Abstract

We experimentally demonstrate simultaneous pulse repetition-rate multiplication and periodic pulse-to-pulse peak-intensity control based on optimized periodic spectral line-by-line pulse shaping. Accordingly, the method allows us to generate multiplied pulse trains in which the amplitude of each single pulse in a period can be arbitrarily tailored. The technique is illustrated with the generation of 4×9GHz arbitrary periodic pulse trains, including binary code patterns, from a 9GHz uniform input pulse train. Special attention is paid to pulse train generation based on all-pass line-by-line filters.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. Sizer II, "Increase in laser repetition rate by spectral selection," IEEE J. Quantum Electron. 25, 97-103 (1989).
    [CrossRef]
  2. P. Petropoulos, M. Ibsen, M. N. Zervas, and D. J. Richardson, "Generation of a 40-GHz pulse stream by pulse multiplication with a sampled fiber Bragg grating," Opt. Lett. 25, 521-523 (2000).
    [CrossRef]
  3. K. Yiannopoulos, K. Vyrsokinos, E. Kehayas, N. Pleros, K. Vlachos, H. Avramopoulos, and G. Guekos, "Rate multiplication by double-passing Fabry-Perot filtering," IEEE Photon. Technol. Lett. 15, 1294-1296 (2003).
    [CrossRef]
  4. K. Yiannopoulos, K. Vyrsokinos, N. Pleros, D. Tsiokos, C. Bintjas, G. Guekos, and H. Avramopoulos, "Repetition rate upgrade for optical sources," IEEE Photon. Technol. Lett. 15, 861-863 (2003).
    [CrossRef]
  5. J. Azaña and M. A. Muriel, "Temporal self-imaging effects: theory and application for multiplying pulse repetition rates," IEEE J. Sel. Top. Quantum Electron. 7, 728-744 (2001).
    [CrossRef]
  6. S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, and Y. Ogawa, "Repetition-frequency multiplication of mode-locked pulses using fiber dispersion," J. Lightwave Technol. 16, 405-410 (1998).
    [CrossRef]
  7. I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, "High-repetition-rate optical pulse generation by using chirped optical pulses," Electron. Lett. 34, 792-793 (1998).
    [CrossRef]
  8. S. Longhi, M. Marano, P. Laporta, O. Svelto, M. Belmonte, B. Agogliati, L. Arcangeli, V. Pruneri, M. N. Zervas, and M. Ibsen, "40-GHz pulse-train generation at 1.5μm with a chirped fiber grating as a frequency multiplier," Opt. Lett. 25, 1481-1483 (2000).
    [CrossRef]
  9. J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, "Tunable pulse repetition-rate multiplication using phase-only line-by-line pulse shaping," Opt. Lett. 32, 716-718 (2007).
    [CrossRef] [PubMed]
  10. S. Kawanishi, "Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing," IEEE J. Quantum Electron. 34, 2064-2079 (1998).
    [CrossRef]
  11. J. D. McKinney, D. S. Seo, D. E. Leaird, and A. M. Weiner, "Photonically assisted generation of arbitrary millimeter-wave and microwave electromagnetic waveforms via direct space-to-time optical pulse shaping," J. Lightwave Technol. 21, 3020-3028 (2003).
    [CrossRef]
  12. B. Xia and L. R. Chen, "A direct temporal domain approach for pulse-repetition rate multiplication with arbitrary envelope shaping," IEEE J. Sel. Top. Quantum Electron. 11, 165-172 (2005).
    [CrossRef]
  13. B. Xia, L. R. Chen, P. Dumais, and C. L. Callender, "Ultrafast pulse train generation with binary code patterns using planar lightwave circuits," Electron. Lett. 42, 1119-1120 (2006).
    [CrossRef]
  14. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  15. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, 1996).
  16. F. G. Omenetto, B. P. Luce, and A. J. Taylor, "Genetic algorithm pulse shaping for optimum femtosecond propagation in optical fibers," J. Opt. Soc. Am. B 16, 2005-2009 (1999).
    [CrossRef]
  17. F. G. Omenetto, A. J. Taylor, M. D. Moores, and D. H. Reitze, "Adaptive control of femtosecond pulse propagation in optical fibers," Opt. Lett. 26, 938-940 (2001).
    [CrossRef]
  18. E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, S. Backus, and G. Vdovin, "Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation," Opt. Lett. 25, 587-589 (2000).
    [CrossRef]
  19. Z. Jiang, D. E. Leaird, and A. M. Weiner, "Line-by-line pulse shaping control for optical arbitrary waveform generation," Opt. Express 13, 10431-10439 (2005).
    [CrossRef] [PubMed]
  20. G. H. Lee and A. M. Weiner, "Programmable optical pulse burst manipulation using a virtually imaged phased array (VIPA) based Fourier transform pulse shaper," J. Lightwave Technol. 23, 3916-3923 (2005).
    [CrossRef]
  21. D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, "Waveform-controllable optical pulse generation using an optical pulse synthesizer," IEEE Photon. Technol. Lett. 18, 721-723 (2006).
    [CrossRef]
  22. N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, "32 phase × 32 amplitude optical arbitrary waveform generation," Opt. Lett. 32, 865-867 (2007).
    [CrossRef] [PubMed]

2007

2006

B. Xia, L. R. Chen, P. Dumais, and C. L. Callender, "Ultrafast pulse train generation with binary code patterns using planar lightwave circuits," Electron. Lett. 42, 1119-1120 (2006).
[CrossRef]

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, "Waveform-controllable optical pulse generation using an optical pulse synthesizer," IEEE Photon. Technol. Lett. 18, 721-723 (2006).
[CrossRef]

2005

2003

K. Yiannopoulos, K. Vyrsokinos, E. Kehayas, N. Pleros, K. Vlachos, H. Avramopoulos, and G. Guekos, "Rate multiplication by double-passing Fabry-Perot filtering," IEEE Photon. Technol. Lett. 15, 1294-1296 (2003).
[CrossRef]

K. Yiannopoulos, K. Vyrsokinos, N. Pleros, D. Tsiokos, C. Bintjas, G. Guekos, and H. Avramopoulos, "Repetition rate upgrade for optical sources," IEEE Photon. Technol. Lett. 15, 861-863 (2003).
[CrossRef]

J. D. McKinney, D. S. Seo, D. E. Leaird, and A. M. Weiner, "Photonically assisted generation of arbitrary millimeter-wave and microwave electromagnetic waveforms via direct space-to-time optical pulse shaping," J. Lightwave Technol. 21, 3020-3028 (2003).
[CrossRef]

2001

F. G. Omenetto, A. J. Taylor, M. D. Moores, and D. H. Reitze, "Adaptive control of femtosecond pulse propagation in optical fibers," Opt. Lett. 26, 938-940 (2001).
[CrossRef]

J. Azaña and M. A. Muriel, "Temporal self-imaging effects: theory and application for multiplying pulse repetition rates," IEEE J. Sel. Top. Quantum Electron. 7, 728-744 (2001).
[CrossRef]

2000

1999

1998

S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, and Y. Ogawa, "Repetition-frequency multiplication of mode-locked pulses using fiber dispersion," J. Lightwave Technol. 16, 405-410 (1998).
[CrossRef]

S. Kawanishi, "Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing," IEEE J. Quantum Electron. 34, 2064-2079 (1998).
[CrossRef]

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, "High-repetition-rate optical pulse generation by using chirped optical pulses," Electron. Lett. 34, 792-793 (1998).
[CrossRef]

1989

T. Sizer II, "Increase in laser repetition rate by spectral selection," IEEE J. Quantum Electron. 25, 97-103 (1989).
[CrossRef]

Electron. Lett.

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, "High-repetition-rate optical pulse generation by using chirped optical pulses," Electron. Lett. 34, 792-793 (1998).
[CrossRef]

B. Xia, L. R. Chen, P. Dumais, and C. L. Callender, "Ultrafast pulse train generation with binary code patterns using planar lightwave circuits," Electron. Lett. 42, 1119-1120 (2006).
[CrossRef]

IEEE J. Quantum Electron.

T. Sizer II, "Increase in laser repetition rate by spectral selection," IEEE J. Quantum Electron. 25, 97-103 (1989).
[CrossRef]

S. Kawanishi, "Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing," IEEE J. Quantum Electron. 34, 2064-2079 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. Azaña and M. A. Muriel, "Temporal self-imaging effects: theory and application for multiplying pulse repetition rates," IEEE J. Sel. Top. Quantum Electron. 7, 728-744 (2001).
[CrossRef]

B. Xia and L. R. Chen, "A direct temporal domain approach for pulse-repetition rate multiplication with arbitrary envelope shaping," IEEE J. Sel. Top. Quantum Electron. 11, 165-172 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Yiannopoulos, K. Vyrsokinos, E. Kehayas, N. Pleros, K. Vlachos, H. Avramopoulos, and G. Guekos, "Rate multiplication by double-passing Fabry-Perot filtering," IEEE Photon. Technol. Lett. 15, 1294-1296 (2003).
[CrossRef]

K. Yiannopoulos, K. Vyrsokinos, N. Pleros, D. Tsiokos, C. Bintjas, G. Guekos, and H. Avramopoulos, "Repetition rate upgrade for optical sources," IEEE Photon. Technol. Lett. 15, 861-863 (2003).
[CrossRef]

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, "Waveform-controllable optical pulse generation using an optical pulse synthesizer," IEEE Photon. Technol. Lett. 18, 721-723 (2006).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Other

M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of simultaneous repetition-rate multiplication and pulse peak-power control based on spectrally periodic line-by-line pulse shaping.

Fig. 2
Fig. 2

(a) Input pulse spectrum together with the line-by-line phase-only filter (dashed curve). (b) Input pulse train at 9 GHz . (c) Four-times multiplied pulse train obtained via optimized periodic line-by-line pulse shaping. The pulse peak-power profile in each period is [ 1 , 1 , 0.5 , 0.5 ] . The phases of the any four consecutive pulses are different (dashed curve).

Fig. 3
Fig. 3

Generation of two-value periodic pulse sequences. (a) Intensity cross-correlation trace of the input pulse train. (b), (c) Measured cross-correlations of the pulse sequences with peak-power patterns [1,1,0.5,0.5] and [1,0.7,0.7,0.7], respectively.

Fig. 4
Fig. 4

Generation of binary code pulse sequences. (a), (b) Measured intensity cross correlations of the pulse sequences with peak-power patterns [1,1,1,0] and [1,1,1,1], respectively.

Fig. 5
Fig. 5

Measured intensity cross-correlation traces of the binary code pulse sequence [1,1,0,0] generated with (a) phase-only, (b) phase-mostly, and (c) phase+amplitude line-by-line pulse shaping. The corresponding normalized optical spectra are also shown. Inset figure shows the input optical spectrum.

Fig. 6
Fig. 6

Generation of arbitrary periodic pulse sequences. (a), (b) Measured intensity cross correlations of the pulse trains with peak-power patterns [1,0,2/3,1/3] and [1,0.8,0.6,0.4], respectively.

Tables (2)

Tables Icon

Table 1 Optimized Phase-Only Line-by-Line Filters Leading to User-Defined Four-Times Multiplied Periodic Pulse Patterns a

Tables Icon

Table 2 Generation of the Periodic Pattern [ 1 , 1 , 0 , 0 ] with Phase-Only, Phase-Mostly, and Phase+Amplitude Periodic Filtering

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F = i = 1 N I peak i I peak , target i ,

Metrics