Abstract

Design strategies for microstructured-optical-fiber (MOF-) based surface-plasmon-resonance (SPR) sensors are presented. In such sensors, plasmons on the inner surface of the large metallized channels containing analyte can be excited by a fundamental mode of a single-mode microstructured fiber. Phase matching between a plasmon and a core mode can be enforced by introducing air-filled microstructures into the fiber core. Particularly, in its simplest implementation, the effective refractive index of a fundamental mode can be lowered to match that of a plasmon by introducing a small central hole into the fiber core. Resolution of the MOF-based sensors is demonstrated to be as low as 3×105RIU, where RIU means refractive index unit. The ability to integrate large-size microfluidic channels for efficient analyte flow together with a single-mode waveguide of designable modal refractive index is attractive for the development of integrated highly sensitive MOF-SPR sensors operating at any designable wavelength.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Agranovich and D. L. Mills, Surface Polaritons--Electromagnetic Waves at Surfaces and Interfaces (North-Holland, 1982).
  2. E. Kretschmann and Z. H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch., A: Phys. Sci. 23, 2135-2136 (1968).
  3. R. C. Jorgenson and S. S. Yee, "A fiber-optic chemical sensor based on surface plasmon resonance," Sens. Actuators B 12, 213-220 (1993).
    [CrossRef]
  4. M. B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Garces, and J. Mateo, "Determination of probable alcohol yield in musts by means of an SPR optical sensor," Sens. Actuators B 11, 455-459 (1993).
    [CrossRef]
  5. R. Alonso, F. Villuendas, J. Tornos, and J. Pelayo, "New in-line optical fiber sensors based on surface plasmon excitation," Sens. Actuators A 37-38, 187-192 (1993).
  6. R. Alonso, J. Subias, J. Pelayo, F. Villuendas, and J. Tornos, "Single-mode, optical fiber sensors and tunable wavelength filters based on the resonant excitation of metal-clad modes," Appl. Opt. 33, 5197-5201 (1994).
    [CrossRef] [PubMed]
  7. J. Homola, "Optical fiber sensor based on surface plasmon resonance excitation," Sens. Actuators B 29, 401-405 (1995).
    [CrossRef]
  8. A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, "Chemical sensing by surface plasmon resonance in a multimode optical fibre," Pure Appl. Opt. 5, 227-237 (1996).
    [CrossRef]
  9. A. J. C. Tubb, F. P. Payne, R. B. Millington, and C. R. Lowe, "Single-mode optical fibre surface plasma wave chemical sensor," Sens. Actuators B 41, 1770-1771 (1997).
    [CrossRef]
  10. J. Homola, R. Slavik, and J. Ctyroky, "Interaction between fiber modes and surface plasmon wave: spectral properties," Opt. Lett. 22, 1403-1405 (1997).
    [CrossRef]
  11. R. Slavik, J. Homola, and J. Ctyroky, "Single-mode optical fiber surface plasmon resonance sensor," Sens. Actuators B 54, 74-79 (1999).
    [CrossRef]
  12. A. Diez, M. V. Andres, and J. L. Cruz, "In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers," Sens. Actuators B 73, 95-99 (2001).
    [CrossRef]
  13. M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, "Surface plasmon resonance based on a polarization-maintaining optical fiber," Sens. Actuators B 90, 236-242 (2003).
    [CrossRef]
  14. D. Monzon-Hernandez, J. Villatoro, D. Talavera, and D. Luna-Moreno, "Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks," Appl. Opt. 43, 1216-1220 (2004).
    [CrossRef] [PubMed]
  15. D. Monzon-Hernandez, and J. Villatoro, "High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor," Sens. Actuators B 115, 227-231 (2006).
    [CrossRef]
  16. H. Suzuki, M. Sugimoto, Y. Matsuiand, and J. Kondoh, "Fundamental characteristics of a dual-colour fibre optic SPR sensor," Meas. Sci. Technol. 17, 1547-1552 (2006).
    [CrossRef]
  17. J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, "Modelling of the surface plasmon resonance waveguide sensor with Bragg grating," Opt. Quantum Electron. 31, 927-941 (1999).
    [CrossRef]
  18. A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, "Chemical sensing by surface plasmon resonance in a multimode optical fibre," Pure Appl. Opt. 5, 227-237 (1995).
    [CrossRef]
  19. J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
    [CrossRef]
  20. M. Weisser, B. Menges, and S. Mittler-Neher, "Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons," Sens. Actuators B 56, 189-197 (1999).
    [CrossRef]
  21. B. D. Gupta and A. K. Sharma, "Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study," Sens. Actuators B 107, 40-46 (2005).
    [CrossRef]
  22. M. Skorobogatiy and A. Kabashin, "Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide," Opt. Express 14, 8419-8424 (2006).
    [CrossRef] [PubMed]
  23. M. Skorobogatiy and A. Kabashin, "Photon crystal waveguide-based surface plasmon resonance biosensor," Appl. Phys. Lett. 89, 143518 (2006).
    [CrossRef]
  24. B. T. Kuhmley, K. Pathmanadavel, and R. McPhedran, "Multipole analysis of photonic crystal fibers with coated inclusions," Opt. Express 14, 10851-10864 (2006).
    [CrossRef]
  25. A. Hassani and M. Skorobogatiy, "Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics," Opt. Express 14, 11616-11621 (2006).
    [CrossRef] [PubMed]
  26. P. J. A. Sazio, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
    [CrossRef] [PubMed]
  27. J. A. Harrington, "A review of IR transmitting, hollow waveguides," Fiber Integr. Opt. 19, 211-217 (2000).
    [CrossRef]
  28. N. Takeyasu, T. Tanaka, and S. Kawata, "Metal deposition deep into microstructure by electroless plating," Jpn. J. Appl. Phys., Part 1 44, 1134-1137 (2005).
    [CrossRef]
  29. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. B. Cruz, and M. C. J. Large, "Microstructured-core optical fibre for evanescent sensing applications," Opt. Express 14, 13056-13066 (2006).
    [CrossRef] [PubMed]
  30. K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, "An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode method," Anal. Chem. 74, 6323-6329 (2002).
    [CrossRef]
  31. S. J. Al-Bader and M. Imtaar, "Optical fiber hybrid-surface plasmon polaritons," J. Opt. Soc. Am. B 10, 83-88 (1993).
    [CrossRef]
  32. S. Patkovsky, A. Kabashin, and M. Meunier, "Near-infrared surface plasmon resonance sensing on a Si platform with nanoparticle-based signal enhancement," Opt. Mater. 27, 1093-1096 (2005).
    [CrossRef]
  33. L. O. Cinteza, T. Y. Ohulchanskyy, Y. Sahoo, E. J. Bergey, R. K. Pandey, and P. N. Prasad, "Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy," Mol. Pharmacol. 3, 415-423 (2006).
    [CrossRef]
  34. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]

2006 (9)

D. Monzon-Hernandez, and J. Villatoro, "High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor," Sens. Actuators B 115, 227-231 (2006).
[CrossRef]

H. Suzuki, M. Sugimoto, Y. Matsuiand, and J. Kondoh, "Fundamental characteristics of a dual-colour fibre optic SPR sensor," Meas. Sci. Technol. 17, 1547-1552 (2006).
[CrossRef]

M. Skorobogatiy and A. Kabashin, "Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide," Opt. Express 14, 8419-8424 (2006).
[CrossRef] [PubMed]

M. Skorobogatiy and A. Kabashin, "Photon crystal waveguide-based surface plasmon resonance biosensor," Appl. Phys. Lett. 89, 143518 (2006).
[CrossRef]

B. T. Kuhmley, K. Pathmanadavel, and R. McPhedran, "Multipole analysis of photonic crystal fibers with coated inclusions," Opt. Express 14, 10851-10864 (2006).
[CrossRef]

A. Hassani and M. Skorobogatiy, "Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics," Opt. Express 14, 11616-11621 (2006).
[CrossRef] [PubMed]

P. J. A. Sazio, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. B. Cruz, and M. C. J. Large, "Microstructured-core optical fibre for evanescent sensing applications," Opt. Express 14, 13056-13066 (2006).
[CrossRef] [PubMed]

L. O. Cinteza, T. Y. Ohulchanskyy, Y. Sahoo, E. J. Bergey, R. K. Pandey, and P. N. Prasad, "Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy," Mol. Pharmacol. 3, 415-423 (2006).
[CrossRef]

2005 (3)

S. Patkovsky, A. Kabashin, and M. Meunier, "Near-infrared surface plasmon resonance sensing on a Si platform with nanoparticle-based signal enhancement," Opt. Mater. 27, 1093-1096 (2005).
[CrossRef]

B. D. Gupta and A. K. Sharma, "Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study," Sens. Actuators B 107, 40-46 (2005).
[CrossRef]

N. Takeyasu, T. Tanaka, and S. Kawata, "Metal deposition deep into microstructure by electroless plating," Jpn. J. Appl. Phys., Part 1 44, 1134-1137 (2005).
[CrossRef]

2004 (1)

2003 (1)

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, "Surface plasmon resonance based on a polarization-maintaining optical fiber," Sens. Actuators B 90, 236-242 (2003).
[CrossRef]

2002 (1)

K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, "An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode method," Anal. Chem. 74, 6323-6329 (2002).
[CrossRef]

2001 (1)

A. Diez, M. V. Andres, and J. L. Cruz, "In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers," Sens. Actuators B 73, 95-99 (2001).
[CrossRef]

2000 (1)

J. A. Harrington, "A review of IR transmitting, hollow waveguides," Fiber Integr. Opt. 19, 211-217 (2000).
[CrossRef]

1999 (5)

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
[CrossRef]

M. Weisser, B. Menges, and S. Mittler-Neher, "Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons," Sens. Actuators B 56, 189-197 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

R. Slavik, J. Homola, and J. Ctyroky, "Single-mode optical fiber surface plasmon resonance sensor," Sens. Actuators B 54, 74-79 (1999).
[CrossRef]

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, "Modelling of the surface plasmon resonance waveguide sensor with Bragg grating," Opt. Quantum Electron. 31, 927-941 (1999).
[CrossRef]

1997 (2)

A. J. C. Tubb, F. P. Payne, R. B. Millington, and C. R. Lowe, "Single-mode optical fibre surface plasma wave chemical sensor," Sens. Actuators B 41, 1770-1771 (1997).
[CrossRef]

J. Homola, R. Slavik, and J. Ctyroky, "Interaction between fiber modes and surface plasmon wave: spectral properties," Opt. Lett. 22, 1403-1405 (1997).
[CrossRef]

1996 (1)

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, "Chemical sensing by surface plasmon resonance in a multimode optical fibre," Pure Appl. Opt. 5, 227-237 (1996).
[CrossRef]

1995 (2)

J. Homola, "Optical fiber sensor based on surface plasmon resonance excitation," Sens. Actuators B 29, 401-405 (1995).
[CrossRef]

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, "Chemical sensing by surface plasmon resonance in a multimode optical fibre," Pure Appl. Opt. 5, 227-237 (1995).
[CrossRef]

1994 (1)

1993 (4)

R. C. Jorgenson and S. S. Yee, "A fiber-optic chemical sensor based on surface plasmon resonance," Sens. Actuators B 12, 213-220 (1993).
[CrossRef]

M. B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Garces, and J. Mateo, "Determination of probable alcohol yield in musts by means of an SPR optical sensor," Sens. Actuators B 11, 455-459 (1993).
[CrossRef]

R. Alonso, F. Villuendas, J. Tornos, and J. Pelayo, "New in-line optical fiber sensors based on surface plasmon excitation," Sens. Actuators A 37-38, 187-192 (1993).

S. J. Al-Bader and M. Imtaar, "Optical fiber hybrid-surface plasmon polaritons," J. Opt. Soc. Am. B 10, 83-88 (1993).
[CrossRef]

1968 (1)

E. Kretschmann and Z. H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch., A: Phys. Sci. 23, 2135-2136 (1968).

Abdelmalek, F.

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, "Modelling of the surface plasmon resonance waveguide sensor with Bragg grating," Opt. Quantum Electron. 31, 927-941 (1999).
[CrossRef]

Agranovich, V. M.

V. M. Agranovich and D. L. Mills, Surface Polaritons--Electromagnetic Waves at Surfaces and Interfaces (North-Holland, 1982).

Al-Bader, S. J.

Aleggret, S.

M. B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Garces, and J. Mateo, "Determination of probable alcohol yield in musts by means of an SPR optical sensor," Sens. Actuators B 11, 455-459 (1993).
[CrossRef]

Alonso, R.

R. Alonso, J. Subias, J. Pelayo, F. Villuendas, and J. Tornos, "Single-mode, optical fiber sensors and tunable wavelength filters based on the resonant excitation of metal-clad modes," Appl. Opt. 33, 5197-5201 (1994).
[CrossRef] [PubMed]

R. Alonso, F. Villuendas, J. Tornos, and J. Pelayo, "New in-line optical fiber sensors based on surface plasmon excitation," Sens. Actuators A 37-38, 187-192 (1993).

Alonso-Chamarro, J.

M. B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Garces, and J. Mateo, "Determination of probable alcohol yield in musts by means of an SPR optical sensor," Sens. Actuators B 11, 455-459 (1993).
[CrossRef]

Andres, M. V.

A. Diez, M. V. Andres, and J. L. Cruz, "In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers," Sens. Actuators B 73, 95-99 (2001).
[CrossRef]

Barretto, E. C. S.

Bergey, E. J.

L. O. Cinteza, T. Y. Ohulchanskyy, Y. Sahoo, E. J. Bergey, R. K. Pandey, and P. N. Prasad, "Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy," Mol. Pharmacol. 3, 415-423 (2006).
[CrossRef]

Chesini, G.

Cinteza, L. O.

L. O. Cinteza, T. Y. Ohulchanskyy, Y. Sahoo, E. J. Bergey, R. K. Pandey, and P. N. Prasad, "Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy," Mol. Pharmacol. 3, 415-423 (2006).
[CrossRef]

Cordeiro, C. M. B.

Cruz, C. H. B.

Cruz, J. L.

A. Diez, M. V. Andres, and J. L. Cruz, "In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers," Sens. Actuators B 73, 95-99 (2001).
[CrossRef]

Ctyroky, J.

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, "Surface plasmon resonance based on a polarization-maintaining optical fiber," Sens. Actuators B 90, 236-242 (2003).
[CrossRef]

R. Slavik, J. Homola, and J. Ctyroky, "Single-mode optical fiber surface plasmon resonance sensor," Sens. Actuators B 54, 74-79 (1999).
[CrossRef]

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, "Modelling of the surface plasmon resonance waveguide sensor with Bragg grating," Opt. Quantum Electron. 31, 927-941 (1999).
[CrossRef]

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
[CrossRef]

J. Homola, R. Slavik, and J. Ctyroky, "Interaction between fiber modes and surface plasmon wave: spectral properties," Opt. Lett. 22, 1403-1405 (1997).
[CrossRef]

Diez, A.

A. Diez, M. V. Andres, and J. L. Cruz, "In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers," Sens. Actuators B 73, 95-99 (2001).
[CrossRef]

Ecke, W.

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, "Modelling of the surface plasmon resonance waveguide sensor with Bragg grating," Opt. Quantum Electron. 31, 927-941 (1999).
[CrossRef]

Franco, M. A. R.

Gagnaire, H.

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, "Chemical sensing by surface plasmon resonance in a multimode optical fibre," Pure Appl. Opt. 5, 227-237 (1996).
[CrossRef]

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, "Chemical sensing by surface plasmon resonance in a multimode optical fibre," Pure Appl. Opt. 5, 227-237 (1995).
[CrossRef]

Garces, I.

M. B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Garces, and J. Mateo, "Determination of probable alcohol yield in musts by means of an SPR optical sensor," Sens. Actuators B 11, 455-459 (1993).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Gupta, B. D.

B. D. Gupta and A. K. Sharma, "Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study," Sens. Actuators B 107, 40-46 (2005).
[CrossRef]

Harrington, J. A.

J. A. Harrington, "A review of IR transmitting, hollow waveguides," Fiber Integr. Opt. 19, 211-217 (2000).
[CrossRef]

Harris, R. D.

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
[CrossRef]

Hassani, A.

Hirayama, E.

K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, "An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode method," Anal. Chem. 74, 6323-6329 (2002).
[CrossRef]

Hoekstra, H. J. W. M.

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
[CrossRef]

Homola, J.

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, "Surface plasmon resonance based on a polarization-maintaining optical fiber," Sens. Actuators B 90, 236-242 (2003).
[CrossRef]

R. Slavik, J. Homola, and J. Ctyroky, "Single-mode optical fiber surface plasmon resonance sensor," Sens. Actuators B 54, 74-79 (1999).
[CrossRef]

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

J. Homola, R. Slavik, and J. Ctyroky, "Interaction between fiber modes and surface plasmon wave: spectral properties," Opt. Lett. 22, 1403-1405 (1997).
[CrossRef]

J. Homola, "Optical fiber sensor based on surface plasmon resonance excitation," Sens. Actuators B 29, 401-405 (1995).
[CrossRef]

Imtaar, M.

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, "A fiber-optic chemical sensor based on surface plasmon resonance," Sens. Actuators B 12, 213-220 (1993).
[CrossRef]

Kabashin, A.

M. Skorobogatiy and A. Kabashin, "Photon crystal waveguide-based surface plasmon resonance biosensor," Appl. Phys. Lett. 89, 143518 (2006).
[CrossRef]

M. Skorobogatiy and A. Kabashin, "Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide," Opt. Express 14, 8419-8424 (2006).
[CrossRef] [PubMed]

S. Patkovsky, A. Kabashin, and M. Meunier, "Near-infrared surface plasmon resonance sensing on a Si platform with nanoparticle-based signal enhancement," Opt. Mater. 27, 1093-1096 (2005).
[CrossRef]

Kawata, S.

N. Takeyasu, T. Tanaka, and S. Kawata, "Metal deposition deep into microstructure by electroless plating," Jpn. J. Appl. Phys., Part 1 44, 1134-1137 (2005).
[CrossRef]

Kondoh, J.

H. Suzuki, M. Sugimoto, Y. Matsuiand, and J. Kondoh, "Fundamental characteristics of a dual-colour fibre optic SPR sensor," Meas. Sci. Technol. 17, 1547-1552 (2006).
[CrossRef]

Kretschmann, E.

E. Kretschmann and Z. H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch., A: Phys. Sci. 23, 2135-2136 (1968).

Kuhmley, B. T.

Kurihara, K.

K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, "An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode method," Anal. Chem. 74, 6323-6329 (2002).
[CrossRef]

Lambeck, P. V.

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
[CrossRef]

Large, M. C. J.

Lopez, R.

M. B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Garces, and J. Mateo, "Determination of probable alcohol yield in musts by means of an SPR optical sensor," Sens. Actuators B 11, 455-459 (1993).
[CrossRef]

Lowe, C. R.

A. J. C. Tubb, F. P. Payne, R. B. Millington, and C. R. Lowe, "Single-mode optical fibre surface plasma wave chemical sensor," Sens. Actuators B 41, 1770-1771 (1997).
[CrossRef]

Luna-Moreno, D.

Lwin, R.

Lyndin, N. M.

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
[CrossRef]

Manikova, Z.

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, "Surface plasmon resonance based on a polarization-maintaining optical fiber," Sens. Actuators B 90, 236-242 (2003).
[CrossRef]

Mateo, J.

M. B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Garces, and J. Mateo, "Determination of probable alcohol yield in musts by means of an SPR optical sensor," Sens. Actuators B 11, 455-459 (1993).
[CrossRef]

Matsuiand, Y.

H. Suzuki, M. Sugimoto, Y. Matsuiand, and J. Kondoh, "Fundamental characteristics of a dual-colour fibre optic SPR sensor," Meas. Sci. Technol. 17, 1547-1552 (2006).
[CrossRef]

McPhedran, R.

Menges, B.

M. Weisser, B. Menges, and S. Mittler-Neher, "Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons," Sens. Actuators B 56, 189-197 (1999).
[CrossRef]

Meunier, M.

S. Patkovsky, A. Kabashin, and M. Meunier, "Near-infrared surface plasmon resonance sensing on a Si platform with nanoparticle-based signal enhancement," Opt. Mater. 27, 1093-1096 (2005).
[CrossRef]

Millington, R. B.

A. J. C. Tubb, F. P. Payne, R. B. Millington, and C. R. Lowe, "Single-mode optical fibre surface plasma wave chemical sensor," Sens. Actuators B 41, 1770-1771 (1997).
[CrossRef]

Mills, D. L.

V. M. Agranovich and D. L. Mills, Surface Polaritons--Electromagnetic Waves at Surfaces and Interfaces (North-Holland, 1982).

Mittler-Neher, S.

M. Weisser, B. Menges, and S. Mittler-Neher, "Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons," Sens. Actuators B 56, 189-197 (1999).
[CrossRef]

Monzon-Hernandez, D.

D. Monzon-Hernandez, and J. Villatoro, "High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor," Sens. Actuators B 115, 227-231 (2006).
[CrossRef]

D. Monzon-Hernandez, J. Villatoro, D. Talavera, and D. Luna-Moreno, "Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks," Appl. Opt. 43, 1216-1220 (2004).
[CrossRef] [PubMed]

Musa, S.

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
[CrossRef]

Nakamura, K.

K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, "An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode method," Anal. Chem. 74, 6323-6329 (2002).
[CrossRef]

Ohulchanskyy, T. Y.

L. O. Cinteza, T. Y. Ohulchanskyy, Y. Sahoo, E. J. Bergey, R. K. Pandey, and P. N. Prasad, "Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy," Mol. Pharmacol. 3, 415-423 (2006).
[CrossRef]

Pandey, R. K.

L. O. Cinteza, T. Y. Ohulchanskyy, Y. Sahoo, E. J. Bergey, R. K. Pandey, and P. N. Prasad, "Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy," Mol. Pharmacol. 3, 415-423 (2006).
[CrossRef]

Pathmanadavel, K.

Patkovsky, S.

S. Patkovsky, A. Kabashin, and M. Meunier, "Near-infrared surface plasmon resonance sensing on a Si platform with nanoparticle-based signal enhancement," Opt. Mater. 27, 1093-1096 (2005).
[CrossRef]

Payne, F. P.

A. J. C. Tubb, F. P. Payne, R. B. Millington, and C. R. Lowe, "Single-mode optical fibre surface plasma wave chemical sensor," Sens. Actuators B 41, 1770-1771 (1997).
[CrossRef]

Pelayo, J.

