Abstract

Dynamic and radiative properties of a Λ-type atom embedded in a three-dimensional anisotropic photonic crystal with a driven field are investigated. The time-evolution properties of the atom and the characteristics of the emission field are greatly affected by the position of the upper level relative to the forbidden gap. Also studied are the influence of the intensity of the external field, the detuning from resonant frequency, and the background decay parameter on the dynamic properties of the atom. The energy of the propagation field is translated partly into the form of the diffusion field during the propagating process. The spectra of the propagation component and diffusive component are dependent on the distance from the atom.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. S. John and T. Quang, "Spontaneous emission near the edge of a photonic band gap," Phys. Rev. A 50, 1764-1769 (1994).
    [CrossRef] [PubMed]
  4. S. John and J. Wang, "Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms," Phys. Rev. Lett. 64, 2418-2421 (1990).
    [CrossRef] [PubMed]
  5. A. G. Kofman, G. Kurizki, and B. Sherman, "Spontaneous and induced atomic decay in photonic band structures," J. Mod. Opt. 41, 353-384 (1994).
    [CrossRef]
  6. S. Bay, P. Lambropoulos, and K. Molmer, "Fluorescence into flat and structured radiation continua: an atomic density matrix without a master equation," Phys. Rev. Lett. 79, 2654-2657 (1997).
    [CrossRef]
  7. S.-Y. Zhu, H. Chen, and H. Huang, "Quantum interference effects in spontaneous emission from an atom embedded in a photonic band gap structure," Phys. Rev. Lett. 79, 205-208 (1997).
    [CrossRef]
  8. S.-Y. Zhu, Y. P. Yang, H. Chen, H. Zheng, and M. S. Zubairy, "Spontaneous radiation and Lamb shift in three-dimensional photonic crystals," Phys. Rev. Lett. 84, 2136-2139 (2000).
    [CrossRef] [PubMed]
  9. Y. P. Yang and S.-Y. Zhu, "Spontaneous emission from a two-level atom in a three-dimensional photonic crystal," Phys. Rev. A 62, 013805 (2000).
    [CrossRef]
  10. A. G. Kofman and G. Kurizki, "Quantum Zeno effect on atomic excitation decay in resonators," Phys. Rev. A 54, R3750-R3753 (1996).
    [CrossRef] [PubMed]
  11. T. Quang, M. Woldeyohannes, and S. John, "Coherent control of spontaneous emission near a photonic band edge: a single-atom optical memory device," Phys. Rev. Lett. 79, 5238-5241 (1997).
    [CrossRef]
  12. E. Paspalakis, N. J. Kylstra, and P. L. Knight, "Transparency near a photonic band edge," Phys. Rev. A 60, R33-R36 (1999).
    [CrossRef]
  13. Y. P. Yang, Z. X. Lin, S. Y. Zhu, H. Chen, and W. G. Feng, "Spontaneous spectrum of a lambda-type atomic system near a photonic band edge," Phys. Lett. A 270, 41-46 (2000).
    [CrossRef]
  14. E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gopanenko, "Spontaneous emission of organic molecules embedded in a photonic crystal," Phys. Rev. Lett. 81, 77-80 (1998).
    [CrossRef]
  15. M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, "Fluorescence lifetimes and linewidths of dye in photonic crystals," Phys. Rev. A 59, 4727-4731 (1999).
    [CrossRef]
  16. X. H. Wang, R. Z. Wang, B. Y. Gu, and G. Z. Yang, "Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps," Phys. Rev. Lett. 88, 093902 (2002).
    [CrossRef] [PubMed]
  17. Y. P. Yang, M. Fleischhauer, and S.-Y. Zhu, "Spontaneous emission in a photonic crystal near the band edge: field versus population dynamics," Phys. Rev. E 68, 015602R (2003).
    [CrossRef]
  18. D. Petrosyan and G. Kurizki, "Photon-photon correlations and entanglement in doped photonic crystals," Phys. Rev. A 64, 023810 (2001).
    [CrossRef]
  19. I. Friedler, G. Kurizki, and D. Petrosyan, "Giant nonlinearity and entanglement of single photons in photonic bandgap structures," Europhys. Lett. 68, 625-631 (2004).
    [CrossRef]
  20. L. Florescu, S. John, T. Quang, and R. Z. Wang, "Theory of a one-atom laser in a photonic band-gap microchip," Phys. Rev. A 69, 013816 (2004).
    [CrossRef]
  21. M. R. Singh, "Anomalous electromagnetically induced transparency in photonic-band-gap materials," Phys. Rev. A 70, 033813 (2004).
    [CrossRef]
  22. R. Wang and S. John, "Engineering the electromagnetic vacuum for controlling light with light in a photonic-band-gap microchip," Phys. Rev. A 70, 043805 (2004).
    [CrossRef]
  23. G. X. Li, J. Evers, and C. H. Keitel, "Low-frequency-field-induced spontaneous-emission interference in a two-level atom placed in an anisotropic photonic crystal," J. Phys. B 38, 1435-1451 (2005).
    [CrossRef]
  24. A. F. Koenderink and W. L. Vos, "Light exiting from real photonic band gap crystals is diffuse and strongly directional," Phys. Rev. Lett. 91, 213902 (2003).
    [CrossRef] [PubMed]
  25. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Y. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vukovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
    [CrossRef] [PubMed]
  26. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997), Chap. 6.

