Abstract

We experimentally investigate the parameters affecting parametric transfer in a synchronously pumped optical parametric oscillator for indirect shaping of mid-infrared ultrashort pulses and make comparisons with previously reported numerical modeling. The individual effects of the parameters are discussed in detail. We conclude that signal bandwidth narrowing, minimal signal amplification, large pump depletion, cavity length tuning, and minimal pump and idler temporal walk-off are required for high fidelity transfer, which we are able to demonstrate for a strongly chirped pump pulse.

© 2007 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |

  1. H. S. Tan and W. S. Warren, "Mid infrared pulse shaping by optical parametric amplification and its application to optical free induction decay measurement," Opt. Express 11, 1021-1028 (2003).
  2. K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, "Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate," J. Opt. A, Pure Appl. Opt. 7, S408-S414 (2005).
    [CrossRef]
  3. H. K. Nienhuys, S. Woutersen, R. A. van Santen, and H. J. Bakker, "Mechanism for vibrational relaxation in water investigated by femtosecond infrared spectroscopy," J. Chem. Phys. 111, 1494-1500 (1999).
    [CrossRef]
  4. L. Windhorn, J. S. Yeston, T. Witte, W. Fuss, M. Motzkus, D. Proch, K. L. Kompa, and C. B. Moore, "Getting ahead of IVR: A demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale," J. Chem. Phys. 119, 641-645 (2003).
    [CrossRef]
  5. D. J. Maas, D. I. Duncan, R. B. Vrijen, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by (sub)picosecond frequency-chirped infrared laser pulses," Chem. Phys. Lett. 290, 75-80 (1998).
    [CrossRef]
  6. T. Witte, T. Hornung, L. Windhorn, D. Proch, R. de Vivie-Riedle, M. Motzkus, and K. L. Kompa, "Controlling molecular ground-state dissociation by optimizing vibrational ladder climbing," J. Chem. Phys. 118, 2021-2024 (2003).
    [CrossRef]
  7. C. Meier and M. C. Heitz, "Laser control of vibrational excitation in carboxyhemoglobin: A quantum wave packet study," J. Chem. Phys. 123, 161-172 (2005).
  8. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  9. M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, "Micromirror SLM for femtosecond pulse shaping in the ultraviolet," Appl. Phys. B 76, 711-714 (2003).
    [CrossRef]
  10. M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, "Acousto-optical shaping of ultraviolet femtosecond pulses," Appl. Phys. B 80, 441-444 (2005).
    [CrossRef]
  11. V. D. Kleiman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, "Controlling condensed-phase vibrational excitation with tailored infrared pulses," Chem. Phys. 233, 207-216 (1998).
    [CrossRef]
  12. G. M. H. Knippels, A. F. G. Vandermeer, R. Mols, P. W. Vanamersfoort, R. B. Vrijen, D. J. Maas, and L. D. Noordam, "Generation of frequency-chirped pulses in the far-infrared by means of a subpicosecond free-electron laser and an external pulse shaper," Opt. Commun. 118, 546-550 (1995).
    [CrossRef]
  13. R. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. Weiner, and M. Woerner, "Generation, shaping, and characterization of intense femtosecond pulses tunable from 3to20 μm," J. Opt. Soc. Am. B 17, 2086-2094 (2000).
    [CrossRef]
  14. S. H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, "Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation," Opt. Lett. 31, 838-840 (2006).
    [CrossRef]
  15. F. Eickemeyer, R. A. Kaindl, M. Woerner, T. Elsaesser, and A. M. Weiner, "Controlled shaping of ultrafast electric field transients in the mid-infrared spectral range," Opt. Lett. 25, 1472-1474 (2000).
  16. N. Belabas, J. Likforman, L. Canioni, B. Bousquet, and M. Joffre, "Coherent broadband pulse shaping in the mid infrared," Opt. Lett. 26, 743-745 (2001).
  17. T. Witte, K. Kompa, and M. Motzkus, "Femtosecond pulse shaping in the mid infrared by difference-frequency mixing," Appl. Phys. B 76, 467-471 (2003).
    [CrossRef]
  18. N. A. Naz, H. S. S. Hung, M. V. O'Connor, D. C. Hanna, and D. P. Shepherd, "Adaptively shaped mid-infrared pulses from a synchronously pumped optical parametric oscillator," Opt. Express 13, 8400-8405 (2005).
    [CrossRef]
  19. J. Prawiharjo, H. S. S. Hung, D. C. Hanna, and D. P. Shepherd, "Theoretical and numerical investigations of parametric transfer via difference-frequency generation for indirect mid-infrared pulse shaping," J. Opt. Soc. Am. B 24, 895-905 (2007).
    [CrossRef]
  20. J. Prawiharjo, H. S. S. Hung, D. C. Hanna, and D. P. Shepherd, "Numerical investigations of parametric transfer in synchronously pumped optical parametric oscillators for indirect mid-infrared pulse shaping," J. Opt. Soc. Am. B 24, 2484-2493 (2007).
    [CrossRef]
  21. D. H. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, n(e), in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997).
  22. I. Cormack, W. Sibbett, and D. T. Reid, "Rapid measurement of ultrashort-pulse amplitude and phase from a two-photon absorption sonogram trace," J. Opt. Soc. Am. B 18, 1377-1382 (2001).
    [CrossRef]

2007 (2)

2006 (1)

2005 (4)

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, "Acousto-optical shaping of ultraviolet femtosecond pulses," Appl. Phys. B 80, 441-444 (2005).
[CrossRef]

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, "Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate," J. Opt. A, Pure Appl. Opt. 7, S408-S414 (2005).
[CrossRef]

C. Meier and M. C. Heitz, "Laser control of vibrational excitation in carboxyhemoglobin: A quantum wave packet study," J. Chem. Phys. 123, 161-172 (2005).

N. A. Naz, H. S. S. Hung, M. V. O'Connor, D. C. Hanna, and D. P. Shepherd, "Adaptively shaped mid-infrared pulses from a synchronously pumped optical parametric oscillator," Opt. Express 13, 8400-8405 (2005).
[CrossRef]

2003 (5)

H. S. Tan and W. S. Warren, "Mid infrared pulse shaping by optical parametric amplification and its application to optical free induction decay measurement," Opt. Express 11, 1021-1028 (2003).

T. Witte, T. Hornung, L. Windhorn, D. Proch, R. de Vivie-Riedle, M. Motzkus, and K. L. Kompa, "Controlling molecular ground-state dissociation by optimizing vibrational ladder climbing," J. Chem. Phys. 118, 2021-2024 (2003).
[CrossRef]

L. Windhorn, J. S. Yeston, T. Witte, W. Fuss, M. Motzkus, D. Proch, K. L. Kompa, and C. B. Moore, "Getting ahead of IVR: A demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale," J. Chem. Phys. 119, 641-645 (2003).
[CrossRef]

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, "Micromirror SLM for femtosecond pulse shaping in the ultraviolet," Appl. Phys. B 76, 711-714 (2003).
[CrossRef]

T. Witte, K. Kompa, and M. Motzkus, "Femtosecond pulse shaping in the mid infrared by difference-frequency mixing," Appl. Phys. B 76, 467-471 (2003).
[CrossRef]

2001 (2)

2000 (3)

1999 (1)

H. K. Nienhuys, S. Woutersen, R. A. van Santen, and H. J. Bakker, "Mechanism for vibrational relaxation in water investigated by femtosecond infrared spectroscopy," J. Chem. Phys. 111, 1494-1500 (1999).
[CrossRef]

1998 (2)

D. J. Maas, D. I. Duncan, R. B. Vrijen, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by (sub)picosecond frequency-chirped infrared laser pulses," Chem. Phys. Lett. 290, 75-80 (1998).
[CrossRef]

V. D. Kleiman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, "Controlling condensed-phase vibrational excitation with tailored infrared pulses," Chem. Phys. 233, 207-216 (1998).
[CrossRef]

1997 (1)

1995 (1)

G. M. H. Knippels, A. F. G. Vandermeer, R. Mols, P. W. Vanamersfoort, R. B. Vrijen, D. J. Maas, and L. D. Noordam, "Generation of frequency-chirped pulses in the far-infrared by means of a subpicosecond free-electron laser and an external pulse shaper," Opt. Commun. 118, 546-550 (1995).
[CrossRef]

Appl. Phys. B (3)

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, "Micromirror SLM for femtosecond pulse shaping in the ultraviolet," Appl. Phys. B 76, 711-714 (2003).
[CrossRef]

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, "Acousto-optical shaping of ultraviolet femtosecond pulses," Appl. Phys. B 80, 441-444 (2005).
[CrossRef]

T. Witte, K. Kompa, and M. Motzkus, "Femtosecond pulse shaping in the mid infrared by difference-frequency mixing," Appl. Phys. B 76, 467-471 (2003).
[CrossRef]

Chem. Phys. (1)

V. D. Kleiman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, "Controlling condensed-phase vibrational excitation with tailored infrared pulses," Chem. Phys. 233, 207-216 (1998).
[CrossRef]

Chem. Phys. Lett. (1)

D. J. Maas, D. I. Duncan, R. B. Vrijen, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by (sub)picosecond frequency-chirped infrared laser pulses," Chem. Phys. Lett. 290, 75-80 (1998).
[CrossRef]

J. Chem. Phys. (4)

T. Witte, T. Hornung, L. Windhorn, D. Proch, R. de Vivie-Riedle, M. Motzkus, and K. L. Kompa, "Controlling molecular ground-state dissociation by optimizing vibrational ladder climbing," J. Chem. Phys. 118, 2021-2024 (2003).
[CrossRef]

C. Meier and M. C. Heitz, "Laser control of vibrational excitation in carboxyhemoglobin: A quantum wave packet study," J. Chem. Phys. 123, 161-172 (2005).

H. K. Nienhuys, S. Woutersen, R. A. van Santen, and H. J. Bakker, "Mechanism for vibrational relaxation in water investigated by femtosecond infrared spectroscopy," J. Chem. Phys. 111, 1494-1500 (1999).
[CrossRef]

L. Windhorn, J. S. Yeston, T. Witte, W. Fuss, M. Motzkus, D. Proch, K. L. Kompa, and C. B. Moore, "Getting ahead of IVR: A demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale," J. Chem. Phys. 119, 641-645 (2003).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, "Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate," J. Opt. A, Pure Appl. Opt. 7, S408-S414 (2005).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Commun. (1)

G. M. H. Knippels, A. F. G. Vandermeer, R. Mols, P. W. Vanamersfoort, R. B. Vrijen, D. J. Maas, and L. D. Noordam, "Generation of frequency-chirped pulses in the far-infrared by means of a subpicosecond free-electron laser and an external pulse shaper," Opt. Commun. 118, 546-550 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Rev. Sci. Instrum. (1)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics