Abstract

We present a technique for producing pulses of laser light whose frequency is arbitrarily chirped. The output from a diode laser is sent through a fiber-optical delay line containing a fiber-based electro-optical phase modulator. Upon emerging from the fiber, the phase-modulated pulse is used to injection-lock the laser, and the process is repeated. Large phase modulations are realized by multiple passes through the loop, while the high optical power is maintained by self-injection locking after each pass. Arbitrary chirps are produced by driving the modulator with an arbitrary waveform generator. We obtain improved performance, in both chirp rate and chirp range, relative to a diode laser that is injection-locked to a modulated source.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. N. Watts and C. E. Wieman, "The production of a highly polarized atomic cesium beam," Opt. Commun. 57, 45-48 (1986).
    [CrossRef]
  2. M. J. Wright, P. L. Gould, and S. D. Gensemer, "Frequency-chirped light from an injection-locked diode laser," Rev. Sci. Instrum. 75, 4718-4720 (2004).
    [CrossRef]
  3. K. S. Repasky, P. A. Roos, L. S. Meng, and J. L. Carlsten, "Amplified output of a frequency chirped diode source via injection locking," Opt. Eng. 40, 2505-2509 (2001).
    [CrossRef]
  4. B. Boggs, C. Greiner, T. Wang, H. Lin, and T. W. Mossberg, "Simple high-coherence rapidly tunable external-cavity diode laser," Opt. Lett. 23, 1906-1908 (1998).
    [CrossRef]
  5. L. Ménager, L. Caberet, I. Lorgeré, and J. L. Gouët, "Diode laser extended cavity for broad-range fast ramping," Opt. Lett. 25, 1246-1248 (2000).
    [CrossRef]
  6. L. Levin, "Mode-hop-free electro-optically tuned diode laser," Opt. Lett. 27, 237-239 (2002).
    [CrossRef]
  7. J. Troger, L. Thévenaz, and P. Robert, "Frequency-sweep generation by resonant self-injection locking," Opt. Lett. 24, 1493-1495 (1999).
    [CrossRef]
  8. R. R. Reibel, Z. Barber, M. Tian, W. R. Babbit, Z. Cole, and K. D. Merkel, "Amplification of high-bandwidth phase-modulated signals at 793 nm," J. Opt. Soc. Am. B 19, 2315-2321 (2002).
    [CrossRef]
  9. L. Thévenaz, S. Le Floch, D. Alasia, and J. Troger, "Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing," Meas. Sci. Technol. 15, 1519-1524 (2004).
    [CrossRef]
  10. L. Ménager, I. Lorgeré, J. L. Gouët, D. Dolphi, and J.-P. Huignard, "Demonstration of a radio-frequency spectrum analyzer based on spectral hole burning," Opt. Lett. 26, 1245-1247 (2001).
    [CrossRef]
  11. K. D. Merkel and W. R. Babbitt, "Chirped-pulse programming of optical coherent transient true-time delays," Opt. Lett. 23, 528-530 (1998).
    [CrossRef]
  12. R. Reibel, Z. Barber, M. Tian, and W. R. Babbit, "Temporally overlapped linear frequency-chirped pulse programming for true-time-delay applications," Opt. Lett. 27, 494-496 (2002).
    [CrossRef]
  13. C. Liendenbaum, S. Stolte, and J. Reuss, "Inversion produced and reversed by adiabatic passage," Phys. Rep. 178, 1-24 (1989).
    [CrossRef]
  14. A. Pietiläinen, M. Kujala, and E. Ikonen, "Investigation of trapped rubidium atoms through frequency-modulation-induced coherent transient effects," J. Opt. Soc. Am. B 15, 2823-2830 (1998).
    [CrossRef]
  15. Y.-Q. Li and M. Xiao, "Transient spectroscopy with a current-switched semiconductor diode laser," J. Opt. B: Quantum Semiclassical Opt. 1, 541-545 (1999).
    [CrossRef]
  16. J. S. Bakos, G. P. Djotyan, P. N. Ignácz, M. Á. Kedves, M. Serényi, Zs. Srlei, J. Szigeti, and Z. Tóth, "Interaction of frequency modulated light pulses with rubidium atoms in a magneto-optical trap," Eur. Phys. J. D 39, 59-66 (2006).
    [CrossRef]
  17. X. Miao, E. Wertz, M. G. Cohen, and H. Metcalf, "Strong optical forces from adiabatic rapid passage," Phys. Rev. A 75, 011402 (2007).
    [CrossRef]
  18. M. J. Wright, S. D. Gensemer, J. Vala, R. Kosloff, and P. L. Gould, "Control of ultracold collisions with frequency-chirped light," Phys. Rev. Lett. 95, 063001 (2005).
    [CrossRef] [PubMed]
  19. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
    [CrossRef]
  20. C. Greiner, B. Boggs, T. Wang, and T. W. Mossberg, "Laser frequency stabilization by means of optical self-heterodyne beat-frequency control," Opt. Lett. 23, 1280-1282 (1998).
    [CrossRef]
  21. M. Gertsvolf and M. Rosenbluh, "Injection locking of a diode laser locked to a Zeeman frequency stabilized laser oscillator," Opt. Commun. 170, 269-274 (1999).
    [CrossRef]
  22. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]