R. Alonso, J. Subias, J. Pelayo, F. Villuendas, and J. Tornos, "Single-mode, optical fiber sensors and tunable wavelength filters based on the resonant excitation of metal-clad modes," Appl. Opt. 33, 5197-5201 (1994).
[CrossRef] [PubMed]

R. Alonso, F. Villuendas, J. Tornos, and J. Pelayo, "New in-line optical fiber sensors based on surface plasmon excitation," Sens. Actuators A 37-38, 187-192 (1993).

Piliarik, M.

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, "Surface plasmon resonance based on a polarization-maintaining optical fiber," Sens. Actuators B 90, 236-242 (2003).
[CrossRef]

Prasad, P. N.

L. O. Cinteza, T. Y. Ohulchanskyy, Y. Sahoo, E. J. Bergey, R. K. Pandey, and P. N. Prasad, "Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy," Mol. Pharmacol. 3, 415-423 (2006).
[CrossRef]

Raether, Z. H.

E. Kretschmann and Z. H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch., A: Phys. Sci. 23, 2135-2136 (1968).

Ronot-Trioli, C.

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, "Chemical sensing by surface plasmon resonance in a multimode optical fibre," Pure Appl. Opt. 5, 227-237 (1996).
[CrossRef]

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, "Chemical sensing by surface plasmon resonance in a multimode optical fibre," Pure Appl. Opt. 5, 227-237 (1995).
[CrossRef]

Sahoo, Y.

L. O. Cinteza, T. Y. Ohulchanskyy, Y. Sahoo, E. J. Bergey, R. K. Pandey, and P. N. Prasad, "Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy," Mol. Pharmacol. 3, 415-423 (2006).
[CrossRef]

Sazio, P. J. A.

P. J. A. Sazio, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Sharma, A. K.

B. D. Gupta and A. K. Sharma, "Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study," Sens. Actuators B 107, 40-46 (2005).
[CrossRef]

Skorobogatiy, M.

Slavik, R.

R. Slavik, J. Homola, and J. Ctyroky, "Single-mode optical fiber surface plasmon resonance sensor," Sens. Actuators B 54, 74-79 (1999).
[CrossRef]

J. Homola, R. Slavik, and J. Ctyroky, "Interaction between fiber modes and surface plasmon wave: spectral properties," Opt. Lett. 22, 1403-1405 (1997).
[CrossRef]

Subias, J.

Sugimoto, M.

H. Suzuki, M. Sugimoto, Y. Matsuiand, and J. Kondoh, "Fundamental characteristics of a dual-colour fibre optic SPR sensor," Meas. Sci. Technol. 17, 1547-1552 (2006).
[CrossRef]

Suzuki, H.

H. Suzuki, M. Sugimoto, Y. Matsuiand, and J. Kondoh, "Fundamental characteristics of a dual-colour fibre optic SPR sensor," Meas. Sci. Technol. 17, 1547-1552 (2006).
[CrossRef]

Suzuki, K.

K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, "An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode method," Anal. Chem. 74, 6323-6329 (2002).
[CrossRef]

Takeyasu, N.

N. Takeyasu, T. Tanaka, and S. Kawata, "Metal deposition deep into microstructure by electroless plating," Jpn. J. Appl. Phys., Part 1 44, 1134-1137 (2005).
[CrossRef]

Talavera, D.

Tanaka, T.

N. Takeyasu, T. Tanaka, and S. Kawata, "Metal deposition deep into microstructure by electroless plating," Jpn. J. Appl. Phys., Part 1 44, 1134-1137 (2005).
[CrossRef]

Tornos, J.

R. Alonso, J. Subias, J. Pelayo, F. Villuendas, and J. Tornos, "Single-mode, optical fiber sensors and tunable wavelength filters based on the resonant excitation of metal-clad modes," Appl. Opt. 33, 5197-5201 (1994).
[CrossRef] [PubMed]

R. Alonso, F. Villuendas, J. Tornos, and J. Pelayo, "New in-line optical fiber sensors based on surface plasmon excitation," Sens. Actuators A 37-38, 187-192 (1993).

Trouillet, A.

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, "Chemical sensing by surface plasmon resonance in a multimode optical fibre," Pure Appl. Opt. 5, 227-237 (1996).
[CrossRef]

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, "Chemical sensing by surface plasmon resonance in a multimode optical fibre," Pure Appl. Opt. 5, 227-237 (1995).
[CrossRef]

Tubb, A. J. C.

A. J. C. Tubb, F. P. Payne, R. B. Millington, and C. R. Lowe, "Single-mode optical fibre surface plasma wave chemical sensor," Sens. Actuators B 41, 1770-1771 (1997).
[CrossRef]

Usbeck, K.

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, "Modelling of the surface plasmon resonance waveguide sensor with Bragg grating," Opt. Quantum Electron. 31, 927-941 (1999).
[CrossRef]

Usievich, B.

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
[CrossRef]

Veillas, C.

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, "Chemical sensing by surface plasmon resonance in a multimode optical fibre," Pure Appl. Opt. 5, 227-237 (1996).
[CrossRef]

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, "Chemical sensing by surface plasmon resonance in a multimode optical fibre," Pure Appl. Opt. 5, 227-237 (1995).
[CrossRef]

Vidal, M. B.

M. B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Garces, and J. Mateo, "Determination of probable alcohol yield in musts by means of an SPR optical sensor," Sens. Actuators B 11, 455-459 (1993).
[CrossRef]

Villatoro, J.

D. Monzon-Hernandez, and J. Villatoro, "High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor," Sens. Actuators B 115, 227-231 (2006).
[CrossRef]

D. Monzon-Hernandez, J. Villatoro, D. Talavera, and D. Luna-Moreno, "Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks," Appl. Opt. 43, 1216-1220 (2004).
[CrossRef] [PubMed]

Villuendas, F.

R. Alonso, J. Subias, J. Pelayo, F. Villuendas, and J. Tornos, "Single-mode, optical fiber sensors and tunable wavelength filters based on the resonant excitation of metal-clad modes," Appl. Opt. 33, 5197-5201 (1994).
[CrossRef] [PubMed]

R. Alonso, F. Villuendas, J. Tornos, and J. Pelayo, "New in-line optical fiber sensors based on surface plasmon excitation," Sens. Actuators A 37-38, 187-192 (1993).

Weisser, M.

M. Weisser, B. Menges, and S. Mittler-Neher, "Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons," Sens. Actuators B 56, 189-197 (1999).
[CrossRef]

Wilkinson, J. S.

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

R. C. Jorgenson and S. S. Yee, "A fiber-optic chemical sensor based on surface plasmon resonance," Sens. Actuators B 12, 213-220 (1993).
[CrossRef]

Anal. Chem. (1)

K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, "An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode method," Anal. Chem. 74, 6323-6329 (2002).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. Skorobogatiy and A. Kabashin, "Photon crystal waveguide-based surface plasmon resonance biosensor," Appl. Phys. Lett. 89, 143518 (2006).
[CrossRef]

Fiber Integr. Opt. (1)

J. A. Harrington, "A review of IR transmitting, hollow waveguides," Fiber Integr. Opt. 19, 211-217 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys., Part 1 (1)

N. Takeyasu, T. Tanaka, and S. Kawata, "Metal deposition deep into microstructure by electroless plating," Jpn. J. Appl. Phys., Part 1 44, 1134-1137 (2005).
[CrossRef]

Meas. Sci. Technol. (1)

H. Suzuki, M. Sugimoto, Y. Matsuiand, and J. Kondoh, "Fundamental characteristics of a dual-colour fibre optic SPR sensor," Meas. Sci. Technol. 17, 1547-1552 (2006).
[CrossRef]

Mol. Pharmacol. (1)

L. O. Cinteza, T. Y. Ohulchanskyy, Y. Sahoo, E. J. Bergey, R. K. Pandey, and P. N. Prasad, "Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy," Mol. Pharmacol. 3, 415-423 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. (1)

S. Patkovsky, A. Kabashin, and M. Meunier, "Near-infrared surface plasmon resonance sensing on a Si platform with nanoparticle-based signal enhancement," Opt. Mater. 27, 1093-1096 (2005).
[CrossRef]

Opt. Quantum Electron. (1)

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, "Modelling of the surface plasmon resonance waveguide sensor with Bragg grating," Opt. Quantum Electron. 31, 927-941 (1999).
[CrossRef]

Pure Appl. Opt. (2)

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, "Chemical sensing by surface plasmon resonance in a multimode optical fibre," Pure Appl. Opt. 5, 227-237 (1995).
[CrossRef]

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, "Chemical sensing by surface plasmon resonance in a multimode optical fibre," Pure Appl. Opt. 5, 227-237 (1996).
[CrossRef]

Science (1)

P. J. A. Sazio, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Sens. Actuators A (1)

R. Alonso, F. Villuendas, J. Tornos, and J. Pelayo, "New in-line optical fiber sensors based on surface plasmon excitation," Sens. Actuators A 37-38, 187-192 (1993).

Sens. Actuators B (12)

D. Monzon-Hernandez, and J. Villatoro, "High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor," Sens. Actuators B 115, 227-231 (2006).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

A. J. C. Tubb, F. P. Payne, R. B. Millington, and C. R. Lowe, "Single-mode optical fibre surface plasma wave chemical sensor," Sens. Actuators B 41, 1770-1771 (1997).
[CrossRef]

J. Homola, "Optical fiber sensor based on surface plasmon resonance excitation," Sens. Actuators B 29, 401-405 (1995).
[CrossRef]

R. C. Jorgenson and S. S. Yee, "A fiber-optic chemical sensor based on surface plasmon resonance," Sens. Actuators B 12, 213-220 (1993).
[CrossRef]

M. B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Garces, and J. Mateo, "Determination of probable alcohol yield in musts by means of an SPR optical sensor," Sens. Actuators B 11, 455-459 (1993).
[CrossRef]

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66-73 (1999).
[CrossRef]

M. Weisser, B. Menges, and S. Mittler-Neher, "Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons," Sens. Actuators B 56, 189-197 (1999).
[CrossRef]

B. D. Gupta and A. K. Sharma, "Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study," Sens. Actuators B 107, 40-46 (2005).
[CrossRef]

R. Slavik, J. Homola, and J. Ctyroky, "Single-mode optical fiber surface plasmon resonance sensor," Sens. Actuators B 54, 74-79 (1999).
[CrossRef]

A. Diez, M. V. Andres, and J. L. Cruz, "In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers," Sens. Actuators B 73, 95-99 (2001).
[CrossRef]

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, "Surface plasmon resonance based on a polarization-maintaining optical fiber," Sens. Actuators B 90, 236-242 (2003).
[CrossRef]

Z. Naturforsch., A: Phys. Sci. (1)

E. Kretschmann and Z. H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch., A: Phys. Sci. 23, 2135-2136 (1968).

Other (1)

V. M. Agranovich and D. L. Mills, Surface Polaritons--Electromagnetic Waves at Surfaces and Interfaces (North-Holland, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematics of the two MOF-based SPR sensors. In Fiber I, large holes in the second layer are filled with analyte and metallized for plasmon excitation. Air-filled holes in the first layer enable guiding in the higher refractive index fiber core, while at the same time, control coupling strength between the core mode and plasmon wave. A small air-filled hole in the fiber core is used to lower the refractive index of a core-guided mode to facilitate phase matching with a plasmon. In Fiber II, a large semicircular metallized channel is integrated into the fiber structure to enhance microfluidic flow.

Fig. 2
Fig. 2

Dispersion relations of a core-guided mode (thick solid curve) and a surface plasmon (thick dashed curve) in the vicinity of the phase-matching point. Insets (a) and (b) show energy fluxes of the core-guided and plasmon modes close to the phase-matching point. Transmission loss of a core-guided mode (thin solid curve) exhibits a strong increase at the phase-matching point due to efficient mixing with a plasmon wave as confirmed by its energy flux distribution [inset (c)].

Fig. 3
Fig. 3

Calculated loss spectra of the core-guided modes for two fiber designs. Loss spectra (solid curves) feature several attenuation peaks corresponding to the excitation of plasmonic modes on the surface of metallized channels filled with aqueous analyte n a = 1.33 . By changing analyte refractive index (dotted curves) resonant attenuation peaks corresponding to the points of phase matching between the core-guided and plasmon modes shift. In the insets, energy flux of a core-guided mode is presented at various absorption peaks.

Fig. 4
Fig. 4

Loss spectra in the vicinity of the first plasmonic peak for fibers with a gold layer of varying thickness. Dashed curves—Fiber I, solid curves—Fiber II.

Fig. 5
Fig. 5

Effect of the fiber structural parameters on the efficiency of plasmon excitation (case of Fiber II, incorporating a 40 nm thick gold layer). (a) Loss of a core-guided mode for various values of the fiber central hole diameter d c = 0.55 Λ , 0.45 Λ , 0.35 Λ , assuming a fixed diameter of the first layer holes d 1 = 0.6 Λ . (b) Dispersion relation of a fiber core mode for various values of the structural parameters. (c) Loss of a core-guided mode for two values of the first layer hole diameter d 1 = 0.6 Λ , 0.7 Λ , assuming a fixed central hole diameter d c = 0.35 Λ . (d) Sensitivity comparison between fibers of different structural parameters.

Fig. 6
Fig. 6

Sensitivity of the two MOF-based sensors in the vicinity of the first plasmonic peak for various values of the gold layer thickness. Dashed curves—Fiber I, solid curves—Fiber II.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S A ( λ ) ( RIU 1 ) = α ( λ , n a n a ) α ( λ , n a ) .

Metrics