Abstract

We discuss a cavity-QED scheme to deterministically generate entangled photons pairs by using a three-level atom successively coupled to two single longitudinal mode high-Q cavities presenting polarization degeneracy. The first cavity is prepared in a well-defined Fock state with two photons with opposite circular polarizations while the second cavity remains in the vacuum state. Half of a resonant Rabi oscillation in each cavity transfers one photon from the first to the second cavity, leaving the photons entangled in their polarization degree of freedom. The feasibility of this implementation and some practical considerations are discussed for both microwave and optical regimes. In particular, Monte Carlo wave-function simulations have been performed with state-of-the-art parameter values to evaluate the success probability of the cavity-QED source in producing entangled photon pairs as well as its entanglement capability.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Aspect, P. Grangier, and G. Roger, "Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell's inequalities," Phys. Rev. Lett. 49, 91-94 (1982).
    [CrossRef]
  2. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
    [CrossRef] [PubMed]
  3. C. H. Bennett and S. J. Wiesner, "Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states," Phys. Rev. Lett. 69, 2881-2884 (1992).
    [CrossRef] [PubMed]
  4. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145195 (2002).
  5. M. Dusek, N. Lütkenhaus, and M. Hendrych, "Quantum cryptography," in Progress in Optics, Vol. XLIX, E.Wolf, ed. (Elsevier, 2006), pp. 381-442.
  6. C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, 1984), pp. 175-179.
  7. V. Scarani, A. Acn, G. Ribordy, and N. Gisin, "Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations," Phys. Rev. Lett. 92, 057901 (2004).
    [CrossRef] [PubMed]
  8. A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett. 67, 661-663 (1991).
    [CrossRef] [PubMed]
  9. A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, "Single photon quantum cryptography," Phys. Rev. Lett. 89, 187901 (2002).
    [CrossRef] [PubMed]
  10. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
    [CrossRef] [PubMed]
  11. D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, "Entangled state quantum cryptography: eavesdropping on the Ekert protocol," Phys. Rev. Lett. 84, 4733-4736 (2000).
    [CrossRef] [PubMed]
  12. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
    [CrossRef] [PubMed]
  13. D. L. Zhou, B. Sun, C. P. Sun, and L. You, "Generating entangled photon pairs from a cavity-QED system," Phys. Rev. A 72, 040302 (2005).
    [CrossRef]
  14. L. Ye, L. B. Yu, and G. C. Guo, "Generation of entangled states in cavity QED," Phys. Rev. A 72, 034304 (2005).
    [CrossRef]
  15. N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, and D. Gershoni, "Entangled photon pairs from semiconductor quantum dots," Phys. Rev. Lett. 96, 130501 (2006).
    [CrossRef] [PubMed]
  16. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006).
    [CrossRef] [PubMed]
  17. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Step-by-step engineered multiparticle entanglement," Science 288, 2024-2028 (2000).
    [CrossRef] [PubMed]
  18. H. Walther, "Generation of photon number states on demand," Fortschr. Phys. 51, 521-530 (2003).
    [CrossRef]
  19. G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, "Measurement of ultralow losses in an optical interferometer," Opt. Lett. 17, 363-365 (1992).
    [CrossRef] [PubMed]
  20. Y. Shimizu, N. Shiokawa, N. Yamamoto, M. Kozuma, T. Kuga, L. Deng, and E. W. Hagley, "Control of light pulse propagation with only a few cold atoms in a high-finesse microcavity," Phys. Rev. Lett. 89, 233001 (2002).
    [CrossRef] [PubMed]
  21. R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J. Kimble, "Trapped atoms in cavity QED: coupling quantized light and matter," J. Phys. B 38, S551-S556 (2005).
    [CrossRef]
  22. G. T. Foster, S. L. Mielke, and L. A. Orozco, "Intensity correlations in cavity QED," Phys. Rev. A 61, 053821 (2000).
    [CrossRef]
  23. T. Legero, T. Wilk, M. Hennrich. G. Rempe, and A. Kuhn, "Quantum beat of two single photons," Phys. Rev. Lett. 93, 070503 (2004).
    [CrossRef] [PubMed]
  24. G. Morigi, J. Eschner, S. Mancini, and D. Vitali, "Entangled light pulses from single cold atoms," Phys. Rev. Lett. 96, 023601 (2006).
    [CrossRef] [PubMed]
  25. A. Kuhn, M. Henrich, and G. Rempe, "Deterministic single-photon source for distributed quantum networking," Phys. Rev. Lett. 89, 067901 (2002).
    [CrossRef] [PubMed]
  26. E. Arimondo, "Coherent population trapping in laser spectroscopy," Prog. Opt. 35, 257-354 (1996).
    [CrossRef]
  27. Y. R. Shen, The Principles of Non-Linear Optics (Wiley-Interscience, 1984).
  28. J. Dalibard, Y. Castin, and K. Mølmer, "Wave-function approach to dissipative processes in quantum optics," Phys. Rev. Lett. 68, 580-583 (1992).
    [CrossRef] [PubMed]
  29. J. F. Clauser, M. A. Home, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969).
    [CrossRef]
  30. M. Takamoto and H. Katori, "Spectroscopy of the 1S03P0 clock transition of 87Sr in an optical lattice," Phys. Rev. Lett. 91, 223001 (2003).
    [CrossRef] [PubMed]
  31. G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, and G. M. Tino, "Precision frequency measurement of visible intercombination lines of strontium," Phys. Rev. Lett. 91, 243002 (2003).
    [CrossRef] [PubMed]
  32. H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, "Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature," Phys. Rev. Lett. 82, 1116-1119 (1999).
    [CrossRef]
  33. B. T. H. Varcoe, S. Brattke, and H. Walther, "Generation of Fockstates in the micromaser," J. Opt. B Quantum Semiclassical Opt. 2, 154-157 (2000).
    [CrossRef]
  34. T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, J. McKeever, R. Miller, and H. J. Kimble, in Atomic Physics 19, L.G.Marcassa, V.S.Bagnato, and K.Helmerson, eds. (American Institute of Physics, 2004), Vol. 770, pp. 313-314.
  35. J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, "Cavity QED with optically transported atoms," Phys. Rev. A 69, 051804 (2004).
    [CrossRef]

2006 (3)

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, and D. Gershoni, "Entangled photon pairs from semiconductor quantum dots," Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006).
[CrossRef] [PubMed]

G. Morigi, J. Eschner, S. Mancini, and D. Vitali, "Entangled light pulses from single cold atoms," Phys. Rev. Lett. 96, 023601 (2006).
[CrossRef] [PubMed]

2005 (3)

R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J. Kimble, "Trapped atoms in cavity QED: coupling quantized light and matter," J. Phys. B 38, S551-S556 (2005).
[CrossRef]

D. L. Zhou, B. Sun, C. P. Sun, and L. You, "Generating entangled photon pairs from a cavity-QED system," Phys. Rev. A 72, 040302 (2005).
[CrossRef]

L. Ye, L. B. Yu, and G. C. Guo, "Generation of entangled states in cavity QED," Phys. Rev. A 72, 034304 (2005).
[CrossRef]

2004 (3)

V. Scarani, A. Acn, G. Ribordy, and N. Gisin, "Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations," Phys. Rev. Lett. 92, 057901 (2004).
[CrossRef] [PubMed]

T. Legero, T. Wilk, M. Hennrich. G. Rempe, and A. Kuhn, "Quantum beat of two single photons," Phys. Rev. Lett. 93, 070503 (2004).
[CrossRef] [PubMed]

J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, "Cavity QED with optically transported atoms," Phys. Rev. A 69, 051804 (2004).
[CrossRef]

2003 (3)

M. Takamoto and H. Katori, "Spectroscopy of the 1S03P0 clock transition of 87Sr in an optical lattice," Phys. Rev. Lett. 91, 223001 (2003).
[CrossRef] [PubMed]

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, and G. M. Tino, "Precision frequency measurement of visible intercombination lines of strontium," Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef] [PubMed]

H. Walther, "Generation of photon number states on demand," Fortschr. Phys. 51, 521-530 (2003).
[CrossRef]

2002 (4)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145195 (2002).

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, "Single photon quantum cryptography," Phys. Rev. Lett. 89, 187901 (2002).
[CrossRef] [PubMed]

Y. Shimizu, N. Shiokawa, N. Yamamoto, M. Kozuma, T. Kuga, L. Deng, and E. W. Hagley, "Control of light pulse propagation with only a few cold atoms in a high-finesse microcavity," Phys. Rev. Lett. 89, 233001 (2002).
[CrossRef] [PubMed]

A. Kuhn, M. Henrich, and G. Rempe, "Deterministic single-photon source for distributed quantum networking," Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

2000 (6)

G. T. Foster, S. L. Mielke, and L. A. Orozco, "Intensity correlations in cavity QED," Phys. Rev. A 61, 053821 (2000).
[CrossRef]

B. T. H. Varcoe, S. Brattke, and H. Walther, "Generation of Fockstates in the micromaser," J. Opt. B Quantum Semiclassical Opt. 2, 154-157 (2000).
[CrossRef]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, "Entangled state quantum cryptography: eavesdropping on the Ekert protocol," Phys. Rev. Lett. 84, 4733-4736 (2000).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Step-by-step engineered multiparticle entanglement," Science 288, 2024-2028 (2000).
[CrossRef] [PubMed]

1999 (1)

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, "Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature," Phys. Rev. Lett. 82, 1116-1119 (1999).
[CrossRef]

1996 (1)

E. Arimondo, "Coherent population trapping in laser spectroscopy," Prog. Opt. 35, 257-354 (1996).
[CrossRef]

1993 (1)

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

1992 (3)

C. H. Bennett and S. J. Wiesner, "Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states," Phys. Rev. Lett. 69, 2881-2884 (1992).
[CrossRef] [PubMed]

G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, "Measurement of ultralow losses in an optical interferometer," Opt. Lett. 17, 363-365 (1992).
[CrossRef] [PubMed]

J. Dalibard, Y. Castin, and K. Mølmer, "Wave-function approach to dissipative processes in quantum optics," Phys. Rev. Lett. 68, 580-583 (1992).
[CrossRef] [PubMed]

1991 (1)

A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

1982 (1)

A. Aspect, P. Grangier, and G. Roger, "Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell's inequalities," Phys. Rev. Lett. 49, 91-94 (1982).
[CrossRef]

1969 (1)

J. F. Clauser, M. A. Home, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969).
[CrossRef]

Acn, A.

V. Scarani, A. Acn, G. Ribordy, and N. Gisin, "Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations," Phys. Rev. Lett. 92, 057901 (2004).
[CrossRef] [PubMed]

Akopian, N.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, and D. Gershoni, "Entangled photon pairs from semiconductor quantum dots," Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Arimondo, E.

E. Arimondo, "Coherent population trapping in laser spectroscopy," Prog. Opt. 35, 257-354 (1996).
[CrossRef]

Aspect, A.

A. Aspect, P. Grangier, and G. Roger, "Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell's inequalities," Phys. Rev. Lett. 49, 91-94 (1982).
[CrossRef]

Atkinson, P.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006).
[CrossRef] [PubMed]

Avron, J.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, and D. Gershoni, "Entangled photon pairs from semiconductor quantum dots," Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

C. H. Bennett and S. J. Wiesner, "Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states," Phys. Rev. Lett. 69, 2881-2884 (1992).
[CrossRef] [PubMed]

C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, 1984), pp. 175-179.

Berglund, A. J.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, "Entangled state quantum cryptography: eavesdropping on the Ekert protocol," Phys. Rev. Lett. 84, 4733-4736 (2000).
[CrossRef] [PubMed]

Berlatzky, Y.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, and D. Gershoni, "Entangled photon pairs from semiconductor quantum dots," Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Bertet, P.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Step-by-step engineered multiparticle entanglement," Science 288, 2024-2028 (2000).
[CrossRef] [PubMed]

Beveratos, A.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, "Single photon quantum cryptography," Phys. Rev. Lett. 89, 187901 (2002).
[CrossRef] [PubMed]

Birnbaum, K. M.

R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J. Kimble, "Trapped atoms in cavity QED: coupling quantized light and matter," J. Phys. B 38, S551-S556 (2005).
[CrossRef]

T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, J. McKeever, R. Miller, and H. J. Kimble, in Atomic Physics 19, L.G.Marcassa, V.S.Bagnato, and K.Helmerson, eds. (American Institute of Physics, 2004), Vol. 770, pp. 313-314.

Boca, A.

R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J. Kimble, "Trapped atoms in cavity QED: coupling quantized light and matter," J. Phys. B 38, S551-S556 (2005).
[CrossRef]

T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, J. McKeever, R. Miller, and H. J. Kimble, in Atomic Physics 19, L.G.Marcassa, V.S.Bagnato, and K.Helmerson, eds. (American Institute of Physics, 2004), Vol. 770, pp. 313-314.

Boozer, A. D.

R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J. Kimble, "Trapped atoms in cavity QED: coupling quantized light and matter," J. Phys. B 38, S551-S556 (2005).
[CrossRef]

T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, J. McKeever, R. Miller, and H. J. Kimble, in Atomic Physics 19, L.G.Marcassa, V.S.Bagnato, and K.Helmerson, eds. (American Institute of Physics, 2004), Vol. 770, pp. 313-314.

Brassard, G.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, 1984), pp. 175-179.

Brattke, S.

B. T. H. Varcoe, S. Brattke, and H. Walther, "Generation of Fockstates in the micromaser," J. Opt. B Quantum Semiclassical Opt. 2, 154-157 (2000).
[CrossRef]

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

Brouri, R.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, "Single photon quantum cryptography," Phys. Rev. Lett. 89, 187901 (2002).
[CrossRef] [PubMed]

Brune, M.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Step-by-step engineered multiparticle entanglement," Science 288, 2024-2028 (2000).
[CrossRef] [PubMed]

Cancio, P.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, and G. M. Tino, "Precision frequency measurement of visible intercombination lines of strontium," Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef] [PubMed]

Castin, Y.

J. Dalibard, Y. Castin, and K. Mølmer, "Wave-function approach to dissipative processes in quantum optics," Phys. Rev. Lett. 68, 580-583 (1992).
[CrossRef] [PubMed]

Chang, M. S.

J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, "Cavity QED with optically transported atoms," Phys. Rev. A 69, 051804 (2004).
[CrossRef]

Chapman, M. S.

J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, "Cavity QED with optically transported atoms," Phys. Rev. A 69, 051804 (2004).
[CrossRef]

Clauser, J. F.

J. F. Clauser, M. A. Home, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969).
[CrossRef]

Cooper, K.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006).
[CrossRef] [PubMed]

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

Dalibard, J.

J. Dalibard, Y. Castin, and K. Mølmer, "Wave-function approach to dissipative processes in quantum optics," Phys. Rev. Lett. 68, 580-583 (1992).
[CrossRef] [PubMed]

Deng, L.

Y. Shimizu, N. Shiokawa, N. Yamamoto, M. Kozuma, T. Kuga, L. Deng, and E. W. Hagley, "Control of light pulse propagation with only a few cold atoms in a high-finesse microcavity," Phys. Rev. Lett. 89, 233001 (2002).
[CrossRef] [PubMed]

Drullinger, R.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, and G. M. Tino, "Precision frequency measurement of visible intercombination lines of strontium," Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef] [PubMed]

Dusek, M.

M. Dusek, N. Lütkenhaus, and M. Hendrych, "Quantum cryptography," in Progress in Optics, Vol. XLIX, E.Wolf, ed. (Elsevier, 2006), pp. 381-442.

Ekert, A. K.

A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

Eschner, J.

G. Morigi, J. Eschner, S. Mancini, and D. Vitali, "Entangled light pulses from single cold atoms," Phys. Rev. Lett. 96, 023601 (2006).
[CrossRef] [PubMed]

Ferrari, G.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, and G. M. Tino, "Precision frequency measurement of visible intercombination lines of strontium," Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef] [PubMed]

Fortier, K. M.

J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, "Cavity QED with optically transported atoms," Phys. Rev. A 69, 051804 (2004).
[CrossRef]

Foster, G. T.

G. T. Foster, S. L. Mielke, and L. A. Orozco, "Intensity correlations in cavity QED," Phys. Rev. A 61, 053821 (2000).
[CrossRef]

Gacoin, T.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, "Single photon quantum cryptography," Phys. Rev. Lett. 89, 187901 (2002).
[CrossRef] [PubMed]

Gershoni, D.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, and D. Gershoni, "Entangled photon pairs from semiconductor quantum dots," Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Gisin, N.

V. Scarani, A. Acn, G. Ribordy, and N. Gisin, "Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations," Phys. Rev. Lett. 92, 057901 (2004).
[CrossRef] [PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145195 (2002).

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

Giusfredi, G.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, and G. M. Tino, "Precision frequency measurement of visible intercombination lines of strontium," Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef] [PubMed]

Grangier, P.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, "Single photon quantum cryptography," Phys. Rev. Lett. 89, 187901 (2002).
[CrossRef] [PubMed]

A. Aspect, P. Grangier, and G. Roger, "Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell's inequalities," Phys. Rev. Lett. 49, 91-94 (1982).
[CrossRef]

Guo, G. C.

L. Ye, L. B. Yu, and G. C. Guo, "Generation of entangled states in cavity QED," Phys. Rev. A 72, 034304 (2005).
[CrossRef]

Hagley, E. W.

Y. Shimizu, N. Shiokawa, N. Yamamoto, M. Kozuma, T. Kuga, L. Deng, and E. W. Hagley, "Control of light pulse propagation with only a few cold atoms in a high-finesse microcavity," Phys. Rev. Lett. 89, 233001 (2002).
[CrossRef] [PubMed]

Hamley, C. D.

J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, "Cavity QED with optically transported atoms," Phys. Rev. A 69, 051804 (2004).
[CrossRef]

Haroche, S.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Step-by-step engineered multiparticle entanglement," Science 288, 2024-2028 (2000).
[CrossRef] [PubMed]

Hendrych, M.

M. Dusek, N. Lütkenhaus, and M. Hendrych, "Quantum cryptography," in Progress in Optics, Vol. XLIX, E.Wolf, ed. (Elsevier, 2006), pp. 381-442.

Henrich, M.

A. Kuhn, M. Henrich, and G. Rempe, "Deterministic single-photon source for distributed quantum networking," Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

Holt, R. A.

J. F. Clauser, M. A. Home, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969).
[CrossRef]

Home, M. A.

J. F. Clauser, M. A. Home, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969).
[CrossRef]

Ido, T.

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, "Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature," Phys. Rev. Lett. 82, 1116-1119 (1999).
[CrossRef]

Isoya, Y.

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, "Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature," Phys. Rev. Lett. 82, 1116-1119 (1999).
[CrossRef]

Jennewein, T.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

Katori, H.

M. Takamoto and H. Katori, "Spectroscopy of the 1S03P0 clock transition of 87Sr in an optical lattice," Phys. Rev. Lett. 91, 223001 (2003).
[CrossRef] [PubMed]

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, "Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature," Phys. Rev. Lett. 82, 1116-1119 (1999).
[CrossRef]

Kimble, H. J.

R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J. Kimble, "Trapped atoms in cavity QED: coupling quantized light and matter," J. Phys. B 38, S551-S556 (2005).
[CrossRef]

G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, "Measurement of ultralow losses in an optical interferometer," Opt. Lett. 17, 363-365 (1992).
[CrossRef] [PubMed]

T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, J. McKeever, R. Miller, and H. J. Kimble, in Atomic Physics 19, L.G.Marcassa, V.S.Bagnato, and K.Helmerson, eds. (American Institute of Physics, 2004), Vol. 770, pp. 313-314.

Kozuma, M.

Y. Shimizu, N. Shiokawa, N. Yamamoto, M. Kozuma, T. Kuga, L. Deng, and E. W. Hagley, "Control of light pulse propagation with only a few cold atoms in a high-finesse microcavity," Phys. Rev. Lett. 89, 233001 (2002).
[CrossRef] [PubMed]

Kuga, T.

Y. Shimizu, N. Shiokawa, N. Yamamoto, M. Kozuma, T. Kuga, L. Deng, and E. W. Hagley, "Control of light pulse propagation with only a few cold atoms in a high-finesse microcavity," Phys. Rev. Lett. 89, 233001 (2002).
[CrossRef] [PubMed]

Kuhn, A.

T. Legero, T. Wilk, M. Hennrich. G. Rempe, and A. Kuhn, "Quantum beat of two single photons," Phys. Rev. Lett. 93, 070503 (2004).
[CrossRef] [PubMed]

A. Kuhn, M. Henrich, and G. Rempe, "Deterministic single-photon source for distributed quantum networking," Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

Kuwata-Gonokami, M.

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, "Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature," Phys. Rev. Lett. 82, 1116-1119 (1999).
[CrossRef]

Kwiat, P. G.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, "Entangled state quantum cryptography: eavesdropping on the Ekert protocol," Phys. Rev. Lett. 84, 4733-4736 (2000).
[CrossRef] [PubMed]

Lalezari, R.

Legero, T.

T. Legero, T. Wilk, M. Hennrich. G. Rempe, and A. Kuhn, "Quantum beat of two single photons," Phys. Rev. Lett. 93, 070503 (2004).
[CrossRef] [PubMed]

Lindner, N. H.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, and D. Gershoni, "Entangled photon pairs from semiconductor quantum dots," Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Lütkenhaus, N.

M. Dusek, N. Lütkenhaus, and M. Hendrych, "Quantum cryptography," in Progress in Optics, Vol. XLIX, E.Wolf, ed. (Elsevier, 2006), pp. 381-442.

Mancini, S.

G. Morigi, J. Eschner, S. Mancini, and D. Vitali, "Entangled light pulses from single cold atoms," Phys. Rev. Lett. 96, 023601 (2006).
[CrossRef] [PubMed]

McKeever, J.

T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, J. McKeever, R. Miller, and H. J. Kimble, in Atomic Physics 19, L.G.Marcassa, V.S.Bagnato, and K.Helmerson, eds. (American Institute of Physics, 2004), Vol. 770, pp. 313-314.

Mielke, S. L.

G. T. Foster, S. L. Mielke, and L. A. Orozco, "Intensity correlations in cavity QED," Phys. Rev. A 61, 053821 (2000).
[CrossRef]

Miller, R.

R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J. Kimble, "Trapped atoms in cavity QED: coupling quantized light and matter," J. Phys. B 38, S551-S556 (2005).
[CrossRef]

T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, J. McKeever, R. Miller, and H. J. Kimble, in Atomic Physics 19, L.G.Marcassa, V.S.Bagnato, and K.Helmerson, eds. (American Institute of Physics, 2004), Vol. 770, pp. 313-314.

Mølmer, K.

J. Dalibard, Y. Castin, and K. Mølmer, "Wave-function approach to dissipative processes in quantum optics," Phys. Rev. Lett. 68, 580-583 (1992).
[CrossRef] [PubMed]

Morigi, G.

G. Morigi, J. Eschner, S. Mancini, and D. Vitali, "Entangled light pulses from single cold atoms," Phys. Rev. Lett. 96, 023601 (2006).
[CrossRef] [PubMed]

Naik, D. S.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, "Entangled state quantum cryptography: eavesdropping on the Ekert protocol," Phys. Rev. Lett. 84, 4733-4736 (2000).
[CrossRef] [PubMed]

Nogues, G.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Step-by-step engineered multiparticle entanglement," Science 288, 2024-2028 (2000).
[CrossRef] [PubMed]

Northup, T. E.

R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J. Kimble, "Trapped atoms in cavity QED: coupling quantized light and matter," J. Phys. B 38, S551-S556 (2005).
[CrossRef]

T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, J. McKeever, R. Miller, and H. J. Kimble, in Atomic Physics 19, L.G.Marcassa, V.S.Bagnato, and K.Helmerson, eds. (American Institute of Physics, 2004), Vol. 770, pp. 313-314.

Orozco, L. A.

G. T. Foster, S. L. Mielke, and L. A. Orozco, "Intensity correlations in cavity QED," Phys. Rev. A 61, 053821 (2000).
[CrossRef]

Osnaghi, S.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Step-by-step engineered multiparticle entanglement," Science 288, 2024-2028 (2000).
[CrossRef] [PubMed]

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

Peterson, C. G.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, "Entangled state quantum cryptography: eavesdropping on the Ekert protocol," Phys. Rev. Lett. 84, 4733-4736 (2000).
[CrossRef] [PubMed]

Poem, E.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, and D. Gershoni, "Entangled photon pairs from semiconductor quantum dots," Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Poizat, J.-P.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, "Single photon quantum cryptography," Phys. Rev. Lett. 89, 187901 (2002).
[CrossRef] [PubMed]

Poli, N.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, and G. M. Tino, "Precision frequency measurement of visible intercombination lines of strontium," Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef] [PubMed]

Prevedelli, M.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, and G. M. Tino, "Precision frequency measurement of visible intercombination lines of strontium," Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef] [PubMed]

Raimond, J. M.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Step-by-step engineered multiparticle entanglement," Science 288, 2024-2028 (2000).
[CrossRef] [PubMed]

Rauschenbeutel, A.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Step-by-step engineered multiparticle entanglement," Science 288, 2024-2028 (2000).
[CrossRef] [PubMed]

Rempe, G.

A. Kuhn, M. Henrich, and G. Rempe, "Deterministic single-photon source for distributed quantum networking," Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, "Measurement of ultralow losses in an optical interferometer," Opt. Lett. 17, 363-365 (1992).
[CrossRef] [PubMed]

Rempe, M. Hennrich. G.

T. Legero, T. Wilk, M. Hennrich. G. Rempe, and A. Kuhn, "Quantum beat of two single photons," Phys. Rev. Lett. 93, 070503 (2004).
[CrossRef] [PubMed]

Ribordy, G.

V. Scarani, A. Acn, G. Ribordy, and N. Gisin, "Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations," Phys. Rev. Lett. 92, 057901 (2004).
[CrossRef] [PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145195 (2002).

Ritchie, D. A.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006).
[CrossRef] [PubMed]

Roger, G.

A. Aspect, P. Grangier, and G. Roger, "Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell's inequalities," Phys. Rev. Lett. 49, 91-94 (1982).
[CrossRef]

Sauer, J. A.

J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, "Cavity QED with optically transported atoms," Phys. Rev. A 69, 051804 (2004).
[CrossRef]

Scarani, V.

V. Scarani, A. Acn, G. Ribordy, and N. Gisin, "Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations," Phys. Rev. Lett. 92, 057901 (2004).
[CrossRef] [PubMed]

Shen, Y. R.

Y. R. Shen, The Principles of Non-Linear Optics (Wiley-Interscience, 1984).

Shields, A. J.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006).
[CrossRef] [PubMed]

Shimizu, Y.

Y. Shimizu, N. Shiokawa, N. Yamamoto, M. Kozuma, T. Kuga, L. Deng, and E. W. Hagley, "Control of light pulse propagation with only a few cold atoms in a high-finesse microcavity," Phys. Rev. Lett. 89, 233001 (2002).
[CrossRef] [PubMed]

Shimony, A.

J. F. Clauser, M. A. Home, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969).
[CrossRef]

Shiokawa, N.

Y. Shimizu, N. Shiokawa, N. Yamamoto, M. Kozuma, T. Kuga, L. Deng, and E. W. Hagley, "Control of light pulse propagation with only a few cold atoms in a high-finesse microcavity," Phys. Rev. Lett. 89, 233001 (2002).
[CrossRef] [PubMed]

Simon, C.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

Stevenson, R. M.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006).
[CrossRef] [PubMed]

Sun, B.

D. L. Zhou, B. Sun, C. P. Sun, and L. You, "Generating entangled photon pairs from a cavity-QED system," Phys. Rev. A 72, 040302 (2005).
[CrossRef]

Sun, C. P.

D. L. Zhou, B. Sun, C. P. Sun, and L. You, "Generating entangled photon pairs from a cavity-QED system," Phys. Rev. A 72, 040302 (2005).
[CrossRef]

Takamoto, M.

M. Takamoto and H. Katori, "Spectroscopy of the 1S03P0 clock transition of 87Sr in an optical lattice," Phys. Rev. Lett. 91, 223001 (2003).
[CrossRef] [PubMed]

Thompson, R. J.

Tino, G. M.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, and G. M. Tino, "Precision frequency measurement of visible intercombination lines of strontium," Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef] [PubMed]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145195 (2002).

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

Toninelli, C.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, and G. M. Tino, "Precision frequency measurement of visible intercombination lines of strontium," Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef] [PubMed]

Varcoe, B. T. H.

B. T. H. Varcoe, S. Brattke, and H. Walther, "Generation of Fockstates in the micromaser," J. Opt. B Quantum Semiclassical Opt. 2, 154-157 (2000).
[CrossRef]

Villing, A.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, "Single photon quantum cryptography," Phys. Rev. Lett. 89, 187901 (2002).
[CrossRef] [PubMed]

Vitali, D.

G. Morigi, J. Eschner, S. Mancini, and D. Vitali, "Entangled light pulses from single cold atoms," Phys. Rev. Lett. 96, 023601 (2006).
[CrossRef] [PubMed]

Walther, H.

H. Walther, "Generation of photon number states on demand," Fortschr. Phys. 51, 521-530 (2003).
[CrossRef]

B. T. H. Varcoe, S. Brattke, and H. Walther, "Generation of Fockstates in the micromaser," J. Opt. B Quantum Semiclassical Opt. 2, 154-157 (2000).
[CrossRef]

Weihs, G.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

Weinfurter, H.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

White, A. G.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, "Entangled state quantum cryptography: eavesdropping on the Ekert protocol," Phys. Rev. Lett. 84, 4733-4736 (2000).
[CrossRef] [PubMed]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, "Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states," Phys. Rev. Lett. 69, 2881-2884 (1992).
[CrossRef] [PubMed]

Wilk, T.

T. Legero, T. Wilk, M. Hennrich. G. Rempe, and A. Kuhn, "Quantum beat of two single photons," Phys. Rev. Lett. 93, 070503 (2004).
[CrossRef] [PubMed]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

Yamamoto, N.

Y. Shimizu, N. Shiokawa, N. Yamamoto, M. Kozuma, T. Kuga, L. Deng, and E. W. Hagley, "Control of light pulse propagation with only a few cold atoms in a high-finesse microcavity," Phys. Rev. Lett. 89, 233001 (2002).
[CrossRef] [PubMed]

Ye, L.

L. Ye, L. B. Yu, and G. C. Guo, "Generation of entangled states in cavity QED," Phys. Rev. A 72, 034304 (2005).
[CrossRef]

You, L.

D. L. Zhou, B. Sun, C. P. Sun, and L. You, "Generating entangled photon pairs from a cavity-QED system," Phys. Rev. A 72, 040302 (2005).
[CrossRef]

Young, R. J.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006).
[CrossRef] [PubMed]

Yu, L. B.

L. Ye, L. B. Yu, and G. C. Guo, "Generation of entangled states in cavity QED," Phys. Rev. A 72, 034304 (2005).
[CrossRef]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145195 (2002).

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

Zeilinger, A.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

Zhou, D. L.

D. L. Zhou, B. Sun, C. P. Sun, and L. You, "Generating entangled photon pairs from a cavity-QED system," Phys. Rev. A 72, 040302 (2005).
[CrossRef]

Fortschr. Phys. (1)

H. Walther, "Generation of photon number states on demand," Fortschr. Phys. 51, 521-530 (2003).
[CrossRef]

J. Opt. B Quantum Semiclassical Opt. (1)

B. T. H. Varcoe, S. Brattke, and H. Walther, "Generation of Fockstates in the micromaser," J. Opt. B Quantum Semiclassical Opt. 2, 154-157 (2000).
[CrossRef]

J. Phys. B (1)

R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J. Kimble, "Trapped atoms in cavity QED: coupling quantized light and matter," J. Phys. B 38, S551-S556 (2005).
[CrossRef]

Nature (1)

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. A (4)

J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, "Cavity QED with optically transported atoms," Phys. Rev. A 69, 051804 (2004).
[CrossRef]

D. L. Zhou, B. Sun, C. P. Sun, and L. You, "Generating entangled photon pairs from a cavity-QED system," Phys. Rev. A 72, 040302 (2005).
[CrossRef]

L. Ye, L. B. Yu, and G. C. Guo, "Generation of entangled states in cavity QED," Phys. Rev. A 72, 034304 (2005).
[CrossRef]

G. T. Foster, S. L. Mielke, and L. A. Orozco, "Intensity correlations in cavity QED," Phys. Rev. A 61, 053821 (2000).
[CrossRef]

Phys. Rev. Lett. (19)

T. Legero, T. Wilk, M. Hennrich. G. Rempe, and A. Kuhn, "Quantum beat of two single photons," Phys. Rev. Lett. 93, 070503 (2004).
[CrossRef] [PubMed]

G. Morigi, J. Eschner, S. Mancini, and D. Vitali, "Entangled light pulses from single cold atoms," Phys. Rev. Lett. 96, 023601 (2006).
[CrossRef] [PubMed]

A. Kuhn, M. Henrich, and G. Rempe, "Deterministic single-photon source for distributed quantum networking," Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, and D. Gershoni, "Entangled photon pairs from semiconductor quantum dots," Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

A. Aspect, P. Grangier, and G. Roger, "Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell's inequalities," Phys. Rev. Lett. 49, 91-94 (1982).
[CrossRef]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

C. H. Bennett and S. J. Wiesner, "Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states," Phys. Rev. Lett. 69, 2881-2884 (1992).
[CrossRef] [PubMed]

V. Scarani, A. Acn, G. Ribordy, and N. Gisin, "Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations," Phys. Rev. Lett. 92, 057901 (2004).
[CrossRef] [PubMed]

A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, "Single photon quantum cryptography," Phys. Rev. Lett. 89, 187901 (2002).
[CrossRef] [PubMed]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, "Entangled state quantum cryptography: eavesdropping on the Ekert protocol," Phys. Rev. Lett. 84, 4733-4736 (2000).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

Y. Shimizu, N. Shiokawa, N. Yamamoto, M. Kozuma, T. Kuga, L. Deng, and E. W. Hagley, "Control of light pulse propagation with only a few cold atoms in a high-finesse microcavity," Phys. Rev. Lett. 89, 233001 (2002).
[CrossRef] [PubMed]

J. Dalibard, Y. Castin, and K. Mølmer, "Wave-function approach to dissipative processes in quantum optics," Phys. Rev. Lett. 68, 580-583 (1992).
[CrossRef] [PubMed]

J. F. Clauser, M. A. Home, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969).
[CrossRef]

M. Takamoto and H. Katori, "Spectroscopy of the 1S03P0 clock transition of 87Sr in an optical lattice," Phys. Rev. Lett. 91, 223001 (2003).
[CrossRef] [PubMed]

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, and G. M. Tino, "Precision frequency measurement of visible intercombination lines of strontium," Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef] [PubMed]

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, "Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature," Phys. Rev. Lett. 82, 1116-1119 (1999).
[CrossRef]

Prog. Opt. (1)

E. Arimondo, "Coherent population trapping in laser spectroscopy," Prog. Opt. 35, 257-354 (1996).
[CrossRef]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145195 (2002).

Science (1)

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Step-by-step engineered multiparticle entanglement," Science 288, 2024-2028 (2000).
[CrossRef] [PubMed]

Other (4)

Y. R. Shen, The Principles of Non-Linear Optics (Wiley-Interscience, 1984).

M. Dusek, N. Lütkenhaus, and M. Hendrych, "Quantum cryptography," in Progress in Optics, Vol. XLIX, E.Wolf, ed. (Elsevier, 2006), pp. 381-442.

C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, 1984), pp. 175-179.

T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, J. McKeever, R. Miller, and H. J. Kimble, in Atomic Physics 19, L.G.Marcassa, V.S.Bagnato, and K.Helmerson, eds. (American Institute of Physics, 2004), Vol. 770, pp. 313-314.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Setup for the generation of polarization-entangled photon pairs. It consists of a three-level atom or ion with electric dipole transitions frequencies ω a c and ω b c coupling, respectively, to the σ + and σ circular polarizations of each of the two high-Q cavities. Both cavities support the same single longitudinal mode frequency ω c . κ i ± with i = 1 , 2 is the photon decay rate through the mirrors for the σ ± circular polarization of the corresponding cavity.

Fig. 2
Fig. 2

States of the system formed from the three-level atom and the two modes of each cavity grouped into manifolds (ellipses) according to Hamiltonians (2, 3, 4). Only the lowest energy manifolds are shown. In the absence of incoherent processes, the continuous coherent evolution in each manifold is decoupled from the rest. g i ( t ) is the vacuum Rabi frequency of cavity i, and Ω c Ω 1 Ω 2 , being that Ω i is the two mode vacuum state of cavity i = 1 , 2 .

Fig. 3
Fig. 3

Manifold ξ 2 of Fig. 2 expressed in terms of the states of the basis given in Eqs. (6, 7, 8, 9, 10) and under the two-photon resonance condition.

Fig. 4
Fig. 4

(a) Coherent time evolution of the population of states: I (solid curve), 2 B ( S + a 1 + S a 1 + ) Ω (dashed curve), and 2 E + ( a 2 + a 1 + a 2 a 1 + ) Ω (dotted curve) versus dimensionless time g t . (b) Time-dependent generalized Rabi frequencies in dimensionless units for cavity 1 (solid curve) and cavity 2 (dashed curve). The parameters are Δ + = Δ = 0 , g t f = 0.111 , g t 1 = 1.110 , and g t 2 = 1.570 . g is the vacuum Rabi frequency at the center of each cavity mode. A Gaussian temporal profile has been assumed for the coupling strength [see Eq. (17)].

Fig. 5
Fig. 5

Sketch of the basic optical elements needed for the Bell-state analysis of the polarization-entangled photon source. QWP, quarter-wave plate; HWP, rotating half-wave plate; PBS, polarization beam splitter, and D i , single-photon detector.

Fig. 6
Fig. 6

System evolution in the presence of dissipative processes obtained averaging over many MCWF simulations with ψ ( 0 ) = I . Manifolds ξ 1 , ξ 1 + , and ξ 0 become populated due to dissipative processes. The parameter setting is (a) Γ = 0.05 g , κ = 0.005 g , Δ = 0 , and (b) κ = 0.03 g , Γ = 0.003 g , Δ = 0 . The rest of the parameters are the same as in Fig. 4.

Fig. 7
Fig. 7

Probabilities for the different processes involving photon emission through the cavity mirrors and their eventual photodetection. The sets of parameters correspond to ( Γ g , κ g ) = ( 0.01 , 0.05 ) , ( 0.1 , 0.05 ) , ( 0.05 , 0.01 ) , ( 0.05 , 0.1 ) , and Δ + = Δ = 0 .

Fig. 8
Fig. 8

Contour plots of (a) the success probability P, (b) the fidelity F, and (c) the S parameter (c). Parameters are the same as in Fig. 4.

Fig. 9
Fig. 9

Success probability of the entangled photon pair source as a function of the deviation from the single- and the two-photon resonance conditions. The parameters are as in Fig. 4 with g 2 π = 34 MHz .

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

Ω i ± ( t ) = ( 2 g i ± ( t ) n i ± + 1 ) 2 + Δ ± 2 ,
H T = H 0 + H I ,
H 0 = i = 1 , 2 ω c ( a i + a i + + a i a i ) + j = a , b ω j c j j ,
H I = i = 1 , 2 g i ( a i + S + + a i + S + + a i S + a i S ) .
H = g 1 e i Δ + t S + a 1 Ω I + g 1 e i Δ t S a 1 + Ω I + g 2 e i Δ + t S + a 1 Ω Ω a 2 a 1 + + g 2 e i Δ t S a 1 + Ω Ω a 2 + a 1 + H.c.
I a 1 + a 1 Ω ,
2 B ( S + a 1 + S a 1 + ) Ω ,
2 D ( S + a 1 S a 1 + ) Ω ,
2 E + ( a 2 + a 1 + a 2 a 1 + ) Ω ,
2 E ( a 2 + a 1 a 2 a 1 + ) Ω .
H = e i ( Δ + + Δ 2 ) t [ ( 2 g 1 B I + g 2 B E + + g 2 D E ) cos ( Δ + Δ 2 ) t i ( 2 g 1 D I + g 2 B E + g 2 D E + ) sin ( Δ + Δ 2 ) t ] + H.c.
H = 2 g 1 e i Δ t B I + g 2 e i Δ t B E + + g 2 e i Δ t D E + H.c.
ψ ( t ) = e i Δ t 2 [ i 2 2 g 1 Ω B sin ( Ω B t 2 ) ] B + e i Δ t 2 [ cos ( Ω B t 2 ) i Δ Ω B sin ( Ω B t 2 ) ] I ,
ψ ( t 1 ) = i B = i 2 ( S + a 1 + S a 1 + ) Ω .
ψ ( t ) = e i Δ t 2 [ 2 g 2 Ω 2 sin ( Ω 2 t 2 ) ] E + e i Δ t 2 2 [ i cos ( Ω 2 t 2 ) + Δ Ω 2 sin ( Ω 2 t 2 ) ] B ,
ψ ( t 1 + t f + t 2 ) = 1 2 ( a 2 + a 1 + a 2 a 1 + ) Ω = E + .
g i ( t ) = g e ( t t ̃ i ) 2 τ i 2 , with i = 1 , 2 ,
H eff = H i i = 1 , 2 κ 2 ( a i + a i + + a i a i ) i Γ 2 j = + , S j S j .
F = E + ρ E + ,
ρ = ( 1 α ) 1 2 ( a 2 + a 1 Ω Ω a 2 + a 1 + a 2 a 1 + Ω Ω a 2 a 1 + ) + α E + E +

Metrics