2005

G. X. Li, J. Evers, and C. H. Keitel, "Low-frequency-field-induced spontaneous-emission interference in a two-level atom placed in an anisotropic photonic crystal," J. Phys. B 38, 1435-1451 (2005).
[CrossRef]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Y. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vukovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

2004

I. Friedler, G. Kurizki, and D. Petrosyan, "Giant nonlinearity and entanglement of single photons in photonic bandgap structures," Europhys. Lett. 68, 625-631 (2004).
[CrossRef]

L. Florescu, S. John, T. Quang, and R. Z. Wang, "Theory of a one-atom laser in a photonic band-gap microchip," Phys. Rev. A 69, 013816 (2004).
[CrossRef]

M. R. Singh, "Anomalous electromagnetically induced transparency in photonic-band-gap materials," Phys. Rev. A 70, 033813 (2004).
[CrossRef]

R. Wang and S. John, "Engineering the electromagnetic vacuum for controlling light with light in a photonic-band-gap microchip," Phys. Rev. A 70, 043805 (2004).
[CrossRef]

2003

A. F. Koenderink and W. L. Vos, "Light exiting from real photonic band gap crystals is diffuse and strongly directional," Phys. Rev. Lett. 91, 213902 (2003).
[CrossRef] [PubMed]

Y. P. Yang, M. Fleischhauer, and S.-Y. Zhu, "Spontaneous emission in a photonic crystal near the band edge: field versus population dynamics," Phys. Rev. E 68, 015602R (2003).
[CrossRef]

2002

X. H. Wang, R. Z. Wang, B. Y. Gu, and G. Z. Yang, "Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps," Phys. Rev. Lett. 88, 093902 (2002).
[CrossRef] [PubMed]

2001

D. Petrosyan and G. Kurizki, "Photon-photon correlations and entanglement in doped photonic crystals," Phys. Rev. A 64, 023810 (2001).
[CrossRef]

2000

Y. P. Yang, Z. X. Lin, S. Y. Zhu, H. Chen, and W. G. Feng, "Spontaneous spectrum of a lambda-type atomic system near a photonic band edge," Phys. Lett. A 270, 41-46 (2000).
[CrossRef]

S.-Y. Zhu, Y. P. Yang, H. Chen, H. Zheng, and M. S. Zubairy, "Spontaneous radiation and Lamb shift in three-dimensional photonic crystals," Phys. Rev. Lett. 84, 2136-2139 (2000).
[CrossRef] [PubMed]

Y. P. Yang and S.-Y. Zhu, "Spontaneous emission from a two-level atom in a three-dimensional photonic crystal," Phys. Rev. A 62, 013805 (2000).
[CrossRef]

1999

E. Paspalakis, N. J. Kylstra, and P. L. Knight, "Transparency near a photonic band edge," Phys. Rev. A 60, R33-R36 (1999).
[CrossRef]

M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, "Fluorescence lifetimes and linewidths of dye in photonic crystals," Phys. Rev. A 59, 4727-4731 (1999).
[CrossRef]

1998

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gopanenko, "Spontaneous emission of organic molecules embedded in a photonic crystal," Phys. Rev. Lett. 81, 77-80 (1998).
[CrossRef]

1997

T. Quang, M. Woldeyohannes, and S. John, "Coherent control of spontaneous emission near a photonic band edge: a single-atom optical memory device," Phys. Rev. Lett. 79, 5238-5241 (1997).
[CrossRef]

S. Bay, P. Lambropoulos, and K. Molmer, "Fluorescence into flat and structured radiation continua: an atomic density matrix without a master equation," Phys. Rev. Lett. 79, 2654-2657 (1997).
[CrossRef]

S.-Y. Zhu, H. Chen, and H. Huang, "Quantum interference effects in spontaneous emission from an atom embedded in a photonic band gap structure," Phys. Rev. Lett. 79, 205-208 (1997).
[CrossRef]

1996

A. G. Kofman and G. Kurizki, "Quantum Zeno effect on atomic excitation decay in resonators," Phys. Rev. A 54, R3750-R3753 (1996).
[CrossRef] [PubMed]

1994

S. John and T. Quang, "Spontaneous emission near the edge of a photonic band gap," Phys. Rev. A 50, 1764-1769 (1994).
[CrossRef] [PubMed]

A. G. Kofman, G. Kurizki, and B. Sherman, "Spontaneous and induced atomic decay in photonic band structures," J. Mod. Opt. 41, 353-384 (1994).
[CrossRef]

1990

S. John and J. Wang, "Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms," Phys. Rev. Lett. 64, 2418-2421 (1990).
[CrossRef] [PubMed]

1987

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Y. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vukovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Bay, S.

S. Bay, P. Lambropoulos, and K. Molmer, "Fluorescence into flat and structured radiation continua: an atomic density matrix without a master equation," Phys. Rev. Lett. 79, 2654-2657 (1997).
[CrossRef]

Bogomolov, V. N.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gopanenko, "Spontaneous emission of organic molecules embedded in a photonic crystal," Phys. Rev. Lett. 81, 77-80 (1998).
[CrossRef]

Chen, H.

S.-Y. Zhu, Y. P. Yang, H. Chen, H. Zheng, and M. S. Zubairy, "Spontaneous radiation and Lamb shift in three-dimensional photonic crystals," Phys. Rev. Lett. 84, 2136-2139 (2000).
[CrossRef] [PubMed]

Y. P. Yang, Z. X. Lin, S. Y. Zhu, H. Chen, and W. G. Feng, "Spontaneous spectrum of a lambda-type atomic system near a photonic band edge," Phys. Lett. A 270, 41-46 (2000).
[CrossRef]

S.-Y. Zhu, H. Chen, and H. Huang, "Quantum interference effects in spontaneous emission from an atom embedded in a photonic band gap structure," Phys. Rev. Lett. 79, 205-208 (1997).
[CrossRef]

Englund, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Y. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vukovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Evers, J.

G. X. Li, J. Evers, and C. H. Keitel, "Low-frequency-field-induced spontaneous-emission interference in a two-level atom placed in an anisotropic photonic crystal," J. Phys. B 38, 1435-1451 (2005).
[CrossRef]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Y. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vukovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Feng, W. G.

Y. P. Yang, Z. X. Lin, S. Y. Zhu, H. Chen, and W. G. Feng, "Spontaneous spectrum of a lambda-type atomic system near a photonic band edge," Phys. Lett. A 270, 41-46 (2000).
[CrossRef]

Fleischhauer, M.

Y. P. Yang, M. Fleischhauer, and S.-Y. Zhu, "Spontaneous emission in a photonic crystal near the band edge: field versus population dynamics," Phys. Rev. E 68, 015602R (2003).
[CrossRef]

Florescu, L.

L. Florescu, S. John, T. Quang, and R. Z. Wang, "Theory of a one-atom laser in a photonic band-gap microchip," Phys. Rev. A 69, 013816 (2004).
[CrossRef]

Friedler, I.

I. Friedler, G. Kurizki, and D. Petrosyan, "Giant nonlinearity and entanglement of single photons in photonic bandgap structures," Europhys. Lett. 68, 625-631 (2004).
[CrossRef]

Gopanenko, S. V.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gopanenko, "Spontaneous emission of organic molecules embedded in a photonic crystal," Phys. Rev. Lett. 81, 77-80 (1998).
[CrossRef]

Gu, B. Y.

X. H. Wang, R. Z. Wang, B. Y. Gu, and G. Z. Yang, "Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps," Phys. Rev. Lett. 88, 093902 (2002).
[CrossRef] [PubMed]

Huang, H.

S.-Y. Zhu, H. Chen, and H. Huang, "Quantum interference effects in spontaneous emission from an atom embedded in a photonic band gap structure," Phys. Rev. Lett. 79, 205-208 (1997).
[CrossRef]

John, S.

R. Wang and S. John, "Engineering the electromagnetic vacuum for controlling light with light in a photonic-band-gap microchip," Phys. Rev. A 70, 043805 (2004).
[CrossRef]

L. Florescu, S. John, T. Quang, and R. Z. Wang, "Theory of a one-atom laser in a photonic band-gap microchip," Phys. Rev. A 69, 013816 (2004).
[CrossRef]

T. Quang, M. Woldeyohannes, and S. John, "Coherent control of spontaneous emission near a photonic band edge: a single-atom optical memory device," Phys. Rev. Lett. 79, 5238-5241 (1997).
[CrossRef]

S. John and T. Quang, "Spontaneous emission near the edge of a photonic band gap," Phys. Rev. A 50, 1764-1769 (1994).
[CrossRef] [PubMed]

S. John and J. Wang, "Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms," Phys. Rev. Lett. 64, 2418-2421 (1990).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Kalosha, I. I.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gopanenko, "Spontaneous emission of organic molecules embedded in a photonic crystal," Phys. Rev. Lett. 81, 77-80 (1998).
[CrossRef]

Keitel, C. H.

G. X. Li, J. Evers, and C. H. Keitel, "Low-frequency-field-induced spontaneous-emission interference in a two-level atom placed in an anisotropic photonic crystal," J. Phys. B 38, 1435-1451 (2005).
[CrossRef]

Knight, P. L.

E. Paspalakis, N. J. Kylstra, and P. L. Knight, "Transparency near a photonic band edge," Phys. Rev. A 60, R33-R36 (1999).
[CrossRef]

Koenderink, A. F.

A. F. Koenderink and W. L. Vos, "Light exiting from real photonic band gap crystals is diffuse and strongly directional," Phys. Rev. Lett. 91, 213902 (2003).
[CrossRef] [PubMed]

Kofman, A. G.

A. G. Kofman and G. Kurizki, "Quantum Zeno effect on atomic excitation decay in resonators," Phys. Rev. A 54, R3750-R3753 (1996).
[CrossRef] [PubMed]

A. G. Kofman, G. Kurizki, and B. Sherman, "Spontaneous and induced atomic decay in photonic band structures," J. Mod. Opt. 41, 353-384 (1994).
[CrossRef]

Kurizki, G.

I. Friedler, G. Kurizki, and D. Petrosyan, "Giant nonlinearity and entanglement of single photons in photonic bandgap structures," Europhys. Lett. 68, 625-631 (2004).
[CrossRef]

D. Petrosyan and G. Kurizki, "Photon-photon correlations and entanglement in doped photonic crystals," Phys. Rev. A 64, 023810 (2001).
[CrossRef]

A. G. Kofman and G. Kurizki, "Quantum Zeno effect on atomic excitation decay in resonators," Phys. Rev. A 54, R3750-R3753 (1996).
[CrossRef] [PubMed]

A. G. Kofman, G. Kurizki, and B. Sherman, "Spontaneous and induced atomic decay in photonic band structures," J. Mod. Opt. 41, 353-384 (1994).
[CrossRef]

Kylstra, N. J.

E. Paspalakis, N. J. Kylstra, and P. L. Knight, "Transparency near a photonic band edge," Phys. Rev. A 60, R33-R36 (1999).
[CrossRef]

Lagendijk, A.

M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, "Fluorescence lifetimes and linewidths of dye in photonic crystals," Phys. Rev. A 59, 4727-4731 (1999).
[CrossRef]

Lambropoulos, P.

S. Bay, P. Lambropoulos, and K. Molmer, "Fluorescence into flat and structured radiation continua: an atomic density matrix without a master equation," Phys. Rev. Lett. 79, 2654-2657 (1997).
[CrossRef]

Li, G. X.

G. X. Li, J. Evers, and C. H. Keitel, "Low-frequency-field-induced spontaneous-emission interference in a two-level atom placed in an anisotropic photonic crystal," J. Phys. B 38, 1435-1451 (2005).
[CrossRef]

Lin, Z. X.

Y. P. Yang, Z. X. Lin, S. Y. Zhu, H. Chen, and W. G. Feng, "Spontaneous spectrum of a lambda-type atomic system near a photonic band edge," Phys. Lett. A 270, 41-46 (2000).
[CrossRef]

Megens, M.

M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, "Fluorescence lifetimes and linewidths of dye in photonic crystals," Phys. Rev. A 59, 4727-4731 (1999).
[CrossRef]

Molmer, K.

S. Bay, P. Lambropoulos, and K. Molmer, "Fluorescence into flat and structured radiation continua: an atomic density matrix without a master equation," Phys. Rev. Lett. 79, 2654-2657 (1997).
[CrossRef]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Y. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vukovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Paspalakis, E.

E. Paspalakis, N. J. Kylstra, and P. L. Knight, "Transparency near a photonic band edge," Phys. Rev. A 60, R33-R36 (1999).
[CrossRef]

Petrosyan, D.

I. Friedler, G. Kurizki, and D. Petrosyan, "Giant nonlinearity and entanglement of single photons in photonic bandgap structures," Europhys. Lett. 68, 625-631 (2004).
[CrossRef]

D. Petrosyan and G. Kurizki, "Photon-photon correlations and entanglement in doped photonic crystals," Phys. Rev. A 64, 023810 (2001).
[CrossRef]

Petrov, E. P.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gopanenko, "Spontaneous emission of organic molecules embedded in a photonic crystal," Phys. Rev. Lett. 81, 77-80 (1998).
[CrossRef]

Quang, T.

L. Florescu, S. John, T. Quang, and R. Z. Wang, "Theory of a one-atom laser in a photonic band-gap microchip," Phys. Rev. A 69, 013816 (2004).
[CrossRef]

T. Quang, M. Woldeyohannes, and S. John, "Coherent control of spontaneous emission near a photonic band edge: a single-atom optical memory device," Phys. Rev. Lett. 79, 5238-5241 (1997).
[CrossRef]

S. John and T. Quang, "Spontaneous emission near the edge of a photonic band gap," Phys. Rev. A 50, 1764-1769 (1994).
[CrossRef] [PubMed]

Scully, M. O.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997), Chap. 6.

Sherman, B.

A. G. Kofman, G. Kurizki, and B. Sherman, "Spontaneous and induced atomic decay in photonic band structures," J. Mod. Opt. 41, 353-384 (1994).
[CrossRef]

Singh, M. R.

M. R. Singh, "Anomalous electromagnetically induced transparency in photonic-band-gap materials," Phys. Rev. A 70, 033813 (2004).
[CrossRef]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Y. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vukovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Vos, W. L.

A. F. Koenderink and W. L. Vos, "Light exiting from real photonic band gap crystals is diffuse and strongly directional," Phys. Rev. Lett. 91, 213902 (2003).
[CrossRef] [PubMed]

M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, "Fluorescence lifetimes and linewidths of dye in photonic crystals," Phys. Rev. A 59, 4727-4731 (1999).
[CrossRef]

Vukovic, J.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Y. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vukovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Y. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vukovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Wang, J.

S. John and J. Wang, "Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms," Phys. Rev. Lett. 64, 2418-2421 (1990).
[CrossRef] [PubMed]

Wang, R.

R. Wang and S. John, "Engineering the electromagnetic vacuum for controlling light with light in a photonic-band-gap microchip," Phys. Rev. A 70, 043805 (2004).
[CrossRef]

Wang, R. Z.

L. Florescu, S. John, T. Quang, and R. Z. Wang, "Theory of a one-atom laser in a photonic band-gap microchip," Phys. Rev. A 69, 013816 (2004).
[CrossRef]

X. H. Wang, R. Z. Wang, B. Y. Gu, and G. Z. Yang, "Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps," Phys. Rev. Lett. 88, 093902 (2002).
[CrossRef] [PubMed]

Wang, X. H.

X. H. Wang, R. Z. Wang, B. Y. Gu, and G. Z. Yang, "Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps," Phys. Rev. Lett. 88, 093902 (2002).
[CrossRef] [PubMed]

Wijnhoven, J. E. G. J.

M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, "Fluorescence lifetimes and linewidths of dye in photonic crystals," Phys. Rev. A 59, 4727-4731 (1999).
[CrossRef]

Woldeyohannes, M.

T. Quang, M. Woldeyohannes, and S. John, "Coherent control of spontaneous emission near a photonic band edge: a single-atom optical memory device," Phys. Rev. Lett. 79, 5238-5241 (1997).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Y. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vukovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Yang, G. Z.

X. H. Wang, R. Z. Wang, B. Y. Gu, and G. Z. Yang, "Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps," Phys. Rev. Lett. 88, 093902 (2002).
[CrossRef] [PubMed]

Yang, Y. P.

Y. P. Yang, M. Fleischhauer, and S.-Y. Zhu, "Spontaneous emission in a photonic crystal near the band edge: field versus population dynamics," Phys. Rev. E 68, 015602R (2003).
[CrossRef]

Y. P. Yang, Z. X. Lin, S. Y. Zhu, H. Chen, and W. G. Feng, "Spontaneous spectrum of a lambda-type atomic system near a photonic band edge," Phys. Lett. A 270, 41-46 (2000).
[CrossRef]

S.-Y. Zhu, Y. P. Yang, H. Chen, H. Zheng, and M. S. Zubairy, "Spontaneous radiation and Lamb shift in three-dimensional photonic crystals," Phys. Rev. Lett. 84, 2136-2139 (2000).
[CrossRef] [PubMed]

Y. P. Yang and S.-Y. Zhu, "Spontaneous emission from a two-level atom in a three-dimensional photonic crystal," Phys. Rev. A 62, 013805 (2000).
[CrossRef]

Zhang, B. Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Y. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vukovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Zheng, H.