2007 (1)

X. Miao, E. Wertz, M. G. Cohen, and H. Metcalf, "Strong optical forces from adiabatic rapid passage," Phys. Rev. A 75, 011402 (2007).
[CrossRef]

2006 (1)

J. S. Bakos, G. P. Djotyan, P. N. Ignácz, M. Á. Kedves, M. Serényi, Zs. Srlei, J. Szigeti, and Z. Tóth, "Interaction of frequency modulated light pulses with rubidium atoms in a magneto-optical trap," Eur. Phys. J. D 39, 59-66 (2006).
[CrossRef]

2005 (1)

M. J. Wright, S. D. Gensemer, J. Vala, R. Kosloff, and P. L. Gould, "Control of ultracold collisions with frequency-chirped light," Phys. Rev. Lett. 95, 063001 (2005).
[CrossRef] [PubMed]

2004 (2)

M. J. Wright, P. L. Gould, and S. D. Gensemer, "Frequency-chirped light from an injection-locked diode laser," Rev. Sci. Instrum. 75, 4718-4720 (2004).
[CrossRef]

L. Thévenaz, S. Le Floch, D. Alasia, and J. Troger, "Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing," Meas. Sci. Technol. 15, 1519-1524 (2004).
[CrossRef]

2002 (3)

2001 (2)

L. Ménager, I. Lorgeré, J. L. Gouët, D. Dolphi, and J.-P. Huignard, "Demonstration of a radio-frequency spectrum analyzer based on spectral hole burning," Opt. Lett. 26, 1245-1247 (2001).
[CrossRef]

K. S. Repasky, P. A. Roos, L. S. Meng, and J. L. Carlsten, "Amplified output of a frequency chirped diode source via injection locking," Opt. Eng. 40, 2505-2509 (2001).
[CrossRef]

2000 (2)

L. Ménager, L. Caberet, I. Lorgeré, and J. L. Gouët, "Diode laser extended cavity for broad-range fast ramping," Opt. Lett. 25, 1246-1248 (2000).
[CrossRef]

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

1999 (3)

M. Gertsvolf and M. Rosenbluh, "Injection locking of a diode laser locked to a Zeeman frequency stabilized laser oscillator," Opt. Commun. 170, 269-274 (1999).
[CrossRef]

Y.-Q. Li and M. Xiao, "Transient spectroscopy with a current-switched semiconductor diode laser," J. Opt. B: Quantum Semiclassical Opt. 1, 541-545 (1999).
[CrossRef]

J. Troger, L. Thévenaz, and P. Robert, "Frequency-sweep generation by resonant self-injection locking," Opt. Lett. 24, 1493-1495 (1999).
[CrossRef]

1998 (4)

1995 (1)

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

1989 (1)

C. Liendenbaum, S. Stolte, and J. Reuss, "Inversion produced and reversed by adiabatic passage," Phys. Rep. 178, 1-24 (1989).
[CrossRef]

1986 (1)

R. N. Watts and C. E. Wieman, "The production of a highly polarized atomic cesium beam," Opt. Commun. 57, 45-48 (1986).
[CrossRef]

Alasia, D.

