at room temperature. The open squares represent 2PA data obtained at room temperature in methylene chloride, open circles that obtained at 77 K in polyethylene film, and the asterisk corresponds to the datum obtained at 77 K from the rate of photochemical transformation (see Subsection 4A). Dashed curve is the best fit of experimental 2PA spectrum to the Voigt function with central frequency fixed at 13,330 cm 1 . Inset shows semilogarithmic presentation of the spectra.

Fig. 7
Fig. 7

Dependence of fluorescence signal intensity ( I ) on excitation laser pulse energy ( P ) at different laser wavelengths, presented in double-logarithmic scale. Solid curves are the best fits of data to a power dependence, I = P a . Inset shows the detuning values and a corresponding power exponent for each detuning.

Fig. 8
Fig. 8

Long-wavelength absorption of Pc 3 Nc in semilogarithmic scale. Absorption spectrum in methylene chloride at room temperature is shown by the bold solid curve and its best fit to Eqs. (15, 16), by a dash–dotted line. Thin dashed curve shows normalized and corrected fluorescence spectrum, measured at 77 K . Dotted curves show fluorescence spectra weighted with Boltzmann factor, according to Eq. (20) at different temperatures.

Fig. 9
Fig. 9

SNR versus SBR diagram, numerically simulated for Pc 3 Nc at T = 77 K . Each curve corresponds to the particular laser peak intensity, indicated on top of the curve. Different symbols on the curves label the particular values of frequency detuning from 1PA maximum. Shaded regions correspond to forbidden values of SNR < 4 and/or SBR < 4 . Other parameters used in the simulation are summarized in Table 2, third column.

Tables (2)

Tables Icon

Table 1 Properties of Photochromic Materials Suggested for Two-Photon Absorption Storage

Tables Icon

Table 2 Parameters Used in Model Simulations of SNR and SBR

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

N w = 1 2 σ 2 A I w 2 t L φ A B N 0 ,
n r = 1 2 σ 2 B φ F B I r 2 t L ( NA ) 2 2 η N w ,
SNR = n r = 1 2 2 I w I r NA t L η N 0 φ A B φ F B σ 2 ,
σ 2 = 2 ( 2 π L ) 4 5 ( h n c ) 2 μ f g 2 Δ μ f g 2 g 2 P A ( 2 ν ) ,
σ 2 = 2 ( 2 π L ) 4 5 ( h n c ) 2 ν 2 μ i g 2 μ f i 2 ( ν i g ν ) 2 + Γ 2 g 2 P A ( 2 ν ) ,
P 1 P A ( ν ) = 0 I ( ν , ν ) σ 1 ( ν ) d ν ,
P 2 P A ( ν ) = 1 2 σ 2 ( ν ) pulse I 2 ( t ) d t ,
P = P 1 P A + P 2 P A .
K w = 1 2 S R ,
N B j = i = 1 M K w N 0 φ A B S i j S P 1 P A i j ,
N B = 1 2 M N 0 φ A B P 1 P A w .
N w = N 0 φ A B P 2 P A w ,
SBR = N w N B = 2 M P 2 P A w P 1 P A w .
SNR = P 2 P A w P 2 P A r N 0 φ F φ A B ( NA ) 2 2 η ,
σ 1 ( ν ) = σ 1 max exp [ ( 1 + β ) h ( ν i g ν ) k T ] ,
β = k T h ν v ln [ ν i g ν ν v S e [ 1 exp ( h ν v k T ) ] ] ,
σ 2 ( ν ) = σ 2 ( ν i g ) ( ν ν i g ) 2 H ( a , ν ) H ( a , 0 ) g 2 P A ( 2 ν ) g 2 P A ( 2 ν i g ) ,
H ( a , u ) = a π e y 2 d y a 2 + ( u y ) 2 ,
σ 2 ( ν ) = σ 2 ( ν i g ) ( ν ν i g ) 2 H ( a , ν ) H ( a , 0 ) .
σ 1 ( ν ) σ 1 max = F ( ν ) exp ( h ( ν 1 P A ν ) k T ) ,

Metrics