Abstract

Our investigation is focused on the influence of the temporal pulse shape in chirped pulse fiber amplifier systems in which the recompression is limited due to a nonlinear chirp caused by self-phase modulation (SPM). We show that specific pulse shapes can overcome the usual limit but have to be maintained during amplification, which is not fulfilled if gain shaping occurs. We analyze numerically the possibility of spectral preshaping in order to prevent gain shaping and nonlinear distortion due to SPM.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tünnermann, "All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber," Opt. Express 11, 3332-3337 (2003).
    [CrossRef] [PubMed]
  2. F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, "131 W 220 fs fiber laser system," Opt. Lett. 30, 2754-2756 (2005).
    [CrossRef] [PubMed]
  3. M. D. Perry, T. Ditmire, and B. C. Stuart, "Self-phase modulation in chirped-pulse amplification," Opt. Lett. 19, 2149-2151 (1994).
    [CrossRef] [PubMed]
  4. C. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, "Self-starting self-similar all-polarization maintaining Yb-doped fiber laser," Opt. Express 13, 9346-9351 (2005).
    [CrossRef] [PubMed]
  5. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  6. L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. Cho, and M. Fermann, "High energy femtosecond Yb cubicon fiber amplifier," Opt. Express 13, 4717-4722 (2005).
    [CrossRef] [PubMed]
  7. S. Zhou, L. Kuznetsova, A. Chong, and F. Wise, "Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers," Opt. Express 13, 4869-4877 (2005).
    [CrossRef] [PubMed]
  8. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
    [CrossRef] [PubMed]
  9. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef] [PubMed]
  10. T. Schreiber, C. K. Nielsen, B. Ortac, J. Limpert, and A. Tünnermann, "Microjoule-level all-polarization-maintaining femtosecond fiber source," Opt. Lett. 31, 574-576 (2006).
    [CrossRef] [PubMed]
  11. K. Tamura and M. Nakazawa, "Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifers," Opt. Lett. 21, 68-70 (1996).
    [CrossRef] [PubMed]
  12. L. Kuznetsova, A. Chong, and F. W. Wise, "Interplay of nonlinearity and gain shaping in femtosecond fiber amplifiers," Opt. Lett. 31, 2640-2642 (2006).
    [CrossRef] [PubMed]
  13. D. Kaplan and P. Tournois, "Acousto-optic spectral filtering of femtosecond laser pulses," in Ultrafast Optics IV, Series in Optical Sciences, F.Krausz, G.Korn, P.Corkum, and I.A.Walmsley, eds. (Springer-Verlag, 2004), pp. 105-118.
  14. H. Takada and K. Torizuka, "Design and construction of a TW-class 12-fs Ti:sapphire chirped-pulse amplification system," IEEE J. Sel. Top. Quantum Electron. 12, 201-212 (2006).
    [CrossRef]

2006 (3)

2005 (4)

2004 (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

2003 (1)

2000 (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

1996 (1)

1994 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Buckley, J. R.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Cho, G.

Chong, A.

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Ditmire, T.

Dudley, J. M.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Fermann, M.

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Hartl, I.

Harvey, J. D.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Hohmuth, R.

Ilday, F. Ö.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Imeshev, G.

Kaplan, D.

D. Kaplan and P. Tournois, "Acousto-optic spectral filtering of femtosecond laser pulses," in Ultrafast Optics IV, Series in Optical Sciences, F.Krausz, G.Korn, P.Corkum, and I.A.Walmsley, eds. (Springer-Verlag, 2004), pp. 105-118.

Kruglov, V. I.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Kuznetsova, L.

Liem, A.

Limpert, J.

Liu, Z.

Nakazawa, M.

Nielsen, C.

Nielsen, C. K.

Nolte, S.

Ortac, B.

Ortaç, B.

Perry, M. D.

Richter, W.

Röser, F.

Rothhard, J.

Schmidt, O.

Schreiber, T.

Shah, L.

Stuart, B. C.

Takada, H.

H. Takada and K. Torizuka, "Design and construction of a TW-class 12-fs Ti:sapphire chirped-pulse amplification system," IEEE J. Sel. Top. Quantum Electron. 12, 201-212 (2006).
[CrossRef]

Tamura, K.

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Torizuka, K.

H. Takada and K. Torizuka, "Design and construction of a TW-class 12-fs Ti:sapphire chirped-pulse amplification system," IEEE J. Sel. Top. Quantum Electron. 12, 201-212 (2006).
[CrossRef]

Tournois, P.

D. Kaplan and P. Tournois, "Acousto-optic spectral filtering of femtosecond laser pulses," in Ultrafast Optics IV, Series in Optical Sciences, F.Krausz, G.Korn, P.Corkum, and I.A.Walmsley, eds. (Springer-Verlag, 2004), pp. 105-118.

Tünnermann, A.

Wise, F.

Wise, F. W.

L. Kuznetsova, A. Chong, and F. W. Wise, "Interplay of nonlinearity and gain shaping in femtosecond fiber amplifiers," Opt. Lett. 31, 2640-2642 (2006).
[CrossRef] [PubMed]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Zellmer, H.

Zhou, S.

IEEE J. Sel. Top. Quantum Electron. (1)

H. Takada and K. Torizuka, "Design and construction of a TW-class 12-fs Ti:sapphire chirped-pulse amplification system," IEEE J. Sel. Top. Quantum Electron. 12, 201-212 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Phys. Rev. Lett. (2)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Other (2)

D. Kaplan and P. Tournois, "Acousto-optic spectral filtering of femtosecond laser pulses," in Ultrafast Optics IV, Series in Optical Sciences, F.Krausz, G.Korn, P.Corkum, and I.A.Walmsley, eds. (Springer-Verlag, 2004), pp. 105-118.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Measured output spectrum of a self-similar fiber oscillator, (b) the best fit to a parabolic shape, (c) and a typical spectrum after simulating the amplification for B 1 .

Fig. 2
Fig. 2

Change of the pulse quality parameter with respect to the B integral for the three different pulse shapes that have been considered.

Fig. 3
Fig. 3

Relative peak power with respect to the B integral for the three different pulse shapes that have been considered.

Fig. 4
Fig. 4

Autocorrelation of the Gaussian pulse after recompression for low- and high-power amplification.

Fig. 5
Fig. 5

Autocorrelation of the pulse corresponding to the parabolic spectrum after recompression for low- land high-power amplification.

Fig. 6
Fig. 6

Autocorrelation of the pulse corresponding to the experimental parabolic spectrum after recompression for low- and high-power amplification.

Fig. 7
Fig. 7

Autocorrelation of the parabolic pulse after recompression with and without a gain bandwidth limit.

Fig. 8
Fig. 8

(a) Effect of the transfer function on (b) the initial Gaussian spectrum for precompensation of gain narrowing. (c) New spectrum propagates with the (d) result of an almost parabolic shape.

Fig. 9
Fig. 9

Propagation of the Gaussian pulse that was multiplied by the transfer function.

Fig. 10
Fig. 10

Autocorrelation of the parabolic pulse after recompression with and without a gain bandwidth limit.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A z = g 2 A i β 2 2 2 T 2 A + i γ A 2 A ,
φ NL = n 2 A eff ω c A ( T ) 2 z ,
δ ω = ω ω 0 = φ NL T = γ A ( T ) 2 T z ,
B = 0 L φ NL ( z ) d z = γ 0 L P 0 e g z d z = γ P 0 1 g ( e g L 1 )
Q P = T F W H M 2 T R M S .

Metrics