Abstract

Ce3+ and B2O3 are introduced into erbium-doped Bi2O3SiO2 glass to enhance the luminescence emission and optic spectra characters of Er3+. The energy transfer from Er3+ to Ce3+ will obviously be improved with the phonon energy increasing by the addition of B2O3. Here, the nonradiative rate, the lifetime of the I1124I1324 transition, and the emission intensity and bandwidth of the 1.5μm luminescence with the I1324I1524 transition of Er3+ are discussed in detail. The results show that the optical parameters of Er3+ in this bismuth–borate–silicate glass are nearly as good as that in tellurite glass, and the physical properties are similar to those in silicate glass. With the Judd–Ofelt and nonradiative theory analyses, the multiphonon decay and phonon-assisted energy-transfer (PAT) rates are calculated for the Er3+Ce3+ codoped glasses. For the PAT process, an optimum value of the glass phonon energy is obtained after B2O3 is introduced into the Er3+Ce3+ codoped bismuth–silicate glasses, and it much improves the energy-transfer rate between Er3+I1124I1324 and Ce3+F522F722, although there is an energy mismatch.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, "Broad-band 1.5μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier," J. Lumin. 87-89, 670-672 (2000).
    [CrossRef]
  2. C. B. Layne, W. H. Lowdermilk, and M. J. Weber, "Multiphonon relaxation of rare-earth ions in oxide glasses," Phys. Rev. B 16, 10-20 (1977).
    [CrossRef]
  3. G. K. D. Mohapatra, "A spectroscopic study of Ce3+ ion in calcium metaphosphate glass," Prog. Cryst. Growth Charact. Mater. 39, 50-55 (1998).
  4. G. A. Slack, S. L. Dole, V. Tsoukala, and G. S. Nolas, "Optical absorption spectrum of trivalent cerium in Y2O3, Ba2GdTaO6, ThO2, and related compounds," J. Opt. Soc. Am. B 11, 961-974 (1994).
    [CrossRef]
  5. E. Zych, C. Brecher, and A. Lempicki, "Infrared spectroscopy of LuAlO3:Ce a useful tool to determine Ce concentration," Spectrochim. Acta, Part A 54, 1763-1769 (1998).
    [CrossRef]
  6. Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, "Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980nm excitation," J. Appl. Phys. 88, 3832-3839 (2000).
    [CrossRef]
  7. X. Feng, S. Tanabe, and T. Hanada, "Hydroxyl groups in erbium-doped germanotellurite glasses," J. Non-Cryst. Solids 281, 48-54 (2001).
    [CrossRef]
  8. S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, "Concentration quenching in erbium-doped tellurite glasses," J. Lumin. 117, 39-45 (2006).
    [CrossRef]
  9. Y. Chen, Y. Huang, M. Huang, R. Chen, and Z. Luo, "Spectroscopic properties of Er3+ ions in bismuth borate glasses," Opt. Mater. 25, 271-278 (2004).
    [CrossRef]
  10. M. J. Weber, "Radiative and multiphonon relaxation of rare-earth ions in Y2O3," Phys. Rev. 171, 283-291 (1968).
    [CrossRef]
  11. M. Takahashi, M. Shojiya, R. Kanno, Y. Kawamoto, K. Kadono, T. Ohtsuki, and N. Peyghambarian, "Nonradiative decay processes and mechanisms of frequency upconversion of Er3+ in ZrF4-BaF2-LaF3 glass," J. Appl. Phys. 81, 2940-2945 (2006).
    [CrossRef]
  12. T. Miyakawa and D. L. Dexter, "Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids," Phys. Rev. B 1, 2961-2969 (1970).
    [CrossRef]
  13. L. R. P. Kassab, M. E. Fukumoto, and L. Gomes, "Energy transfer in PbO-Bi2O3-Ga2O3 glasses codoped with Yb3+ and Er3+," J. Opt. Soc. Am. B 22, 1255-1259 (2005).
    [CrossRef]

2006

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, "Concentration quenching in erbium-doped tellurite glasses," J. Lumin. 117, 39-45 (2006).
[CrossRef]

