Abstract

Leakage channel fibers, where few air holes form a core, can be precisely engineered to create large leakage loss for higher-order modes, while maintaining negligible transmission loss for the fundamental mode. This unique property can be used for designing optical fibers with large effective area, which supports robust fundamental mode propagation. The large air holes in the design also enable the optical fibers to be bend resistant. The principles of design and operation regime are outlined, demonstrating the potential of this approach for optical fibers that propagate a fundamental mode in core diameter exceeding 100μm. Performance of a fabricated passive leakage channel fiber, an ytterbium-doped double-clad leakage channel fiber, and an ytterbium-doped polarization-maintaining double-clad leakage channel fiber are also discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Bend performance of leakage channel fibers

Tsai-wei Wu, Liang Dong, and Herbert Winful
Opt. Express 16(6) 4278-4285 (2008)

Design of all-solid leakage channel fibers with large mode area and low bending loss

Kunimasa Saitoh, Yukihiro Tsuchida, Lorenzo Rosa, Masanori Koshiba, Federica Poli, Annamaria Cucinotta, Stefano Selleri, Mrinmay Pal, Mukul Paul, Debashri Ghosh, and Shyamal Bhadra
Opt. Express 17(6) 4913-4919 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription