Abstract

We describe how the susceptibility of a nonlinear material, such as lithium niobate, can change when the material is nanostructured. Indeed, we show, by the calculation of the local-field factor inside a photonic crystal, a significant augmentation of the susceptibility, especially at the edges of the photonic bandgap. In addition, and for the case of lithium niobate, we observe an increase of the second-order nonlinear coefficient. The experimental realization of an electro-optic tunable photonic crystal, based on a square lattice of holes, shows that the measured phenomenon completely agrees with the theoretical predictions.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. P. Delaye, M. Astic, R. Frey, and G. Roosen, "Transfer-matrix modeling of four-wave mixing at the band edge of a one-dimensional photonic crystal," J. Opt. Soc. Am. A 22, 2494-2504 (2005).
    [CrossRef]
  4. L. Razzari, D. Träger, M. Astic, P. Delaye, R. Frey, G. Roosen, and R. André, "Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals," Appl. Phys. Lett. 86, 231106 (2005).
    [CrossRef]
  5. M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature (London) 3, 211-218 (2004).
    [CrossRef]
  6. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature (London) 438, 65-69 (2006).
    [CrossRef]
  7. Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D'Aguanno, and M. Scarola, "Enhancement of second-harmonic generation in one-dimensional semiconductor photonic band gap," Appl. Phys. Lett. 78, 3021-3023 (2001).
    [CrossRef]
  8. G. J. Schneider and G. H. Watson, "Nonlinear optical spectroscopy in one-dimensional photonic crystals," Appl. Phys. Lett. 83, 5350-5352 (2003).
    [CrossRef]
  9. F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, "Nanostructuring lithium niobate substrates by focus ion beam milling," Opt. Mater. (Amsterdam, Neth.) 27, 1421-1425 (2005).
    [CrossRef]
  10. M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, "Experimental and theoretical characterization of a lithium niobate photonic crystal," Appl. Phys. Lett. 87, 241101 (2005).
    [CrossRef]
  11. M.-P. Bernal, N. Courjal, J. Amet, M. Roussey, and C. H. Hou, "Lithium niobate photonic crystal waveguides: far field and near field characterisation," Opt. Commun. 265, 180-186 (2006).
    [CrossRef]
  12. M. Roussey, M.-P. Bernal, N. Courjal, R. Salut, D. Van Labeke, and F. I. Baida, "Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons," Appl. Phys. Lett. 89, 241110 (2006).
    [CrossRef]
  13. A. Taflove and S. C. Hagness, Computational Electrodynamics, the Finite-Difference Time-Domain, 2nd ed (Artech, 2000).
  14. C. T. Chan, Q. L. Xu, and K. M. Ho, "Order-N spectral method for electromagnetic waves," Phys. Rev. B 51, 16635-16642 (1995).
    [CrossRef]
  15. H. Rigneault, J.-M. Lourtioz, C. Delalande, and A. Levensen, La nanophotonique (Lavoisier, 2005).
  16. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers," Opt. Express 12, 299-309 (2004).
    [CrossRef] [PubMed]
  17. A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, "Generation of a broadband single-mode supercontinuum in a conventional dispersion shifted fiber by use of a subnanosecond microchip laser," Opt. Lett. 29, 1820-1822 (2003).
    [CrossRef]

2006 (3)

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature (London) 438, 65-69 (2006).
[CrossRef]

M.-P. Bernal, N. Courjal, J. Amet, M. Roussey, and C. H. Hou, "Lithium niobate photonic crystal waveguides: far field and near field characterisation," Opt. Commun. 265, 180-186 (2006).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, R. Salut, D. Van Labeke, and F. I. Baida, "Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons," Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

2005 (4)

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, "Nanostructuring lithium niobate substrates by focus ion beam milling," Opt. Mater. (Amsterdam, Neth.) 27, 1421-1425 (2005).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, "Experimental and theoretical characterization of a lithium niobate photonic crystal," Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

P. Delaye, M. Astic, R. Frey, and G. Roosen, "Transfer-matrix modeling of four-wave mixing at the band edge of a one-dimensional photonic crystal," J. Opt. Soc. Am. A 22, 2494-2504 (2005).
[CrossRef]

L. Razzari, D. Träger, M. Astic, P. Delaye, R. Frey, G. Roosen, and R. André, "Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals," Appl. Phys. Lett. 86, 231106 (2005).
[CrossRef]

2004 (2)

2003 (2)

G. J. Schneider and G. H. Watson, "Nonlinear optical spectroscopy in one-dimensional photonic crystals," Appl. Phys. Lett. 83, 5350-5352 (2003).
[CrossRef]

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, "Generation of a broadband single-mode supercontinuum in a conventional dispersion shifted fiber by use of a subnanosecond microchip laser," Opt. Lett. 29, 1820-1822 (2003).
[CrossRef]

2001 (1)

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D'Aguanno, and M. Scarola, "Enhancement of second-harmonic generation in one-dimensional semiconductor photonic band gap," Appl. Phys. Lett. 78, 3021-3023 (2001).
[CrossRef]

1995 (1)

C. T. Chan, Q. L. Xu, and K. M. Ho, "Order-N spectral method for electromagnetic waves," Phys. Rev. B 51, 16635-16642 (1995).
[CrossRef]

1987 (2)

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Amet, J.

M.-P. Bernal, N. Courjal, J. Amet, M. Roussey, and C. H. Hou, "Lithium niobate photonic crystal waveguides: far field and near field characterisation," Opt. Commun. 265, 180-186 (2006).
[CrossRef]

André, R.

L. Razzari, D. Träger, M. Astic, P. Delaye, R. Frey, G. Roosen, and R. André, "Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals," Appl. Phys. Lett. 86, 231106 (2005).
[CrossRef]

Astic, M.

L. Razzari, D. Träger, M. Astic, P. Delaye, R. Frey, G. Roosen, and R. André, "Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals," Appl. Phys. Lett. 86, 231106 (2005).
[CrossRef]

P. Delaye, M. Astic, R. Frey, and G. Roosen, "Transfer-matrix modeling of four-wave mixing at the band edge of a one-dimensional photonic crystal," J. Opt. Soc. Am. A 22, 2494-2504 (2005).
[CrossRef]

Baida, F. I.

M. Roussey, M.-P. Bernal, N. Courjal, R. Salut, D. Van Labeke, and F. I. Baida, "Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons," Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, "Experimental and theoretical characterization of a lithium niobate photonic crystal," Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

Bainier, C.

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, "Nanostructuring lithium niobate substrates by focus ion beam milling," Opt. Mater. (Amsterdam, Neth.) 27, 1421-1425 (2005).
[CrossRef]

Bernal, M.-P.

M. Roussey, M.-P. Bernal, N. Courjal, R. Salut, D. Van Labeke, and F. I. Baida, "Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons," Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

M.-P. Bernal, N. Courjal, J. Amet, M. Roussey, and C. H. Hou, "Lithium niobate photonic crystal waveguides: far field and near field characterisation," Opt. Commun. 265, 180-186 (2006).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, "Experimental and theoretical characterization of a lithium niobate photonic crystal," Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, "Nanostructuring lithium niobate substrates by focus ion beam milling," Opt. Mater. (Amsterdam, Neth.) 27, 1421-1425 (2005).
[CrossRef]

Biancalana, F.

Birks, T.

Centini, M.

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D'Aguanno, and M. Scarola, "Enhancement of second-harmonic generation in one-dimensional semiconductor photonic band gap," Appl. Phys. Lett. 78, 3021-3023 (2001).
[CrossRef]

Chan, C. T.

C. T. Chan, Q. L. Xu, and K. M. Ho, "Order-N spectral method for electromagnetic waves," Phys. Rev. B 51, 16635-16642 (1995).
[CrossRef]

Courjal, N.

M.-P. Bernal, N. Courjal, J. Amet, M. Roussey, and C. H. Hou, "Lithium niobate photonic crystal waveguides: far field and near field characterisation," Opt. Commun. 265, 180-186 (2006).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, R. Salut, D. Van Labeke, and F. I. Baida, "Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons," Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, "Nanostructuring lithium niobate substrates by focus ion beam milling," Opt. Mater. (Amsterdam, Neth.) 27, 1421-1425 (2005).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, "Experimental and theoretical characterization of a lithium niobate photonic crystal," Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

D'Aguanno, G.

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D'Aguanno, and M. Scarola, "Enhancement of second-harmonic generation in one-dimensional semiconductor photonic band gap," Appl. Phys. Lett. 78, 3021-3023 (2001).
[CrossRef]

Delalande, C.

H. Rigneault, J.-M. Lourtioz, C. Delalande, and A. Levensen, La nanophotonique (Lavoisier, 2005).

Delaye, P.

L. Razzari, D. Träger, M. Astic, P. Delaye, R. Frey, G. Roosen, and R. André, "Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals," Appl. Phys. Lett. 86, 231106 (2005).
[CrossRef]

P. Delaye, M. Astic, R. Frey, and G. Roosen, "Transfer-matrix modeling of four-wave mixing at the band edge of a one-dimensional photonic crystal," J. Opt. Soc. Am. A 22, 2494-2504 (2005).
[CrossRef]

Dumeige, Y.

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D'Aguanno, and M. Scarola, "Enhancement of second-harmonic generation in one-dimensional semiconductor photonic band gap," Appl. Phys. Lett. 78, 3021-3023 (2001).
[CrossRef]

Frey, R.

P. Delaye, M. Astic, R. Frey, and G. Roosen, "Transfer-matrix modeling of four-wave mixing at the band edge of a one-dimensional photonic crystal," J. Opt. Soc. Am. A 22, 2494-2504 (2005).
[CrossRef]

L. Razzari, D. Träger, M. Astic, P. Delaye, R. Frey, G. Roosen, and R. André, "Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals," Appl. Phys. Lett. 86, 231106 (2005).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics, the Finite-Difference Time-Domain, 2nd ed (Artech, 2000).

Hamann, H. F.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature (London) 438, 65-69 (2006).
[CrossRef]

Ho, K. M.

C. T. Chan, Q. L. Xu, and K. M. Ho, "Order-N spectral method for electromagnetic waves," Phys. Rev. B 51, 16635-16642 (1995).
[CrossRef]

Hou, C. H.

M.-P. Bernal, N. Courjal, J. Amet, M. Roussey, and C. H. Hou, "Lithium niobate photonic crystal waveguides: far field and near field characterisation," Opt. Commun. 265, 180-186 (2006).
[CrossRef]

Joannopoulos, J. D.

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature (London) 3, 211-218 (2004).
[CrossRef]

John, S.

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Joly, N.

Knight, J.

Lacour, F.

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, "Nanostructuring lithium niobate substrates by focus ion beam milling," Opt. Mater. (Amsterdam, Neth.) 27, 1421-1425 (2005).
[CrossRef]

Levensen, A.

H. Rigneault, J.-M. Lourtioz, C. Delalande, and A. Levensen, La nanophotonique (Lavoisier, 2005).

Levenson, J. A.

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D'Aguanno, and M. Scarola, "Enhancement of second-harmonic generation in one-dimensional semiconductor photonic band gap," Appl. Phys. Lett. 78, 3021-3023 (2001).
[CrossRef]

Lourtioz, J.-M.

H. Rigneault, J.-M. Lourtioz, C. Delalande, and A. Levensen, La nanophotonique (Lavoisier, 2005).

Maillotte, H.

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, "Generation of a broadband single-mode supercontinuum in a conventional dispersion shifted fiber by use of a subnanosecond microchip laser," Opt. Lett. 29, 1820-1822 (2003).
[CrossRef]

McNab, S. J.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature (London) 438, 65-69 (2006).
[CrossRef]

Mussot, A.

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, "Generation of a broadband single-mode supercontinuum in a conventional dispersion shifted fiber by use of a subnanosecond microchip laser," Opt. Lett. 29, 1820-1822 (2003).
[CrossRef]

O'Boyle, M.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature (London) 438, 65-69 (2006).
[CrossRef]

Provino, L.

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, "Generation of a broadband single-mode supercontinuum in a conventional dispersion shifted fiber by use of a subnanosecond microchip laser," Opt. Lett. 29, 1820-1822 (2003).
[CrossRef]

Razzari, L.

L. Razzari, D. Träger, M. Astic, P. Delaye, R. Frey, G. Roosen, and R. André, "Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals," Appl. Phys. Lett. 86, 231106 (2005).
[CrossRef]

Rigneault, H.

H. Rigneault, J.-M. Lourtioz, C. Delalande, and A. Levensen, La nanophotonique (Lavoisier, 2005).

Roosen, G.

L. Razzari, D. Träger, M. Astic, P. Delaye, R. Frey, G. Roosen, and R. André, "Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals," Appl. Phys. Lett. 86, 231106 (2005).
[CrossRef]

P. Delaye, M. Astic, R. Frey, and G. Roosen, "Transfer-matrix modeling of four-wave mixing at the band edge of a one-dimensional photonic crystal," J. Opt. Soc. Am. A 22, 2494-2504 (2005).
[CrossRef]

Roussey, M.

M.-P. Bernal, N. Courjal, J. Amet, M. Roussey, and C. H. Hou, "Lithium niobate photonic crystal waveguides: far field and near field characterisation," Opt. Commun. 265, 180-186 (2006).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, R. Salut, D. Van Labeke, and F. I. Baida, "Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons," Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, "Experimental and theoretical characterization of a lithium niobate photonic crystal," Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

Russell, P.

Sabac, A.

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, "Nanostructuring lithium niobate substrates by focus ion beam milling," Opt. Mater. (Amsterdam, Neth.) 27, 1421-1425 (2005).
[CrossRef]

Sagnes, I.

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D'Aguanno, and M. Scarola, "Enhancement of second-harmonic generation in one-dimensional semiconductor photonic band gap," Appl. Phys. Lett. 78, 3021-3023 (2001).
[CrossRef]

Salut, R.

M. Roussey, M.-P. Bernal, N. Courjal, R. Salut, D. Van Labeke, and F. I. Baida, "Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons," Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

Sauvage, S.

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D'Aguanno, and M. Scarola, "Enhancement of second-harmonic generation in one-dimensional semiconductor photonic band gap," Appl. Phys. Lett. 78, 3021-3023 (2001).
[CrossRef]

Scarola, M.

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D'Aguanno, and M. Scarola, "Enhancement of second-harmonic generation in one-dimensional semiconductor photonic band gap," Appl. Phys. Lett. 78, 3021-3023 (2001).
[CrossRef]

Schneider, G. J.

G. J. Schneider and G. H. Watson, "Nonlinear optical spectroscopy in one-dimensional photonic crystals," Appl. Phys. Lett. 83, 5350-5352 (2003).
[CrossRef]

Sibilia, C.

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D'Aguanno, and M. Scarola, "Enhancement of second-harmonic generation in one-dimensional semiconductor photonic band gap," Appl. Phys. Lett. 78, 3021-3023 (2001).
[CrossRef]

Soljacic, M.

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature (London) 3, 211-218 (2004).
[CrossRef]

Spajer, M.

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, "Nanostructuring lithium niobate substrates by focus ion beam milling," Opt. Mater. (Amsterdam, Neth.) 27, 1421-1425 (2005).
[CrossRef]

Sylvestre, T.

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, "Generation of a broadband single-mode supercontinuum in a conventional dispersion shifted fiber by use of a subnanosecond microchip laser," Opt. Lett. 29, 1820-1822 (2003).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics, the Finite-Difference Time-Domain, 2nd ed (Artech, 2000).

Träger, D.

L. Razzari, D. Träger, M. Astic, P. Delaye, R. Frey, G. Roosen, and R. André, "Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals," Appl. Phys. Lett. 86, 231106 (2005).
[CrossRef]

Van Labeke, D.

M. Roussey, M.-P. Bernal, N. Courjal, R. Salut, D. Van Labeke, and F. I. Baida, "Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons," Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

Vidakovic, P.

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D'Aguanno, and M. Scarola, "Enhancement of second-harmonic generation in one-dimensional semiconductor photonic band gap," Appl. Phys. Lett. 78, 3021-3023 (2001).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature (London) 438, 65-69 (2006).
[CrossRef]

Wadsworth, W.

Watson, G. H.

G. J. Schneider and G. H. Watson, "Nonlinear optical spectroscopy in one-dimensional photonic crystals," Appl. Phys. Lett. 83, 5350-5352 (2003).
[CrossRef]

Xu, Q. L.