M. Takahashi, M. Shojiya, R. Kanno, Y. Kawamoto, K. Kadono, T. Ohtsuki, and N. Peyghambarian, "Nonradiative decay processes and mechanisms of frequency upconversion of Er3+ in ZrF4-BaF2-LaF3 glass," J. Appl. Phys. 81, 2940-2945 (2006).
[CrossRef]

2005

2004

Y. Chen, Y. Huang, M. Huang, R. Chen, and Z. Luo, "Spectroscopic properties of Er3+ ions in bismuth borate glasses," Opt. Mater. 25, 271-278 (2004).
[CrossRef]

2001

X. Feng, S. Tanabe, and T. Hanada, "Hydroxyl groups in erbium-doped germanotellurite glasses," J. Non-Cryst. Solids 281, 48-54 (2001).
[CrossRef]

2000

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, "Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980nm excitation," J. Appl. Phys. 88, 3832-3839 (2000).
[CrossRef]

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, "Broad-band 1.5μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier," J. Lumin. 87-89, 670-672 (2000).
[CrossRef]

1998

G. K. D. Mohapatra, "A spectroscopic study of Ce3+ ion in calcium metaphosphate glass," Prog. Cryst. Growth Charact. Mater. 39, 50-55 (1998).

E. Zych, C. Brecher, and A. Lempicki, "Infrared spectroscopy of LuAlO3:Ce a useful tool to determine Ce concentration," Spectrochim. Acta, Part A 54, 1763-1769 (1998).
[CrossRef]

1994

1977

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, "Multiphonon relaxation of rare-earth ions in oxide glasses," Phys. Rev. B 16, 10-20 (1977).
[CrossRef]

1970

T. Miyakawa and D. L. Dexter, "Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids," Phys. Rev. B 1, 2961-2969 (1970).
[CrossRef]

1968

M. J. Weber, "Radiative and multiphonon relaxation of rare-earth ions in Y2O3," Phys. Rev. 171, 283-291 (1968).
[CrossRef]

Brecher, C.

E. Zych, C. Brecher, and A. Lempicki, "Infrared spectroscopy of LuAlO3:Ce a useful tool to determine Ce concentration," Spectrochim. Acta, Part A 54, 1763-1769 (1998).
[CrossRef]

Chen, R.

Y. Chen, Y. Huang, M. Huang, R. Chen, and Z. Luo, "Spectroscopic properties of Er3+ ions in bismuth borate glasses," Opt. Mater. 25, 271-278 (2004).
[CrossRef]

Chen, Y.

Y. Chen, Y. Huang, M. Huang, R. Chen, and Z. Luo, "Spectroscopic properties of Er3+ ions in bismuth borate glasses," Opt. Mater. 25, 271-278 (2004).
[CrossRef]

Choi, Y. G.

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, "Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980nm excitation," J. Appl. Phys. 88, 3832-3839 (2000).
[CrossRef]

Dai, S.

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, "Concentration quenching in erbium-doped tellurite glasses," J. Lumin. 117, 39-45 (2006).
[CrossRef]

Dexter, D. L.

T. Miyakawa and D. L. Dexter, "Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids," Phys. Rev. B 1, 2961-2969 (1970).
[CrossRef]

Dole, S. L.

Feng, X.

X. Feng, S. Tanabe, and T. Hanada, "Hydroxyl groups in erbium-doped germanotellurite glasses," J. Non-Cryst. Solids 281, 48-54 (2001).
[CrossRef]

Fukumoto, M. E.

Gomes, L.

Hanada, T.

X. Feng, S. Tanabe, and T. Hanada, "Hydroxyl groups in erbium-doped germanotellurite glasses," J. Non-Cryst. Solids 281, 48-54 (2001).
[CrossRef]

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, "Broad-band 1.5μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier," J. Lumin. 87-89, 670-672 (2000).
[CrossRef]

Heo, J.

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, "Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980nm excitation," J. Appl. Phys. 88, 3832-3839 (2000).
[CrossRef]

Hu, L.

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, "Concentration quenching in erbium-doped tellurite glasses," J. Lumin. 117, 39-45 (2006).
[CrossRef]

Huang, M.

