Abstract

We report on the design and fabrication of high-quality long-period gratings in chalcogenide glass (As2S3) rib waveguides utilizing the strong photosensitivity. Higher-order modes of the rib waveguides are analyzed by inspection of the spectra of Bragg gratings written into these waveguides. Based on these measurements, we infer the effective indices of higher-order modes, which are in good agreement with modeling results using a beam propagation method. High-quality long-period gratings are then designed and written into the rib waveguides using a simple shadow mask technique. Coupling the fundamental to the HE02 mode strong resonances of up to 20dB depths are obtained. The gratings have a length of L=26mm and a period of Λ=86μm. In situ monitoring of the writing process allows the growth dynamics of the grating to be studied. A theoretical fit to the measured transmission curve gives an average index change of 103.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Othonos and K. Kalli, Fiber Bragg Grating (Artech House, 1999).
  2. G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett. 14, 823-825 (1989).
    [CrossRef] [PubMed]
  3. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
    [CrossRef]
  4. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, "Electrically tunable efficient broad-band fiber filter," IEEE Photon. Technol. Lett. 11, 445-447 (1999).
    [CrossRef]
  5. K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, "Efficient mode conversion in telecommunication fibre using externally written gratings," Electron. Lett. 26, 1270-1272 (1990).
    [CrossRef]
  6. P. F. Wysocki, I. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, "Broad-band erbium-doped fiber amplifier flattened beyond 40nm using long-period grating filter," IEEE Photon. Technol. Lett. 9, 1343-1345 (1997).
    [CrossRef]
  7. M. Das and K. Thyagarajan, "Dispersion control with use of long-period fiber gratings," Opt. Lett. 190, 159-163 (2001).
  8. M. N. Ng, Z. Chen, and K. S. Chiang, "Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect," IEEE Photon. Technol. Lett. 14, 361-362 (2002).
    [CrossRef]
  9. J. N. Kutz, B. J. Eggleton, J. B. Stark, and R. E. Slusher, "Nonlinear pulse propagation in long-period fiber gratings: theory and experiment," IEEE J. Sel. Top. Quantum Electron. 3, 1232-1245 (1997).
    [CrossRef]
  10. B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, "All-optical switching in long-period fiber gratings," Opt. Lett. 22, 883-885 (1997).
    [CrossRef] [PubMed]
  11. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, "Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers," J. Opt. Soc. Am. B 21, 1146-1155 (2004).
    [CrossRef]
  12. L. E. Busse, J. A. Moon, J. S. Sanhera, and I. D. Aggrawal, "Chalcogenide fibers deliver high IR power," Laser Focus World 32, 143-145 (1996).
  13. P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, "Small-core As-Se fiber for Raman amplification," Opt. Lett. 28, 1406-1408 (2003).
    [CrossRef] [PubMed]
  14. V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
    [CrossRef] [PubMed]
  15. M. Asobe, T. Kanamori, and K. Kubodera, "Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber," IEEE Photon. Technol. Lett. 29, 362-365 (1992).
  16. M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method," Electron. Lett. 32, 1611-1613 (1996).
    [CrossRef]
  17. M. Shokooh-Saremi, V. G. Ta'eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer," J. Opt. Soc. Am. B 23, 1323-1330 (2007).
  18. N. J. Baker, H. W. Lee, I. C. M. Littler, C. M. de Sterke, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, "Sampled Bragg gratings in chalcogenide (As2S3) rib-waveguides," Opt. Express 14, 9451-9459 (2006).
    [CrossRef] [PubMed]
  19. D. Pudo, E. C. Mägi, and B. J. Eggleton, "Long-period gratings in chalcogenide fibers," Opt. Express 14, 3763-3766 (2006).
    [CrossRef] [PubMed]
  20. I. C. M. Littler, L. B. Fu, E. C. Mägi, D. Pudo, and B. J. Eggleton, "Widely tunable, acousto-optic resonances in chalcogenide As2Se3 fiber," Opt. Express 14, 8088-8095 (2006).
    [CrossRef] [PubMed]
  21. V. Rastogi and K. S. Chiang, "Long-period gratings in planar optical waveguides," Appl. Opt. 41, 6351-6355 (2002).
    [CrossRef] [PubMed]
  22. K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, "Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides," IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
    [CrossRef]
  23. A. Perentos, G. Kostovski, and A. Mitchell, "Polymer long-period raised rib waveguide gratings using nano-imprint lithography," IEEE Photon. Technol. Lett. 17, 2595-2597 (2005).
    [CrossRef]
  24. Q. Liu, K. S. Chiang, and V. Rastogi, "Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence," J. Lightwave Technol. 21, 3399-3405 (2003).
    [CrossRef]
  25. M. Kulishov, "Interdigitated electrode-induced phase grating with an electrically switchable and tunable period," Appl. Opt. 38, 7356-7363 (1999).
    [CrossRef]
  26. K. Finsterbusch, N. J. Baker, V. G. Ta'eed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, "Long-period gratings in chalcogenide (As2S3) rib waveguides," Electron. Lett. 42, 1094-1095 (2006).
    [CrossRef]
  27. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, "Cladding-mode-resonances in air-silica microstructure optical fibers," J. Lightwave Technol. 18, 1084-1100 (2000).
    [CrossRef]
  28. M. D. Feit and J. A. Fleck, "Computation of mode properties in optical fiber wave guides by a propagating beam method," Appl. Opt. 19, 1154-1164 (1980).
    [PubMed]
  29. T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
    [CrossRef]
  30. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  31. B. Luther-Davis, V. Z. Kolev, M. J. Lederer, N. R. Madsen, J. Giesekus, K.-M. Du, and M. Duering, "Table-top 50W laser system for ultra-fast laser ablation," Appl. Phys. A 79, 1051-1055 (2004).
    [CrossRef]
  32. Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, "Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching," Opt. Express 12, 5140-5145 (2004).
    [CrossRef] [PubMed]
  33. R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
    [CrossRef]
  34. V. M. Kryshenik, and V. I. Mikla, "Anisotropic phenomena in as-evaporated amorphous chalcogenide thin films," Mater. Sci. Eng., B 100, 292-296 (2003).
    [CrossRef]

2007 (1)

2006 (4)

2005 (2)

A. Perentos, G. Kostovski, and A. Mitchell, "Polymer long-period raised rib waveguide gratings using nano-imprint lithography," IEEE Photon. Technol. Lett. 17, 2595-2597 (2005).
[CrossRef]

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (4)

V. M. Kryshenik, and V. I. Mikla, "Anisotropic phenomena in as-evaporated amorphous chalcogenide thin films," Mater. Sci. Eng., B 100, 292-296 (2003).
[CrossRef]

Q. Liu, K. S. Chiang, and V. Rastogi, "Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence," J. Lightwave Technol. 21, 3399-3405 (2003).
[CrossRef]

P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, "Small-core As-Se fiber for Raman amplification," Opt. Lett. 28, 1406-1408 (2003).
[CrossRef] [PubMed]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, "Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides," IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

2002 (2)

V. Rastogi and K. S. Chiang, "Long-period gratings in planar optical waveguides," Appl. Opt. 41, 6351-6355 (2002).
[CrossRef] [PubMed]

M. N. Ng, Z. Chen, and K. S. Chiang, "Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect," IEEE Photon. Technol. Lett. 14, 361-362 (2002).
[CrossRef]

2001 (1)

M. Das and K. Thyagarajan, "Dispersion control with use of long-period fiber gratings," Opt. Lett. 190, 159-163 (2001).

2000 (1)

1999 (2)

M. Kulishov, "Interdigitated electrode-induced phase grating with an electrically switchable and tunable period," Appl. Opt. 38, 7356-7363 (1999).
[CrossRef]

A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, "Electrically tunable efficient broad-band fiber filter," IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

1997 (4)

P. F. Wysocki, I. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, "Broad-band erbium-doped fiber amplifier flattened beyond 40nm using long-period grating filter," IEEE Photon. Technol. Lett. 9, 1343-1345 (1997).
[CrossRef]

J. N. Kutz, B. J. Eggleton, J. B. Stark, and R. E. Slusher, "Nonlinear pulse propagation in long-period fiber gratings: theory and experiment," IEEE J. Sel. Top. Quantum Electron. 3, 1232-1245 (1997).
[CrossRef]

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, "All-optical switching in long-period fiber gratings," Opt. Lett. 22, 883-885 (1997).
[CrossRef] [PubMed]

T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

1996 (3)

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method," Electron. Lett. 32, 1611-1613 (1996).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

L. E. Busse, J. A. Moon, J. S. Sanhera, and I. D. Aggrawal, "Chalcogenide fibers deliver high IR power," Laser Focus World 32, 143-145 (1996).

