Abstract

Leakage channel fibers, where few air holes form a core, can be precisely engineered to create large leakage loss for higher-order modes, while maintaining negligible transmission loss for the fundamental mode. This unique property can be used for designing optical fibers with large effective area, which supports robust fundamental mode propagation. The large air holes in the design also enable the optical fibers to be bend resistant. The principles of design and operation regime are outlined, demonstrating the potential of this approach for optical fibers that propagate a fundamental mode in core diameter exceeding 100μm. Performance of a fabricated passive leakage channel fiber, an ytterbium-doped double-clad leakage channel fiber, and an ytterbium-doped polarization-maintaining double-clad leakage channel fiber are also discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers (Dekker, 2003), Chap. 4.
  2. J. Kim, P. Dupriez, C. Codemard, J. Nilsson, and J. K. Sahu, "Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off," Opt. Express 14, 5103-5113 (2006).
    [CrossRef] [PubMed]
  3. A. Kobyakov, S. Kumar, D. Chowdhury, A. B. Ruffin, M. Sauer, S. Bickham, and R. Mishra, "Design concept for optical fibers with enhanced SBS threshold," Opt. Express 13, 5338-5346 (2005).
    [CrossRef] [PubMed]
  4. M. E. Fermann, "Single-mode excitation of multimode fibers with ultrashort pulses," Opt. Lett. 23, 52-54 (1998).
    [CrossRef]
  5. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, "Low nonliearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier," Opt. Express 12, 1313-1319 (2004).
    [CrossRef] [PubMed]
  6. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, "High-power rod-type photonic crystal fiber laser," Opt. Express 13, 1055-1058 (2005).
    [CrossRef] [PubMed]
  7. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, "Extended single-mode photonic crystal fiber laser," Opt. Express 14, 2715-2720 (2006).
    [CrossRef] [PubMed]
  8. J. Fini, "Design of solid and microstructure fibers for suppression of higher-order modes," Opt. Express 13, 3477-3490 (2005).
    [CrossRef] [PubMed]
  9. L. Lavoute, P. Roy, A. Desfarges-Berthelemot, V. Kermène, and S. Février, "Design of microstructured single-mode fiber combining large mode area and high rare earth ion concentration," Opt. Express 14, 2994-2999 (2006).
    [CrossRef] [PubMed]
  10. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, "Light propagation with ultralarge modal areas in optical fibers," Opt. Lett. 31, 1797-1799 (2006).
    [CrossRef] [PubMed]
  11. S. Ramachandran, M. F. Yan, J. Jasapara, P. Wisk, S. Ghalmi, E. Monberg, and F. V. Dimarcello, "High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber," Opt. Lett. 30, 3225-3227 (2005).
    [CrossRef] [PubMed]
  12. W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong, "Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers," Opt. Lett. 30, 2855-2857 (2005).
    [CrossRef] [PubMed]
  13. X. Peng and L. Dong, "Fundamental-mode operation in polarization-maintaining ytterbium-doped fiber with an effective area of 1400 μm2," presented at the European Conference on Optical Communications, Nice, France, September, 2006, post-deadline paper Th4.2.1.
  14. J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, "Understanding bending losses in holey optical fibers," Opt. Commun. 227, 317-335 (2003).
    [CrossRef]
  15. M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, and D. Bonacinni, "Predicting macro-bending loss for large-mode area photonic crystal fibers," Opt. Express 12, 1775-1779 (2004).
    [CrossRef] [PubMed]
  16. J. Sakai and T. Kimura, "Bending loss of propagation modes in arbitrary-index profile optical fibers," Appl. Opt. 17, 1499-1506 (1978).
    [CrossRef] [PubMed]
  17. J. Sakai, "Simplified bending loss formula for single mode optical fiber," Appl. Opt. 18, 951-952 (1979).
    [CrossRef] [PubMed]
  18. K. Saitoh and M. Koshiba, "Empirical relations for simple design of photonic crystal fibers," Opt. Express 13, 267-274 (2004).
    [CrossRef]
  19. A. Mafi and J. V. Moloney, "Beam quality of photonic-crystal fibers," J. Lightwave Technol. 23, 2267-2270 (2005).
    [CrossRef]

2006 (4)

2005 (6)

2004 (3)

2003 (1)

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, "Understanding bending losses in holey optical fibers," Opt. Commun. 227, 317-335 (2003).
[CrossRef]

1998 (1)

1979 (1)

1978 (1)

Albertsen, M.

Baggett, J. C.

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, "Understanding bending losses in holey optical fibers," Opt. Commun. 227, 317-335 (2003).
[CrossRef]

Bickham, S.

Bjarklev, A.

Bonacinni, D.

Broeng, J.

Chowdhury, D.

Codemard, C.

Deguil-Robin, N.

Desfarges-Berthelemot, A.

Dimarcello, F. V.

Dong, L.

W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong, "Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers," Opt. Lett. 30, 2855-2857 (2005).
[CrossRef] [PubMed]

X. Peng and L. Dong, "Fundamental-mode operation in polarization-maintaining ytterbium-doped fiber with an effective area of 1400 μm2," presented at the European Conference on Optical Communications, Nice, France, September, 2006, post-deadline paper Th4.2.1.

Dupriez, P.

Ermeneux, S.

Fermann, M. E.

M. E. Fermann, "Single-mode excitation of multimode fibers with ultrashort pulses," Opt. Lett. 23, 52-54 (1998).
[CrossRef]

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers (Dekker, 2003), Chap. 4.

Février, S.

Finazzi, V.

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, "Understanding bending losses in holey optical fibers," Opt. Commun. 227, 317-335 (2003).
[CrossRef]

Fini, J.

Folkenberg, J. R.

Furusawa, K.

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, "Understanding bending losses in holey optical fibers," Opt. Commun. 227, 317-335 (2003).
[CrossRef]

Galvanauskas, A.

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers (Dekker, 2003), Chap. 4.

Ghalmi, S.

Jakobsen, C.

Jasapara, J.

Kermène, V.

Kim, J.

Kimura, T.

Kobyakov, A.

Koshiba, M.

Kumar, S.

Lavoute, L.

Liem, A.

Limpert, J.

Mafi, A.

Manek-Hönninger, I.

McLaughlin, J. M.

Mishra, R.

Moloney, J. V.

Monberg, E.

Monro, T. M.

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, "Understanding bending losses in holey optical fibers," Opt. Commun. 227, 317-335 (2003).
[CrossRef]

Mortensen, N. A.

Nicholson, J. W.

Nielsen, M. D.

Nilsson, J.

Nolte, S.

Peng, X.

W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong, "Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers," Opt. Lett. 30, 2855-2857 (2005).
[CrossRef] [PubMed]

X. Peng and L. Dong, "Fundamental-mode operation in polarization-maintaining ytterbium-doped fiber with an effective area of 1400 μm2," presented at the European Conference on Optical Communications, Nice, France, September, 2006, post-deadline paper Th4.2.1.

Petersson, A.

Ramachandran, S.

Reich, M.

Richardson, D. J.

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, "Understanding bending losses in holey optical fibers," Opt. Commun. 227, 317-335 (2003).
[CrossRef]

Röser, F.

Rothhardt, J.

Roy, P.

Ruffin, A. B.

Sahu, J. K.

Saitoh, K.

Sakai, J.

Salin, F.

Sauer, M.

Schmidt, O.

Schreiber, T.

Sucha, G.

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers (Dekker, 2003), Chap. 4.

Tünnermann, A.

Wisk, P.

Wong, W. S.

Yan, M. F.

Yvernault, P.

Zellmer, H.

Appl. Opt. (2)

J. Lightwave Technol. (1)

Opt. Commun. (1)

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, "Understanding bending losses in holey optical fibers," Opt. Commun. 227, 317-335 (2003).
[CrossRef]

Opt. Express (9)

J. Kim, P. Dupriez, C. Codemard, J. Nilsson, and J. K. Sahu, "Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off," Opt. Express 14, 5103-5113 (2006).
[CrossRef] [PubMed]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, "Extended single-mode photonic crystal fiber laser," Opt. Express 14, 2715-2720 (2006).
[CrossRef] [PubMed]

L. Lavoute, P. Roy, A. Desfarges-Berthelemot, V. Kermène, and S. Février, "Design of microstructured single-mode fiber combining large mode area and high rare earth ion concentration," Opt. Express 14, 2994-2999 (2006).
[CrossRef] [PubMed]

J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, "Low nonliearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier," Opt. Express 12, 1313-1319 (2004).
[CrossRef] [PubMed]

M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, and D. Bonacinni, "Predicting macro-bending loss for large-mode area photonic crystal fibers," Opt. Express 12, 1775-1779 (2004).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, "Empirical relations for simple design of photonic crystal fibers," Opt. Express 13, 267-274 (2004).
[CrossRef]

J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, "High-power rod-type photonic crystal fiber laser," Opt. Express 13, 1055-1058 (2005).
[CrossRef] [PubMed]

J. Fini, "Design of solid and microstructure fibers for suppression of higher-order modes," Opt. Express 13, 3477-3490 (2005).
[CrossRef] [PubMed]

A. Kobyakov, S. Kumar, D. Chowdhury, A. B. Ruffin, M. Sauer, S. Bickham, and R. Mishra, "Design concept for optical fibers with enhanced SBS threshold," Opt. Express 13, 5338-5346 (2005).
[CrossRef] [PubMed]

Opt. Lett. (4)

Other (2)

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers (Dekker, 2003), Chap. 4.

X. Peng and L. Dong, "Fundamental-mode operation in polarization-maintaining ytterbium-doped fiber with an effective area of 1400 μm2," presented at the European Conference on Optical Communications, Nice, France, September, 2006, post-deadline paper Th4.2.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Cross section of a LCF.

Fig. 2
Fig. 2

Leakage loss and effective mode index of modes in a LCF with 50 μ m core diameter at 1.05 μ m .

Fig. 3
Fig. 3

Operation regime of LCFs defined by a fundamental mode loss of 0.1 dB m and a second mode loss of 1 dB m at 1.05 μ m , along with effective mode index difference of the two modes when the second mode loss equals 1 dB m .

Fig. 4
Fig. 4

Operation regime of LCFs with one and two layers of holes, plotted in a normalized-wavelength-versus-normalized-hole-diameter plot.

Fig. 5
Fig. 5

Leakage loss and dispersion of lower-order modes in a 50 μ m core diameter LCF at 1.05 μ m and d Λ = 0.673 .

Fig. 6
Fig. 6

Bend loss versus bend radius for LCFs with core diameters at 50, 75, 100, 125, and 150 μ m with d Λ = 0.67 , 0.65, 0.63, 0.61, and 0.59, respectively. d Λ is chosen so that it falls around the midpoint of the operation regime defined by α 1 < 0.1 dB m and α 2 > 1 dB m .

Fig. 7
Fig. 7

Bend radius for bend loss = 0.1 dB m versus d Λ for LCFs with core diameters at 50, 75, 100, 125, and 150 μ m .

Fig. 8
Fig. 8

(a) Cross section, (b) measured near-field mode profile, and (c) simulated mode profile of the fabricated passive LCF.

Fig. 9
Fig. 9

Measured bend loss of the fabricated passive LCF on two different orientations of bending planes.

Fig. 10
Fig. 10

Measured near-field mode profile while bending output end of the fabricated passive LCF plotted in (a) logarithmic scale and (b) linear scale, along with (c) simulated mode profile of a LCF with 50 μ m core diameter at a bend radius of 15.8 cm .

Fig. 11
Fig. 11

(a) Cross section and (b) measured near-field mode profile of the fabricated ytterbium-doped double clad PCF.

Fig. 12
Fig. 12

Laser performance of the fabricated ytterbium-doped double clad PCF.

Fig. 13
Fig. 13

Bend loss of the fabricated ytterbium-doped double clad PCF.

Fig. 14
Fig. 14

(a) Cross section and (b) measured near-field mode profile of the fabricated ytterbium-doped double clad PM PCF.

Fig. 15
Fig. 15

Birefringence measured in the fabricated ytterbium-doped double clad PM PCF.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α = π 4 1 A eff ρ W exp ( 4 3 R ρ Δ V 2 W 3 ) W R ρ + V 2 2 Δ W ,

Metrics