S.-Y. Zhu, Y. P. Yang, H. Chen, H. Zheng, and M. S. Zubairy, "Spontaneous radiation and Lamb shift in three-dimensional photonic crystals," Phys. Rev. Lett. 84, 2136-2139 (2000).
[CrossRef] [PubMed]

Zhu, S. Y.

Y. P. Yang, Z. X. Lin, S. Y. Zhu, H. Chen, and W. G. Feng, "Spontaneous spectrum of a lambda-type atomic system near a photonic band edge," Phys. Lett. A 270, 41-46 (2000).
[CrossRef]

Zhu, S.-Y.

Y. P. Yang, M. Fleischhauer, and S.-Y. Zhu, "Spontaneous emission in a photonic crystal near the band edge: field versus population dynamics," Phys. Rev. E 68, 015602R (2003).
[CrossRef]

S.-Y. Zhu, Y. P. Yang, H. Chen, H. Zheng, and M. S. Zubairy, "Spontaneous radiation and Lamb shift in three-dimensional photonic crystals," Phys. Rev. Lett. 84, 2136-2139 (2000).
[CrossRef] [PubMed]

Y. P. Yang and S.-Y. Zhu, "Spontaneous emission from a two-level atom in a three-dimensional photonic crystal," Phys. Rev. A 62, 013805 (2000).
[CrossRef]

S.-Y. Zhu, H. Chen, and H. Huang, "Quantum interference effects in spontaneous emission from an atom embedded in a photonic band gap structure," Phys. Rev. Lett. 79, 205-208 (1997).
[CrossRef]

Zubairy, M. S.

S.-Y. Zhu, Y. P. Yang, H. Chen, H. Zheng, and M. S. Zubairy, "Spontaneous radiation and Lamb shift in three-dimensional photonic crystals," Phys. Rev. Lett. 84, 2136-2139 (2000).
[CrossRef] [PubMed]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997), Chap. 6.

Europhys. Lett.

I. Friedler, G. Kurizki, and D. Petrosyan, "Giant nonlinearity and entanglement of single photons in photonic bandgap structures," Europhys. Lett. 68, 625-631 (2004).
[CrossRef]

J. Mod. Opt.

A. G. Kofman, G. Kurizki, and B. Sherman, "Spontaneous and induced atomic decay in photonic band structures," J. Mod. Opt. 41, 353-384 (1994).
[CrossRef]

J. Phys. B

G. X. Li, J. Evers, and C. H. Keitel, "Low-frequency-field-induced spontaneous-emission interference in a two-level atom placed in an anisotropic photonic crystal," J. Phys. B 38, 1435-1451 (2005).
[CrossRef]

Phys. Lett. A

Y. P. Yang, Z. X. Lin, S. Y. Zhu, H. Chen, and W. G. Feng, "Spontaneous spectrum of a lambda-type atomic system near a photonic band edge," Phys. Lett. A 270, 41-46 (2000).
[CrossRef]

Phys. Rev. A

Y. P. Yang and S.-Y. Zhu, "Spontaneous emission from a two-level atom in a three-dimensional photonic crystal," Phys. Rev. A 62, 013805 (2000).
[CrossRef]

A. G. Kofman and G. Kurizki, "Quantum Zeno effect on atomic excitation decay in resonators," Phys. Rev. A 54, R3750-R3753 (1996).
[CrossRef] [PubMed]

M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, "Fluorescence lifetimes and linewidths of dye in photonic crystals," Phys. Rev. A 59, 4727-4731 (1999).
[CrossRef]

E. Paspalakis, N. J. Kylstra, and P. L. Knight, "Transparency near a photonic band edge," Phys. Rev. A 60, R33-R36 (1999).
[CrossRef]

S. John and T. Quang, "Spontaneous emission near the edge of a photonic band gap," Phys. Rev. A 50, 1764-1769 (1994).
[CrossRef] [PubMed]

L. Florescu, S. John, T. Quang, and R. Z. Wang, "Theory of a one-atom laser in a photonic band-gap microchip," Phys. Rev. A 69, 013816 (2004).
[CrossRef]

M. R. Singh, "Anomalous electromagnetically induced transparency in photonic-band-gap materials," Phys. Rev. A 70, 033813 (2004).
[CrossRef]

R. Wang and S. John, "Engineering the electromagnetic vacuum for controlling light with light in a photonic-band-gap microchip," Phys. Rev. A 70, 043805 (2004).
[CrossRef]

D. Petrosyan and G. Kurizki, "Photon-photon correlations and entanglement in doped photonic crystals," Phys. Rev. A 64, 023810 (2001).
[CrossRef]

Phys. Rev. E

Y. P. Yang, M. Fleischhauer, and S.-Y. Zhu, "Spontaneous emission in a photonic crystal near the band edge: field versus population dynamics," Phys. Rev. E 68, 015602R (2003).
[CrossRef]

Phys. Rev. Lett.