1992 (1)

M. Asobe, T. Kanamori, and K. Kubodera, "Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber," IEEE Photon. Technol. Lett. 29, 362-365 (1992).

1991 (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

1990 (1)

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, "Efficient mode conversion in telecommunication fibre using externally written gratings," Electron. Lett. 26, 1270-1272 (1990).
[CrossRef]

1989 (1)

1980 (1)

Abramov, A.

A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, "Electrically tunable efficient broad-band fiber filter," IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

Aggarwal, I. D.

Aggrawal, I. D.

L. E. Busse, J. A. Moon, J. S. Sanhera, and I. D. Aggrawal, "Chalcogenide fibers deliver high IR power," Laser Focus World 32, 143-145 (1996).

Andrejco, M.

P. F. Wysocki, I. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, "Broad-band erbium-doped fiber amplifier flattened beyond 40nm using long-period grating filter," IEEE Photon. Technol. Lett. 9, 1343-1345 (1997).
[CrossRef]

Asobe, M.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method," Electron. Lett. 32, 1611-1613 (1996).
[CrossRef]

M. Asobe, T. Kanamori, and K. Kubodera, "Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber," IEEE Photon. Technol. Lett. 29, 362-365 (1992).

Baker, N. J.

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Bilodeau, F.

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, "Efficient mode conversion in telecommunication fibre using externally written gratings," Electron. Lett. 26, 1270-1272 (1990).
[CrossRef]

Burdge, G. L.

Busse, L. E.

L. E. Busse, J. A. Moon, J. S. Sanhera, and I. D. Aggrawal, "Chalcogenide fibers deliver high IR power," Laser Focus World 32, 143-145 (1996).

Chan, H. P.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, "Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides," IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

Chen, Z.

M. N. Ng, Z. Chen, and K. S. Chiang, "Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect," IEEE Photon. Technol. Lett. 14, 361-362 (2002).
[CrossRef]

Chiang, K. S.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, "Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides," IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

Q. Liu, K. S. Chiang, and V. Rastogi, "Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence," J. Lightwave Technol. 21, 3399-3405 (2003).
[CrossRef]

V. Rastogi and K. S. Chiang, "Long-period gratings in planar optical waveguides," Appl. Opt. 41, 6351-6355 (2002).
[CrossRef] [PubMed]

M. N. Ng, Z. Chen, and K. S. Chiang, "Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect," IEEE Photon. Technol. Lett. 14, 361-362 (2002).
[CrossRef]

Choi, D.

K. Finsterbusch, N. J. Baker, V. G. Ta'eed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, "Long-period gratings in chalcogenide (As2S3) rib waveguides," Electron. Lett. 42, 1094-1095 (2006).
[CrossRef]

Choi, D.-Y.

Chow, C. K.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, "Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides," IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

Chu, Y. M.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, "Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides," IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

Das, M.

M. Das and K. Thyagarajan, "Dispersion control with use of long-period fiber gratings," Opt. Lett. 190, 159-163 (2001).

de, C. M.

Du, K.-M.

B. Luther-Davis, V. Z. Kolev, M. J. Lederer, N. R. Madsen, J. Giesekus, K.-M. Du, and M. Duering, "Table-top 50W laser system for ultra-fast laser ablation," Appl. Phys. A 79, 1051-1055 (2004).
[CrossRef]

Duering, M.

B. Luther-Davis, V. Z. Kolev, M. J. Lederer, N. R. Madsen, J. Giesekus, K.-M. Du, and M. Duering, "Table-top 50W laser system for ultra-fast laser ablation," Appl. Phys. A 79, 1051-1055 (2004).
[CrossRef]

Eggleton, B. J.

M. Shokooh-Saremi, V. G. Ta'eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer," J. Opt. Soc. Am. B 23, 1323-1330 (2007).

N. J. Baker, H. W. Lee, I. C. M. Littler, C. M. de Sterke, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, "Sampled Bragg gratings in chalcogenide (As2S3) rib-waveguides," Opt. Express 14, 9451-9459 (2006).
[CrossRef] [PubMed]

D. Pudo, E. C. Mägi, and B. J. Eggleton, "Long-period gratings in chalcogenide fibers," Opt. Express 14, 3763-3766 (2006).
[CrossRef] [PubMed]

I. C. M. Littler, L. B. Fu, E. C. Mägi, D. Pudo, and B. J. Eggleton, "Widely tunable, acousto-optic resonances in chalcogenide As2Se3 fiber," Opt. Express 14, 8088-8095 (2006).
[CrossRef] [PubMed]

K. Finsterbusch, N. J. Baker, V. G. Ta'eed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, "Long-period gratings in chalcogenide (As2S3) rib waveguides," Electron. Lett. 42, 1094-1095 (2006).
[CrossRef]

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
[CrossRef] [PubMed]

B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, "Cladding-mode-resonances in air-silica microstructure optical fibers," J. Lightwave Technol. 18, 1084-1100 (2000).
[CrossRef]

A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, "Electrically tunable efficient broad-band fiber filter," IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

J. N. Kutz, B. J. Eggleton, J. B. Stark, and R. E. Slusher, "Nonlinear pulse propagation in long-period fiber gratings: theory and experiment," IEEE J. Sel. Top. Quantum Electron. 3, 1232-1245 (1997).
[CrossRef]

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, "All-optical switching in long-period fiber gratings," Opt. Lett. 22, 883-885 (1997).
[CrossRef] [PubMed]

Erdogan, T.

T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Espindola, R. P.

A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, "Electrically tunable efficient broad-band fiber filter," IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

P. F. Wysocki, I. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, "Broad-band erbium-doped fiber amplifier flattened beyond 40nm using long-period grating filter," IEEE Photon. Technol. Lett. 9, 1343-1345 (1997).
[CrossRef]

Feit, M. D.

Finsterbusch, K.

K. Finsterbusch, N. J. Baker, V. G. Ta'eed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, "Long-period gratings in chalcogenide (As2S3) rib waveguides," Electron. Lett. 42, 1094-1095 (2006).
[CrossRef]

Fleck, J. A.

Fu, L.

Fu, L. B.

Giesekus, J.

B. Luther-Davis, V. Z. Kolev, M. J. Lederer, N. R. Madsen, J. Giesekus, K.-M. Du, and M. Duering, "Table-top 50W laser system for ultra-fast laser ablation," Appl. Phys. A 79, 1051-1055 (2004).
[CrossRef]

Glenn, W. H.

Hale, A.

A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, "Electrically tunable efficient broad-band fiber filter," IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

Hill, K. O.

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, "Efficient mode conversion in telecommunication fibre using externally written gratings," Electron. Lett. 26, 1270-1272 (1990).
[CrossRef]

Hodelin, J.

Jarvis, R.

Johnson, D. C.

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, "Efficient mode conversion in telecommunication fibre using externally written gratings," Electron. Lett. 26, 1270-1272 (1990).
[CrossRef]

Judkins, I. B.

P. F. Wysocki, I. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, "Broad-band erbium-doped fiber amplifier flattened beyond 40nm using long-period grating filter," IEEE Photon. Technol. Lett. 9, 1343-1345 (1997).
[CrossRef]

Judkins, J. B.

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, "All-optical switching in long-period fiber gratings," Opt. Lett. 22, 883-885 (1997).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Kaino, T.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method," Electron. Lett. 32, 1611-1613 (1996).
[CrossRef]

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Grating (Artech House, 1999).

Kanamori, T.

M. Asobe, T. Kanamori, and K. Kubodera, "Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber," IEEE Photon. Technol. Lett. 29, 362-365 (1992).

Kerbage, C.

Kolev, V. Z.

B. Luther-Davis, V. Z. Kolev, M. J. Lederer, N. R. Madsen, J. Giesekus, K.-M. Du, and M. Duering, "Table-top 50W laser system for ultra-fast laser ablation," Appl. Phys. A 79, 1051-1055 (2004).
[CrossRef]

Kostovski, G.