L. Thévenaz, S. Le Floch, D. Alasia, and J. Troger, "Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing," Meas. Sci. Technol. 15, 1519-1524 (2004).
[CrossRef]

Babbit, W. R.

Babbitt, W. R.

Bakos, J. S.

J. S. Bakos, G. P. Djotyan, P. N. Ignácz, M. Á. Kedves, M. Serényi, Zs. Srlei, J. Szigeti, and Z. Tóth, "Interaction of frequency modulated light pulses with rubidium atoms in a magneto-optical trap," Eur. Phys. J. D 39, 59-66 (2006).
[CrossRef]

Barber, Z.

Boggs, B.

Caberet, L.

Carlsten, J. L.

K. S. Repasky, P. A. Roos, L. S. Meng, and J. L. Carlsten, "Amplified output of a frequency chirped diode source via injection locking," Opt. Eng. 40, 2505-2509 (2001).
[CrossRef]

Cohen, M. G.

X. Miao, E. Wertz, M. G. Cohen, and H. Metcalf, "Strong optical forces from adiabatic rapid passage," Phys. Rev. A 75, 011402 (2007).
[CrossRef]

Cole, Z.

Djotyan, G. P.

J. S. Bakos, G. P. Djotyan, P. N. Ignácz, M. Á. Kedves, M. Serényi, Zs. Srlei, J. Szigeti, and Z. Tóth, "Interaction of frequency modulated light pulses with rubidium atoms in a magneto-optical trap," Eur. Phys. J. D 39, 59-66 (2006).
[CrossRef]

Dolphi, D.

Esslinger, T.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Gensemer, S. D.

M. J. Wright, S. D. Gensemer, J. Vala, R. Kosloff, and P. L. Gould, "Control of ultracold collisions with frequency-chirped light," Phys. Rev. Lett. 95, 063001 (2005).
[CrossRef] [PubMed]

M. J. Wright, P. L. Gould, and S. D. Gensemer, "Frequency-chirped light from an injection-locked diode laser," Rev. Sci. Instrum. 75, 4718-4720 (2004).
[CrossRef]

Gertsvolf, M.

M. Gertsvolf and M. Rosenbluh, "Injection locking of a diode laser locked to a Zeeman frequency stabilized laser oscillator," Opt. Commun. 170, 269-274 (1999).
[CrossRef]

Gouët, J. L.

Gould, P. L.

M. J. Wright, S. D. Gensemer, J. Vala, R. Kosloff, and P. L. Gould, "Control of ultracold collisions with frequency-chirped light," Phys. Rev. Lett. 95, 063001 (2005).
[CrossRef] [PubMed]

M. J. Wright, P. L. Gould, and S. D. Gensemer, "Frequency-chirped light from an injection-locked diode laser," Rev. Sci. Instrum. 75, 4718-4720 (2004).
[CrossRef]

Greiner, C.

Hänsch, T. W.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Hemmerich, A.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Huignard, J.-P.

Ignácz, P. N.

J. S. Bakos, G. P. Djotyan, P. N. Ignácz, M. Á. Kedves, M. Serényi, Zs. Srlei, J. Szigeti, and Z. Tóth, "Interaction of frequency modulated light pulses with rubidium atoms in a magneto-optical trap," Eur. Phys. J. D 39, 59-66 (2006).
[CrossRef]

Ikonen, E.

Kedves, M. Á.

J. S. Bakos, G. P. Djotyan, P. N. Ignácz, M. Á. Kedves, M. Serényi, Zs. Srlei, J. Szigeti, and Z. Tóth, "Interaction of frequency modulated light pulses with rubidium atoms in a magneto-optical trap," Eur. Phys. J. D 39, 59-66 (2006).
[CrossRef]

König, W.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Kosloff, R.

M. J. Wright, S. D. Gensemer, J. Vala, R. Kosloff, and P. L. Gould, "Control of ultracold collisions with frequency-chirped light," Phys. Rev. Lett. 95, 063001 (2005).
[CrossRef] [PubMed]

Kujala, M.

Le Floch, S.

L. Thévenaz, S. Le Floch, D. Alasia, and J. Troger, "Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing," Meas. Sci. Technol. 15, 1519-1524 (2004).
[CrossRef]

Levin, L.

Li, Y.-Q.

Y.-Q. Li and M. Xiao, "Transient spectroscopy with a current-switched semiconductor diode laser," J. Opt. B: Quantum Semiclassical Opt. 1, 541-545 (1999).
[CrossRef]

Liendenbaum, C.

C. Liendenbaum, S. Stolte, and J. Reuss, "Inversion produced and reversed by adiabatic passage," Phys. Rep. 178, 1-24 (1989).
[CrossRef]

Lin, H.

Lorgeré, I.

Ménager, L.

Meng, L. S.

K. S. Repasky, P. A. Roos, L. S. Meng, and J. L. Carlsten, "Amplified output of a frequency chirped diode source via injection locking," Opt. Eng. 40, 2505-2509 (2001).
[CrossRef]

Merkel, K. D.

Metcalf, H.

X. Miao, E. Wertz, M. G. Cohen, and H. Metcalf, "Strong optical forces from adiabatic rapid passage," Phys. Rev. A 75, 011402 (2007).
[CrossRef]

Miao, X.

X. Miao, E. Wertz, M. G. Cohen, and H. Metcalf, "Strong optical forces from adiabatic rapid passage," Phys. Rev. A 75, 011402 (2007).
[CrossRef]

Mossberg, T. W.

Pietiläinen, A.

Reibel, R.

Reibel, R. R.

Repasky, K. S.

K. S. Repasky, P. A. Roos, L. S. Meng, and J. L. Carlsten, "Amplified output of a frequency chirped diode source via injection locking," Opt. Eng. 40, 2505-2509 (2001).
[CrossRef]

Reuss, J.

C. Liendenbaum, S. Stolte, and J. Reuss, "Inversion produced and reversed by adiabatic passage," Phys. Rep. 178, 1-24 (1989).
[CrossRef]

Ricci, L.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Robert, P.

Roos, P. A.

K. S. Repasky, P. A. Roos, L. S. Meng, and J. L. Carlsten, "Amplified output of a frequency chirped diode source via injection locking," Opt. Eng. 40, 2505-2509 (2001).
[CrossRef]

Rosenbluh, M.

M. Gertsvolf and M. Rosenbluh, "Injection locking of a diode laser locked to a Zeeman frequency stabilized laser oscillator," Opt. Commun. 170, 269-274 (1999).
[CrossRef]

Serényi, M.

J. S. Bakos, G. P. Djotyan, P. N. Ignácz, M. Á. Kedves, M. Serényi, Zs. Srlei, J. Szigeti, and Z. Tóth, "Interaction of frequency modulated light pulses with rubidium atoms in a magneto-optical trap," Eur. Phys. J. D 39, 59-66 (2006).
[CrossRef]

Srlei, Zs.

J. S. Bakos, G. P. Djotyan, P. N. Ignácz, M. Á. Kedves, M. Serényi, Zs. Srlei, J. Szigeti, and Z. Tóth, "Interaction of frequency modulated light pulses with rubidium atoms in a magneto-optical trap," Eur. Phys. J. D 39, 59-66 (2006).
[CrossRef]

Stolte, S.

C. Liendenbaum, S. Stolte, and J. Reuss, "Inversion produced and reversed by adiabatic passage," Phys. Rep. 178, 1-24 (1989).
[CrossRef]

Szigeti, J.

J. S. Bakos, G. P. Djotyan, P. N. Ignácz, M. Á. Kedves, M. Serényi, Zs. Srlei, J. Szigeti, and Z. Tóth, "Interaction of frequency modulated light pulses with rubidium atoms in a magneto-optical trap," Eur. Phys. J. D 39, 59-66 (2006).
[CrossRef]

Thévenaz, L.

L. Thévenaz, S. Le Floch, D. Alasia, and J. Troger, "Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing," Meas. Sci. Technol. 15, 1519-1524 (2004).
[CrossRef]

J. Troger, L. Thévenaz, and P. Robert, "Frequency-sweep generation by resonant self-injection locking," Opt. Lett. 24, 1493-1495 (1999).
[CrossRef]

Tian, M.

Tóth, Z.

J. S. Bakos, G. P. Djotyan, P. N. Ignácz, M. Á. Kedves, M. Serényi, Zs. Srlei, J. Szigeti, and Z. Tóth, "Interaction of frequency modulated light pulses with rubidium atoms in a magneto-optical trap," Eur. Phys. J. D 39, 59-66 (2006).
[CrossRef]

Troger, J.

L. Thévenaz, S. Le Floch, D. Alasia, and J. Troger, "Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing," Meas. Sci. Technol. 15, 1519-1524 (2004).
[CrossRef]

J. Troger, L. Thévenaz, and P. Robert, "Frequency-sweep generation by resonant self-injection locking," Opt. Lett. 24, 1493-1495 (1999).
[CrossRef]

Vala, J.

M. J. Wright, S. D. Gensemer, J. Vala, R. Kosloff, and P. L. Gould, "Control of ultracold collisions with frequency-chirped light," Phys. Rev. Lett. 95, 063001 (2005).
[CrossRef] [PubMed]

Vuletic, V.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Wang, T.

Watts, R. N.

R. N. Watts and C. E. Wieman, "The production of a highly polarized atomic cesium beam," Opt. Commun. 57, 45-48 (1986).
[CrossRef]

Weidemüller, M.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Weiner, A. M.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Wertz, E.

X. Miao, E. Wertz, M. G. Cohen, and H. Metcalf, "Strong optical forces from adiabatic rapid passage," Phys. Rev. A 75, 011402 (2007).
[CrossRef]

Wieman, C. E.

R. N. Watts and C. E. Wieman, "The production of a highly polarized atomic cesium beam," Opt. Commun. 57, 45-48 (1986).
[CrossRef]

Wright, M. J.

M. J. Wright, S. D. Gensemer, J. Vala, R. Kosloff, and P. L. Gould, "Control of ultracold collisions with frequency-chirped light," Phys. Rev. Lett. 95, 063001 (2005).
[CrossRef] [PubMed]

M. J. Wright, P. L. Gould, and S. D. Gensemer, "Frequency-chirped light from an injection-locked diode laser," Rev. Sci. Instrum. 75, 4718-4720 (2004).
[CrossRef]

Xiao, M.

Y.-Q. Li and M. Xiao, "Transient spectroscopy with a current-switched semiconductor diode laser," J. Opt. B: Quantum Semiclassical Opt. 1, 541-545 (1999).
[CrossRef]

Zimmermann, C.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Eur. Phys. J. D (1)

J. S. Bakos, G. P. Djotyan, P. N. Ignácz, M. Á. Kedves, M. Serényi, Zs. Srlei, J. Szigeti, and Z. Tóth, "Interaction of frequency modulated light pulses with rubidium atoms in a magneto-optical trap," Eur. Phys. J. D 39, 59-66 (2006).
[CrossRef]

J. Opt. B: Quantum Semiclassical Opt. (1)

Y.-Q. Li and M. Xiao, "Transient spectroscopy with a current-switched semiconductor diode laser," J. Opt. B: Quantum Semiclassical Opt. 1, 541-545 (1999).
[CrossRef]

J. Opt. Soc. Am. B (2)

Meas. Sci. Technol. (1)

L. Thévenaz, S. Le Floch, D. Alasia, and J. Troger, "Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing," Meas. Sci. Technol. 15, 1519-1524 (2004).
[CrossRef]

Opt. Commun. (3)

R. N. Watts and C. E. Wieman, "The production of a highly polarized atomic cesium beam," Opt. Commun. 57, 45-48 (1986).
[CrossRef]

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

M. Gertsvolf and M. Rosenbluh, "Injection locking of a diode laser locked to a Zeeman frequency stabilized laser oscillator," Opt. Commun. 170, 269-274 (1999).
[CrossRef]

Opt. Eng. (1)

K. S. Repasky, P. A. Roos, L. S. Meng, and J. L. Carlsten, "Amplified output of a frequency chirped diode source via injection locking," Opt. Eng. 40, 2505-2509 (2001).
[CrossRef]

Opt. Lett. (8)

Phys. Rep. (1)

C. Liendenbaum, S. Stolte, and J. Reuss, "Inversion produced and reversed by adiabatic passage," Phys. Rep. 178, 1-24 (1989).
[CrossRef]

Phys. Rev. A (1)

X. Miao, E. Wertz, M. G. Cohen, and H. Metcalf, "Strong optical forces from adiabatic rapid passage," Phys. Rev. A 75, 011402 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

M. J. Wright, S. D. Gensemer, J. Vala, R. Kosloff, and P. L. Gould, "Control of ultracold collisions with frequency-chirped light," Phys. Rev. Lett. 95, 063001 (2005).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

M. J. Wright, P. L. Gould, and S. D. Gensemer, "Frequency-chirped light from an injection-locked diode laser," Rev. Sci. Instrum. 75, 4718-4720 (2004).
[CrossRef]

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the apparatus. The free-running diode laser (FRDL) is initially injection locked by a seed pulse originating from the external-cavity diode laser (ECDL) and switched on by acousto-optical modulator AOM1. The injection-locked output pulse from the FRDL is switched into the fiber loop by AOM2. The frequency shift produced by AOM2 is compensated for by AOM3. The fiber loop is connected to a phase modulator (PM) driven by an arbritrary waveform generator (AWG). The phase-modulated pulse (re) injection locks the FRDL, and the loop cycle is repeated. After N passes through the loop, the pulse is combined with the ECDL output on a fast photodiode (PD) for heterodyne analysis. Beamsplitters (BS), polarizing beamsplitters (PBS), and optical isolators (OI) are also shown.

Fig. 2
Fig. 2

Timing diagram for chirped-pulse generation. The seed pulse, generated by AOM1, initiates the process. Subsequent pulses of light from the FRDL, generated by AOM2, represent the multiple passes through the fiber loop. The desired phase modulation is applied synchronously during each pass.

Fig. 3
Fig. 3

Heterodyne signal between the ECDL and the injection-locked FRDL pulse after 15 passes through the loop. No phase modulation is applied, so the 80 MHz beat signal is due to the frequency shift of AOM1.

Fig. 4
Fig. 4

(a) Linearly varying output of the AWG that drives the phase modulator. (b) Heterodyne signal between the ECDL and the injection-locked FRDL pulse after 10 passes through the loop. The 360 MHz beat signal reflects the 80 MHz frequency shift of AOM1 as well as that due to the linear phase modulation.

Fig. 5
Fig. 5

(a) Quadratically varying (alternately positive and negative) output of the AWG. (b) Heterodyne signal between the ECDL and the injection-locked FRDL pulse after 10 passes through the loop. The apparent reduction in amplitude at high frequencies is due to the limited detection bandwidth. (c) Frequency versus time derived from (b).

Fig. 6
Fig. 6

(a) Quadratic plus sinusoidal output of the AWG. (b) Numerical derivative of the AWG output. (c) Heterodyne signal between the ECDL and the injection-locked FRDL pulse after 13 passes through the loop. The apparent reduction in amplitude at high frequencies is due to the limited detection bandwidth. (d) Frequency versus time derived from (c). Note the close correspondence between (b) and (d).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f ( t ) = f 0 + ( 1 2 π ) ( d φ d t ) ,
Δ φ = N π ( V V π ) .

Metrics