Y. Chen, Y. Huang, M. Huang, R. Chen, and Z. Luo, "Spectroscopic properties of Er3+ ions in bismuth borate glasses," Opt. Mater. 25, 271-278 (2004).
[CrossRef]

Huang, Y.

Y. Chen, Y. Huang, M. Huang, R. Chen, and Z. Luo, "Spectroscopic properties of Er3+ ions in bismuth borate glasses," Opt. Mater. 25, 271-278 (2004).
[CrossRef]

Ito, S.

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, "Broad-band 1.5μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier," J. Lumin. 87-89, 670-672 (2000).
[CrossRef]

Kadono, K.

M. Takahashi, M. Shojiya, R. Kanno, Y. Kawamoto, K. Kadono, T. Ohtsuki, and N. Peyghambarian, "Nonradiative decay processes and mechanisms of frequency upconversion of Er3+ in ZrF4-BaF2-LaF3 glass," J. Appl. Phys. 81, 2940-2945 (2006).
[CrossRef]

Kanno, R.

M. Takahashi, M. Shojiya, R. Kanno, Y. Kawamoto, K. Kadono, T. Ohtsuki, and N. Peyghambarian, "Nonradiative decay processes and mechanisms of frequency upconversion of Er3+ in ZrF4-BaF2-LaF3 glass," J. Appl. Phys. 81, 2940-2945 (2006).
[CrossRef]

Kassab, L. R. P.

Kawamoto, Y.

M. Takahashi, M. Shojiya, R. Kanno, Y. Kawamoto, K. Kadono, T. Ohtsuki, and N. Peyghambarian, "Nonradiative decay processes and mechanisms of frequency upconversion of Er3+ in ZrF4-BaF2-LaF3 glass," J. Appl. Phys. 81, 2940-2945 (2006).
[CrossRef]

Kim, K. H.

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, "Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980nm excitation," J. Appl. Phys. 88, 3832-3839 (2000).
[CrossRef]

Layne, C. B.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, "Multiphonon relaxation of rare-earth ions in oxide glasses," Phys. Rev. B 16, 10-20 (1977).
[CrossRef]

Lempicki, A.

E. Zych, C. Brecher, and A. Lempicki, "Infrared spectroscopy of LuAlO3:Ce a useful tool to determine Ce concentration," Spectrochim. Acta, Part A 54, 1763-1769 (1998).
[CrossRef]

Lowdermilk, W. H.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, "Multiphonon relaxation of rare-earth ions in oxide glasses," Phys. Rev. B 16, 10-20 (1977).
[CrossRef]

Luo, Z.

Y. Chen, Y. Huang, M. Huang, R. Chen, and Z. Luo, "Spectroscopic properties of Er3+ ions in bismuth borate glasses," Opt. Mater. 25, 271-278 (2004).
[CrossRef]

Miyakawa, T.

T. Miyakawa and D. L. Dexter, "Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids," Phys. Rev. B 1, 2961-2969 (1970).
[CrossRef]

Mohapatra, G. K. D.

G. K. D. Mohapatra, "A spectroscopic study of Ce3+ ion in calcium metaphosphate glass," Prog. Cryst. Growth Charact. Mater. 39, 50-55 (1998).

Nolas, G. S.

Ohtsuki, T.

M. Takahashi, M. Shojiya, R. Kanno, Y. Kawamoto, K. Kadono, T. Ohtsuki, and N. Peyghambarian, "Nonradiative decay processes and mechanisms of frequency upconversion of Er3+ in ZrF4-BaF2-LaF3 glass," J. Appl. Phys. 81, 2940-2945 (2006).
[CrossRef]

Park, S. H.

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, "Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980nm excitation," J. Appl. Phys. 88, 3832-3839 (2000).
[CrossRef]

Peyghambarian, N.

M. Takahashi, M. Shojiya, R. Kanno, Y. Kawamoto, K. Kadono, T. Ohtsuki, and N. Peyghambarian, "Nonradiative decay processes and mechanisms of frequency upconversion of Er3+ in ZrF4-BaF2-LaF3 glass," J. Appl. Phys. 81, 2940-2945 (2006).
[CrossRef]

Shojiya, M.

M. Takahashi, M. Shojiya, R. Kanno, Y. Kawamoto, K. Kadono, T. Ohtsuki, and N. Peyghambarian, "Nonradiative decay processes and mechanisms of frequency upconversion of Er3+ in ZrF4-BaF2-LaF3 glass," J. Appl. Phys. 81, 2940-2945 (2006).
[CrossRef]

Slack, G. A.

Sugimoto, N.

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, "Broad-band 1.5μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier," J. Lumin. 87-89, 670-672 (2000).
[CrossRef]

Takahashi, M.

M. Takahashi, M. Shojiya, R. Kanno, Y. Kawamoto, K. Kadono, T. Ohtsuki, and N. Peyghambarian, "Nonradiative decay processes and mechanisms of frequency upconversion of Er3+ in ZrF4-BaF2-LaF3 glass," J. Appl. Phys. 81, 2940-2945 (2006).
[CrossRef]

Tanabe, S.

X. Feng, S. Tanabe, and T. Hanada, "Hydroxyl groups in erbium-doped germanotellurite glasses," J. Non-Cryst. Solids 281, 48-54 (2001).
[CrossRef]

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, "Broad-band 1.5μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier," J. Lumin. 87-89, 670-672 (2000).
[CrossRef]

Tsoukala, V.

Wang, G.

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, "Concentration quenching in erbium-doped tellurite glasses," J. Lumin. 117, 39-45 (2006).
[CrossRef]

Weber, M. J.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, "Multiphonon relaxation of rare-earth ions in oxide glasses," Phys. Rev. B 16, 10-20 (1977).
[CrossRef]

M. J. Weber, "Radiative and multiphonon relaxation of rare-earth ions in Y2O3," Phys. Rev. 171, 283-291 (1968).
[CrossRef]

Yu, C.

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, "Concentration quenching in erbium-doped tellurite glasses," J. Lumin. 117, 39-45 (2006).
[CrossRef]

Zhang, J.

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, "Concentration quenching in erbium-doped tellurite glasses," J. Lumin. 117, 39-45 (2006).
[CrossRef]

Zhou, G.

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, "Concentration quenching in erbium-doped tellurite glasses," J. Lumin. 117, 39-45 (2006).
[CrossRef]

Zych, E.

E. Zych, C. Brecher, and A. Lempicki, "Infrared spectroscopy of LuAlO3:Ce a useful tool to determine Ce concentration," Spectrochim. Acta, Part A 54, 1763-1769 (1998).
[CrossRef]

J. Appl. Phys.

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, "Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980nm excitation," J. Appl. Phys. 88, 3832-3839 (2000).
[CrossRef]

M. Takahashi, M. Shojiya, R. Kanno, Y. Kawamoto, K. Kadono, T. Ohtsuki, and N. Peyghambarian, "Nonradiative decay processes and mechanisms of frequency upconversion of Er3+ in ZrF4-BaF2-LaF3 glass," J. Appl. Phys. 81, 2940-2945 (2006).
[CrossRef]

J. Lumin.

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, "Concentration quenching in erbium-doped tellurite glasses," J. Lumin. 117, 39-45 (2006).
[CrossRef]

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, "Broad-band 1.5μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier," J. Lumin. 87-89, 670-672 (2000).
[CrossRef]

J. Non-Cryst. Solids

X. Feng, S. Tanabe, and T. Hanada, "Hydroxyl groups in erbium-doped germanotellurite glasses," J. Non-Cryst. Solids 281, 48-54 (2001).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Mater.

Y. Chen, Y. Huang, M. Huang, R. Chen, and Z. Luo, "Spectroscopic properties of Er3+ ions in bismuth borate glasses," Opt. Mater. 25, 271-278 (2004).
[CrossRef]

Phys. Rev.

M. J. Weber, "Radiative and multiphonon relaxation of rare-earth ions in Y2O3," Phys. Rev. 171, 283-291 (1968).
[CrossRef]

Phys. Rev. B

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, "Multiphonon relaxation of rare-earth ions in oxide glasses," Phys. Rev. B 16, 10-20 (1977).
[CrossRef]

T. Miyakawa and D. L. Dexter, "Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids," Phys. Rev. B 1, 2961-2969 (1970).
[CrossRef]

Prog. Cryst. Growth Charact. Mater.