A. Perentos, G. Kostovski, and A. Mitchell, "Polymer long-period raised rib waveguide gratings using nano-imprint lithography," IEEE Photon. Technol. Lett. 17, 2595-2597 (2005).
[CrossRef]

Kryshenik, V. M.

V. M. Kryshenik, and V. I. Mikla, "Anisotropic phenomena in as-evaporated amorphous chalcogenide thin films," Mater. Sci. Eng., B 100, 292-296 (2003).
[CrossRef]

Kubodera, K.

M. Asobe, T. Kanamori, and K. Kubodera, "Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber," IEEE Photon. Technol. Lett. 29, 362-365 (1992).

Kulishov, M.

Kutz, J. N.

J. N. Kutz, B. J. Eggleton, J. B. Stark, and R. E. Slusher, "Nonlinear pulse propagation in long-period fiber gratings: theory and experiment," IEEE J. Sel. Top. Quantum Electron. 3, 1232-1245 (1997).
[CrossRef]

Lederer, M. J.

B. Luther-Davis, V. Z. Kolev, M. J. Lederer, N. R. Madsen, J. Giesekus, K.-M. Du, and M. Duering, "Table-top 50W laser system for ultra-fast laser ablation," Appl. Phys. A 79, 1051-1055 (2004).
[CrossRef]

Lee, H. W.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Lenz, G.

Li, W.

Littler, I. C. M.

Liu, Q.

Lor, K. P.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, "Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides," IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

Luther-Davies, B.

Luther-Davis, B.

K. Finsterbusch, N. J. Baker, V. G. Ta'eed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, "Long-period gratings in chalcogenide (As2S3) rib waveguides," Electron. Lett. 42, 1094-1095 (2006).
[CrossRef]

B. Luther-Davis, V. Z. Kolev, M. J. Lederer, N. R. Madsen, J. Giesekus, K.-M. Du, and M. Duering, "Table-top 50W laser system for ultra-fast laser ablation," Appl. Phys. A 79, 1051-1055 (2004).
[CrossRef]

Madden, S.

K. Finsterbusch, N. J. Baker, V. G. Ta'eed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, "Long-period gratings in chalcogenide (As2S3) rib waveguides," Electron. Lett. 42, 1094-1095 (2006).
[CrossRef]

N. J. Baker, H. W. Lee, I. C. M. Littler, C. M. de Sterke, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, "Sampled Bragg gratings in chalcogenide (As2S3) rib-waveguides," Opt. Express 14, 9451-9459 (2006).
[CrossRef] [PubMed]

Madsen, N.

Madsen, N. R.

B. Luther-Davis, V. Z. Kolev, M. J. Lederer, N. R. Madsen, J. Giesekus, K.-M. Du, and M. Duering, "Table-top 50W laser system for ultra-fast laser ablation," Appl. Phys. A 79, 1051-1055 (2004).
[CrossRef]

Mägi, E. C.

Malo, B.

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, "Efficient mode conversion in telecommunication fibre using externally written gratings," Electron. Lett. 26, 1270-1272 (1990).
[CrossRef]

Meltz, G.

Mikla, V. I.

V. M. Kryshenik, and V. I. Mikla, "Anisotropic phenomena in as-evaporated amorphous chalcogenide thin films," Mater. Sci. Eng., B 100, 292-296 (2003).
[CrossRef]

Mitchell, A.

A. Perentos, G. Kostovski, and A. Mitchell, "Polymer long-period raised rib waveguide gratings using nano-imprint lithography," IEEE Photon. Technol. Lett. 17, 2595-2597 (2005).
[CrossRef]

Moon, J. A.

L. E. Busse, J. A. Moon, J. S. Sanhera, and I. D. Aggrawal, "Chalcogenide fibers deliver high IR power," Laser Focus World 32, 143-145 (1996).

Morey, W. W.

Moss, D. J.

Ng, M. N.

M. N. Ng, Z. Chen, and K. S. Chiang, "Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect," IEEE Photon. Technol. Lett. 14, 361-362 (2002).
[CrossRef]

Nguyen, V. Q.