X. H. Wang, R. Z. Wang, B. Y. Gu, and G. Z. Yang, "Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps," Phys. Rev. Lett. 88, 093902 (2002).
[CrossRef] [PubMed]

T. Quang, M. Woldeyohannes, and S. John, "Coherent control of spontaneous emission near a photonic band edge: a single-atom optical memory device," Phys. Rev. Lett. 79, 5238-5241 (1997).
[CrossRef]

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gopanenko, "Spontaneous emission of organic molecules embedded in a photonic crystal," Phys. Rev. Lett. 81, 77-80 (1998).
[CrossRef]

S. John and J. Wang, "Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms," Phys. Rev. Lett. 64, 2418-2421 (1990).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

S. Bay, P. Lambropoulos, and K. Molmer, "Fluorescence into flat and structured radiation continua: an atomic density matrix without a master equation," Phys. Rev. Lett. 79, 2654-2657 (1997).
[CrossRef]

S.-Y. Zhu, H. Chen, and H. Huang, "Quantum interference effects in spontaneous emission from an atom embedded in a photonic band gap structure," Phys. Rev. Lett. 79, 205-208 (1997).
[CrossRef]

S.-Y. Zhu, Y. P. Yang, H. Chen, H. Zheng, and M. S. Zubairy, "Spontaneous radiation and Lamb shift in three-dimensional photonic crystals," Phys. Rev. Lett. 84, 2136-2139 (2000).
[CrossRef] [PubMed]

A. F. Koenderink and W. L. Vos, "Light exiting from real photonic band gap crystals is diffuse and strongly directional," Phys. Rev. Lett. 91, 213902 (2003).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Y. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vukovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Other

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Five-region distribution for roots with ω c = 100 β , δ = 0.1 β , and γ = 0.001 β .

Fig. 2
Fig. 2

Time evolutions of the populations in level 1 ( P 1 ) and in level 0 ( P 0 ) with γ = 0.01 β , δ = 0 , Ω p = 0.5 β , and different values of the relative position ω 1 c = β (solid curve), 0 (dashed curve), and β (dotted curve).

Fig. 3
Fig. 3

Time evolutions of the populations in level 1 ( P 1 ) and in level 0 ( P 0 ) with γ = 0.01 β , δ = 0 , Ω p = 0.01 β , and different values of the relative position ω 1 c = β (solid curve), 0 (dashed curve), and β (dotted curve).

Fig. 4
Fig. 4

Time evolution of the population with ω 1 c = 0.1 β , δ = 0 , Ω p = 0.1 β , and different background decay rates γ = 0.1 β (solid curve), 0.01 β (dashed curve), and 0.001 β (dotted curve).

Fig. 5
Fig. 5

Time evolution of the populations in levels ∣1⟩ and ∣0⟩ for ω 1 c = 1.055 β , δ = 0 , γ = 0.01 β , and different field intensities Ω p = 0.05 β (solid curve), 0.1 β (dashed curve), and β (dotted curve).

Fig. 6
Fig. 6

Time evolution of the populations with ω 1 c = 0.5 β , Ω p = 0.1 β , γ = 0.01 β , and different detuning δ = 0.01 β (solid curve), 0.1 β (dashed curve), and 0.2 β (dotted curve).

Fig. 7
Fig. 7

Time evolution of the intensity of the total field (solid curve), propagating field (dotted curve), and diffusion field (dashed curve) for Ω p = 0.5 β , ω 1 c = β , δ = 0 , γ = 0.01 β , and for different distances from the atom δ = 0 in units of ( β C ) 1 2 . (a) r = 500 and (b) r = 1500 . The inset shows the second peak on a logarithmic scale.

Fig. 8
Fig. 8

Emission spectrum S ( r , ω ) for ω 1 c = β (region I), δ = 0 , γ = 0.001 β , and Ω p = 0.2 β with different distances from the atom.

Fig. 9
Fig. 9

Emission spectrum S ( r , ω ) for ω 1 c = 0.01 β (region II), δ = 0 , γ = 0.001 β , and Ω p = 0.2 β with different distances from the atom.