C. T. Chan, Q. L. Xu, and K. M. Ho, "Order-N spectral method for electromagnetic waves," Phys. Rev. B 51, 16635-16642 (1995).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

L. Razzari, D. Träger, M. Astic, P. Delaye, R. Frey, G. Roosen, and R. André, "Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals," Appl. Phys. Lett. 86, 231106 (2005).
[CrossRef]

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D'Aguanno, and M. Scarola, "Enhancement of second-harmonic generation in one-dimensional semiconductor photonic band gap," Appl. Phys. Lett. 78, 3021-3023 (2001).
[CrossRef]

G. J. Schneider and G. H. Watson, "Nonlinear optical spectroscopy in one-dimensional photonic crystals," Appl. Phys. Lett. 83, 5350-5352 (2003).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, "Experimental and theoretical characterization of a lithium niobate photonic crystal," Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, R. Salut, D. Van Labeke, and F. I. Baida, "Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons," Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

P. Delaye, M. Astic, R. Frey, and G. Roosen, "Transfer-matrix modeling of four-wave mixing at the band edge of a one-dimensional photonic crystal," J. Opt. Soc. Am. A 22, 2494-2504 (2005).
[CrossRef]

Nature (London) (2)

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature (London) 3, 211-218 (2004).
[CrossRef]

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature (London) 438, 65-69 (2006).
[CrossRef]

Opt. Commun. (1)

M.-P. Bernal, N. Courjal, J. Amet, M. Roussey, and C. H. Hou, "Lithium niobate photonic crystal waveguides: far field and near field characterisation," Opt. Commun. 265, 180-186 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, "Generation of a broadband single-mode supercontinuum in a conventional dispersion shifted fiber by use of a subnanosecond microchip laser," Opt. Lett. 29, 1820-1822 (2003).
[CrossRef]

Opt. Mater. (Amsterdam, Neth.) (1)

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, "Nanostructuring lithium niobate substrates by focus ion beam milling," Opt. Mater. (Amsterdam, Neth.) 27, 1421-1425 (2005).
[CrossRef]

Phys. Rev. B (1)

C. T. Chan, Q. L. Xu, and K. M. Ho, "Order-N spectral method for electromagnetic waves," Phys. Rev. B 51, 16635-16642 (1995).
[CrossRef]

Phys. Rev. Lett. (2)

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Other (2)

H. Rigneault, J.-M. Lourtioz, C. Delalande, and A. Levensen, La nanophotonique (Lavoisier, 2005).

A. Taflove and S. C. Hagness, Computational Electrodynamics, the Finite-Difference Time-Domain, 2nd ed (Artech, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Scheme of the numerically studied structure.

Fig. 2
Fig. 2

Theoretical transmission spectrum calculated by FDTD in the case of a LN PhC (15 hole rows, n = 2.143 , ρ = 207 nm , a = 766 nm , TE polarization).

Fig. 3
Fig. 3

(a) Two-dimensional map of the evolution of the transmission spectrum versus ρ a . (b) Close-up around the thin transmission peak versus the number of rows.

Fig. 4
Fig. 4

Theoretical transmission (solid curve) spectrum through a perfect square-lattice PhC compared with the spectrum obtained with a random variation of the period ( Δ a = 37 nm , black dashed curve).

Fig. 5
Fig. 5

(a) Band diagram of the square lattice of holes in the LN substrate calculated by the PWE method. (b) Group velocity ( d ω d k ) along the Γ X direction. The dashed curve corresponds to the lower edge of the gap ( 1400 nm ) , the dotted curve to the peak, and the dashed–dotted curve to the upper edge of the photonic bandgap ( 1550 nm ) .

Fig. 6
Fig. 6

Time evolution of the energy in the PhC. The solid line corresponds to high group velocity (outside the bandgap), and the dashed line is associated with the slow light (on the edge of the bandgap).

Fig. 7
Fig. 7

(a) Close-up of Fig. 2 showing the zero-order transmission through a PhC of 15 rows along the propagation direction; (b) local-field factor calculated from Eq. (7); (c) variation of the refractive index for an applied voltage of 80 V obtained from Eq. (5).

Fig. 8
Fig. 8

(a) Photograph of the device with the PhC sample and the electrodes (left) and a SEM image of the PhC (right); (b) scheme of the experimental setup used for the characterization of the device; (c) experimental transmission spectra obtained for three different values of the applied voltage; (d) shift of the bandgap versus the applied voltage.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ n = Δ n P + Δ n K .
Δ n P = 1 2 × n 3 × r 33 × U e ,
Δ n Δ n P .
χ PhC 2 = f 3 × χ BULK 2 .
Δ n = 1 2 × n 3 × r 33 × f 3 × U e .
f = v g BULK v g PhC ,
f = 1 N S PhC E local PhC E local BULK d y d z = 1 N S PhC f loc d x d y .

Metrics