Ohara, T.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method," Electron. Lett. 32, 1611-1613 (1996).
[CrossRef]

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Grating (Artech House, 1999).

Perentos, A.

A. Perentos, G. Kostovski, and A. Mitchell, "Polymer long-period raised rib waveguide gratings using nano-imprint lithography," IEEE Photon. Technol. Lett. 17, 2595-2597 (2005).
[CrossRef]

Petermann, K.

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

Pudo, D.

Pureza, P. C.

Rastogi, V.

Rochette, M.

Rode, A.

Rogers, J. A.

A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, "Electrically tunable efficient broad-band fiber filter," IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

Ruan, Y.

Sanghera, J.

Sanghera, J. S.

Sanhera, J. S.

L. E. Busse, J. A. Moon, J. S. Sanhera, and I. D. Aggrawal, "Chalcogenide fibers deliver high IR power," Laser Focus World 32, 143-145 (1996).

Schmidtchen, J.

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

Shaw, L. B.

Shokooh-Saremi, M.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Skinner, I.

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, "Efficient mode conversion in telecommunication fibre using externally written gratings," Electron. Lett. 26, 1270-1272 (1990).
[CrossRef]

Slusher, R. E.

Soref, R. A.

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

Stark, J. B.

J. N. Kutz, B. J. Eggleton, J. B. Stark, and R. E. Slusher, "Nonlinear pulse propagation in long-period fiber gratings: theory and experiment," IEEE J. Sel. Top. Quantum Electron. 3, 1232-1245 (1997).
[CrossRef]

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, "All-optical switching in long-period fiber gratings," Opt. Lett. 22, 883-885 (1997).
[CrossRef] [PubMed]

Strasser, T. A.

A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, "Electrically tunable efficient broad-band fiber filter," IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

Ta'eed, V. G.

Thielen, P. A.

Thyagarajan, K.

M. Das and K. Thyagarajan, "Dispersion control with use of long-period fiber gratings," Opt. Lett. 190, 159-163 (2001).

Vengsarkar, A. M.

P. F. Wysocki, I. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, "Broad-band erbium-doped fiber amplifier flattened beyond 40nm using long-period grating filter," IEEE Photon. Technol. Lett. 9, 1343-1345 (1997).
[CrossRef]

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, "All-optical switching in long-period fiber gratings," Opt. Lett. 22, 883-885 (1997).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Vineberg, K. A.

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, "Efficient mode conversion in telecommunication fibre using externally written gratings," Electron. Lett. 26, 1270-1272 (1990).
[CrossRef]

Westbrook, P. S.

White, C. A.

Windeler, R. S.

B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, "Cladding-mode-resonances in air-silica microstructure optical fibers," J. Lightwave Technol. 18, 1084-1100 (2000).
[CrossRef]

A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, "Electrically tunable efficient broad-band fiber filter," IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

Wysocki, P. F.

P. F. Wysocki, I. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, "Broad-band erbium-doped fiber amplifier flattened beyond 40nm using long-period grating filter," IEEE Photon. Technol. Lett. 9, 1343-1345 (1997).
[CrossRef]

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Yokohama, I.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method," Electron. Lett. 32, 1611-1613 (1996).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. A (1)

B. Luther-Davis, V. Z. Kolev, M. J. Lederer, N. R. Madsen, J. Giesekus, K.-M. Du, and M. Duering, "Table-top 50W laser system for ultra-fast laser ablation," Appl. Phys. A 79, 1051-1055 (2004).
[CrossRef]

Electron. Lett. (3)

K. Finsterbusch, N. J. Baker, V. G. Ta'eed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, "Long-period gratings in chalcogenide (As2S3) rib waveguides," Electron. Lett. 42, 1094-1095 (2006).
[CrossRef]

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, "Efficient mode conversion in telecommunication fibre using externally written gratings," Electron. Lett. 26, 1270-1272 (1990).
[CrossRef]

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method," Electron. Lett. 32, 1611-1613 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. N. Kutz, B. J. Eggleton, J. B. Stark, and R. E. Slusher, "Nonlinear pulse propagation in long-period fiber gratings: theory and experiment," IEEE J. Sel. Top. Quantum Electron. 3, 1232-1245 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

P. F. Wysocki, I. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, "Broad-band erbium-doped fiber amplifier flattened beyond 40nm using long-period grating filter," IEEE Photon. Technol. Lett. 9, 1343-1345 (1997).
[CrossRef]

A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, "Electrically tunable efficient broad-band fiber filter," IEEE Photon. Technol. Lett. 11, 445-447 (1999).
[CrossRef]

M. N. Ng, Z. Chen, and K. S. Chiang, "Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect," IEEE Photon. Technol. Lett. 14, 361-362 (2002).
[CrossRef]

M. Asobe, T. Kanamori, and K. Kubodera, "Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber," IEEE Photon. Technol. Lett. 29, 362-365 (1992).

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, "Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides," IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

A. Perentos, G. Kostovski, and A. Mitchell, "Polymer long-period raised rib waveguide gratings using nano-imprint lithography," IEEE Photon. Technol. Lett. 17, 2595-2597 (2005).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (2)

Laser Focus World (1)

L. E. Busse, J. A. Moon, J. S. Sanhera, and I. D. Aggrawal, "Chalcogenide fibers deliver high IR power," Laser Focus World 32, 143-145 (1996).

Mater. Sci. Eng., B (1)

V. M. Kryshenik, and V. I. Mikla, "Anisotropic phenomena in as-evaporated amorphous chalcogenide thin films," Mater. Sci. Eng., B 100, 292-296 (2003).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Other (2)

A. Othonos and K. Kalli, Fiber Bragg Grating (Artech House, 1999).

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic of a rib waveguide and the transverse profile of the first HOMs, (b) and (c) relative position of the propagation constants in a rib waveguide (after [29]). Solid symbols: guided modes.

Fig. 2
Fig. 2

(a) Schematic of the As 2 S 3 rib waveguide sample and (b) a scanning-electron microscope image of a waveguide.

Fig. 3
Fig. 3

(a) Schematic of the Bragg-grating writing setup based on the modified Sagnac interferometer and (b) analyzing setup.

Fig. 4
Fig. 4

Normalized transmission spectrum of a 15 mm long Bragg grating for TE- and TM-polarized light written into a 6.45 μ m wide and 20 mm long waveguide ( H = 2.56 μ m , h = 1.53 μ m ). The upper axis shows the refractive indices as they were inferred from the spectrum.

Fig. 5
Fig. 5

Schematic of the LPG writing setup.

Fig. 6
Fig. 6

Normalized transmission spectrum of a 26 mm long LPG with a period of 84 μ m for TE- and TM-polarized light written into a 6.45 μ m wide and 30 mm long waveguide ( H = 2.56 μ m , h = 1.53 μ m ) exposed to 1 mW writing power at 532 nm for 70 s . The dashed curve is a fit to the measured transmission using Eq. (11).

Fig. 7
Fig. 7

Mode profiles of TE-polarized light of a tunable diode laser source at the output facet of the waveguide (a) of resonance and (b) on resonance and comparison to the calculated mode profiles (c) HE 00 and (d) HE 02 .

Fig. 8
Fig. 8

Normalized transmission spectrum of a 26 mm long LPG with a period of 86 μ m for TE-polarized light at different exposure times for 1 mW writing power at 532 nm .

Fig. 9
Fig. 9

Coupling coefficients and index change for the grating spectra of Fig. 8 as a function of the exposure time. Inset: induced wavelength shift versus index change.

Tables (1)

Tables Icon

Table 1 Comparison Between the Effective Indices Inferred From the Bragg Grating in Fig. 4 and Those Obtained With the Beam Propagation Method

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ β = β i ± β f 2 π Λ 0 .
λ m , n = Λ ( N m + N n ) ,
λ 0 = 2 Λ N 0 .
λ 0 , n λ 0 = N 0 + N n 2 N 0 .
λ 0 = Λ ( N 0 N m ) .
P ( z ) = P 0 ( 1 κ 2 γ 2 sin 2 γ z ) ,
κ = n λ F n ( x , y ) Δ n ( x , y ) F m * ( x , y ) d x d y ,
P ( z ) = P 0 ( 1 S 2 , UHNA 2 S 0 , UHNA 2 κ 2 γ 2 sin 2 γ z ) ,

Metrics