Fig. 10
Fig. 10

Spectral components: total spectrum (solid curve), propagating part (dotted curve), and diffusive part (dashed curve) for ω 1 c = β (region III), δ = 0 , γ = 0.001 β , and Ω p = 0.2 β with different distances from the atom.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

H = i = 0 2 ω i i i + k ω k a k + a k + i Ω p ( e i ω p t 1 0 e i ω p t 0 1 ) + i k g k ( a k + 2 1 a k 1 2 ) i γ 2 1 1 .
Ψ ( t ) = A 1 ( t ) e i ω 1 t 1 , { 0 } + k A 2 k ( t ) e i ( ω k + ω 2 ) t 2 , { 1 k } + A 0 ( t ) e i ω 0 t 0 , { 0 } ,
ω k = ω c + C k k 0 i 2 ,
t A 1 ( t ) = γ 2 A 1 ( t ) k g k A 2 k ( t ) e i ( ω k ω 12 ) t + Ω p A 0 ( t ) e i ( ω p ω 10 ) t ,
t A 2 k ( t ) = g k A 1 ( t ) e i ( ω k ω 12 ) t ,
t A 0 ( t ) = Ω p A 1 ( t ) e i ( ω p ω 10 ) t .
A 1 ( s ) = Ω p [ ( ( s + γ 2 ) ( s + i δ ) + ( Γ s + i δ ) + Ω p 2 ] ,
A 1 ( t ) = j Ω p e x j ( 1 ) t F ( x j ( 1 ) ) + j Ω p e x j ( 2 ) t G ( x j ( 2 ) ) e i ω 1 c t π 0 i x Ω p ( ω c i x ) D ( x ) e x t [ B ( x ) ( ω c i x ) i D ( x ) ω c ] 2 + i D 2 ( x ) x d x ,
D ( x ) = x + i ( ω 1 c + δ ) ,
B ( x ) = ( x + i ω 1 c + γ 2 ) [ x + i ( ω 1 c + δ ) ] + Ω p 2 ,
F ( x ) = ( x + γ 2 ) ( x + i δ ) i ( x + i δ ) ω c + ω 1 c i x + Ω p 2 ,
G ( x ) = ( x + γ 2 ) ( x + i δ ) i ( x + i δ ) ω c i ω 1 c + i x + Ω p 2 .
E ( r , t ) = k ω k 2 ϵ 0 V e i ( ω k t k r ) A 2 k ( t ) e k .
E ( r , t ) = j ( E l j + E d l j ) + j ( E p j + E d p j ) + E d ( r , t ) .
E ( r , t ) = j = 1 , 2 ( E l j + E d l j ) + E d ( r , t ) ,
E l j = E 0 π Ω p F ( x j ( 1 ) ) e ( x j ( 1 ) i ω 12 ) t r Q Θ ( t r 2 C ( Re Im ) Q ) ,
E d l j = E 0 Ω p F ( x j ( 1 ) ) e i [ ω c t + r ( 4 C t ) 3 π 4 ] C e C ρ 2 t ( ρ e i 3 π 4 + r 2 C t ) d ρ x j ( 1 ) i ω 1 c + i C ( ρ e i 3 π 4 + r 2 C t ) 2 ,
E d = E 0 π 0 e i ω c t + i r 2 ( 4 C t ) i π 4 D ( x ) i x Ω p ( ω c i x ) [ B ( x ) ( ω c i x ) i D ( x ) ω c ] 2 + i D 2 ( x ) x d x e ρ 2 ( ρ e i 3 π 4 + r 2 C t ) d ρ x t + i ( ρ e i 3 π 4 + r 2 C t ) 2 ,
Q = ( i x j ( 1 ) ω 1 c ) C ,
E 0 = ω 12 d 8 π 2 ε 0 C r i i e i k 0 i r [ u k 0 i ( k 0 i u ) ( k 0 i ) 2 ] .
E ( r , t ) = E l 1 + E d l 1 + E p 1 + E d p 1 + E d ,
E l j = E 0 π Ω p G ( x j ( 2 ) ) e ( x j ( 2 ) i ω 12 ) t + i r P Θ ( t r 2 C ( Re + Im ) P ) ,
E d p j = E 0 Ω p G ( x j ( 2 ) ) e i ( ω c t + ( r 4 C t ) 3 π 4 ) C e C ρ 2 t ( ρ e i 3 π 4 + r 2 C t ) d ρ x j ( 2 ) i ω 1 c + i C ( ρ e i 3 π 4 + r 2 C t ) 2 ,
S ( r , ω ) = 1 2 π 0 E ( r , t ) e i ω t d t 2 .

Metrics