G. K. D. Mohapatra, "A spectroscopic study of Ce3+ ion in calcium metaphosphate glass," Prog. Cryst. Growth Charact. Mater. 39, 50-55 (1998).

Spectrochim. Acta, Part A

E. Zych, C. Brecher, and A. Lempicki, "Infrared spectroscopy of LuAlO3:Ce a useful tool to determine Ce concentration," Spectrochim. Acta, Part A 54, 1763-1769 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Energy-level diagrams of Er 3 + and Ce 3 + and transitions for observable emission in the bismuth–silicate–borate glasses. W C R , cross relaxation; W M P R , multiphonon relaxation; ESA, excited-state absorption; PAT, photon-assisted energy transfer; DE, difference of energy; CR, cross relaxation.

Fig. 2
Fig. 2

Absorption spectra of Er 3 + -single-doped and Er 3 + Ce 3 + -codoped BSB glasses.

Fig. 3
Fig. 3

(a) Fourier-transform IR absorption spectra and (b) the maximum photon energy of the host glasses varying with B 2 O 3 content in the ( 85 x ) Bi 2 O 3 15 SiO 2 x B 2 O 3 0.5 wt . % Er 2 O 3 2 wt . % CeO 2 ( x = 0 , 5, 10, 15, 20 mol . % ) glasses.

Fig. 4
Fig. 4

Fluorescence emission spectra of the Er 3 + I 13 2 4 I 15 2 4 transition from the 1 wt . % Er 3 + , 2 wt . % Ce 3 + -codoped BSB glasses. The inset figure shows the intensity of 1532 nm emission changing with the increasing of B 2 O 3 content.

Fig. 5
Fig. 5

(a) Measured fluorescence lifetimes of Er 3 + I 11 2 4 I 15 2 4 . (b) Fluorescence lifetimes of Er 3 + I 13 2 4 I 15 2 4 .

Fig. 6
Fig. 6

Total radiative quantum efficiency of I 13 2 4 I 13 2 4 and the nonradiative quantum efficiency of I 11 2 4 I 13 2 4 .

Fig. 7
Fig. 7

Nonradiative decay rate of Er 3 + I 11 2 4 I 13 2 4 by the PAT process with Ce 3 + (a) varying with B 2 O 3 content and (b) varying with the phonon energy of the glasses.

Tables (2)

Tables Icon

Table 1 B 2 O 3 Content, CeO 2 Concentrations, Densities ρ, Refractive Indices, OH Group Absorption Coefficients at 3000 cm 1 , and Induced Energy-Transfer Rate by OH a

Tables Icon

Table 2 Judd–Ofelt Intensity Parameters, Radiative Transition Probabilities W r , Branching Ratios β, Radiative Lifetimes τ r , Nonradiative Transition Probabilities W N R , Quantum Efficiencies of Some Electronic Transitions and the MPR and PAT Rates of Er 3 + I 11 2 4 I 13 2 4 in Er 3 + -doped BSB Glasses

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

α O H = ln ( I 0 I ) L ,
N O H = N ϵ L ln 1 T ,
W O H = 8 π C Er , Er N O H N Er ,
Er 3 + ( I 11 2 4 ) + Ce 3 + ( F 5 2 2 ) Er 3 + ( I 13 2 4 ) + Ce 3 + ( F 7 2 2 ) + phonon ,
Er 3 + ( I 11 2 4 ) Er 3 + ( I 13 2 4 ) + phonons .
Δ λ e f f = I ( λ ) d λ I m a x ,
η i = τ m i τ r i ( i = 2 , 3 ) ,
η A = η 2 * η 3 .
W N R = W M P + W C R + W O H + W E T ( C e P A T ) ,
W N R = τ f 1 τ r 1 .
W N R = W M P + W E T ( C e P A T ) .
W M P = W 0 exp ( α Δ E h w ) α 1 W 0 exp ( Δ E h w ) ,
W P A T 1 = W N R ( A 1 ) W N R ( B 1 ) .

Metrics