Abstract

We propose a novel design for all-solid photonic bandgap fiber (AS-PBGF) by introducing defect rods with larger diameters into fiber cladding. By means of the plane-wave expansion method and the full-vector finite-element method, we study the effect of introducing such defect rods and numerically investigate dispersion characteristics of proposed AS-PBGF. Simulation results demonstrate that large waveguide group-velocity dispersion (GVD) (both normal and anomalous) is induced within bandgap rather than near the edge of bandgap as conventional photonics bandgap fiber does, which guarantees that large dispersion and low confinement loss could be simultaneously achieved. We also find that there are two essential factors affecting the slope of waveguide GVD, which determines the third-order dispersion: number of defect rods and the ring where defect rods are introduced.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004).
    [CrossRef] [PubMed]
  2. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. St. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005).
    [CrossRef] [PubMed]
  3. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (<20dB/km) around 1550nm," Opt. Express 13, 8452-8459 (2005).
    [CrossRef] [PubMed]
  4. Z. Wang, T. Taru, T. A. Birks, and J. C. Knight, "Coupling in dual-core photonic bandgap fibers: theory and experiment," Opt. Express 15, 4795-4803 (2007).
    [CrossRef] [PubMed]
  5. K. Saitoh and M. Koshiba, "Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003).
    [CrossRef] [PubMed]
  6. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  7. W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, "Soliton effects in photonic crystal fibers at 850nm," Electron. Lett. 36, 53-55 (2000).
    [CrossRef]
  8. Y. Ni, L. An, J. Peng, and C. Fan, "Dual-core photonic crystal fiber for dispersion compensation," IEEE Photonics Technol. Lett. 16, 1516-1518 (2004).
    [CrossRef]
  9. K. Saitoh, N. A. Mortensen, and M. Koshiba, "Air-core photonic band-gap fibers: the impact of surface modes," Opt. Express 12, 394-400 (2004).
    [CrossRef] [PubMed]
  10. Ni Yi, "Large negative dispersion in square solid-core photonic bandgap fibers," IEEE J. Quantum Electron. 41, 666-670 (2005).
    [CrossRef]
  11. Yury Logvin, V. P. Kalosha, and Hanan Anis, "Third-order dispersion impact on mode-locking regimes of Yb-doped fiber laser with photonic bandgap fiber for dispersion compensation," Opt. Express 15, 985-991 (2007).
    [CrossRef] [PubMed]
  12. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a plane-wave basis," Opt. Express 8, 173-190 (2001).
    [CrossRef] [PubMed]
  13. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, "Holey fiber analysis through the finite element method," IEEE Photonics Technol. Lett. 14, 1530-1532 (2002).
    [CrossRef]
  14. F. Poletti, N. G. R. Broderick, and D. J. Richardson, "The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers," Opt. Express 13, 9115-9124 (2005)
    [CrossRef] [PubMed]
  15. H. Lim, A. Chong, and F. W. Wise, "Environmentally-stable femtosecond ytterbium fiber laser with birefringent photonic bandgap fiber," Opt. Express 13, 3460-3464 (2005).
    [CrossRef] [PubMed]
  16. J. Jasapara, Tsing Hua Her, R. Bise, R. Windeler, and D. J. DiGiovanni, "Group-velocity dispersion measurements in a photonic bandgap fiber," J. Opt. Soc. Am. B 20, 1611-1615 (2003).
    [CrossRef]
  17. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
    [CrossRef]

2007 (2)

2005 (5)

2004 (3)

2003 (2)

2002 (2)

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, "Holey fiber analysis through the finite element method," IEEE Photonics Technol. Lett. 14, 1530-1532 (2002).
[CrossRef]

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

2001 (1)

2000 (2)

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, "Soliton effects in photonic crystal fibers at 850nm," Electron. Lett. 36, 53-55 (2000).
[CrossRef]

An, L.

Y. Ni, L. An, J. Peng, and C. Fan, "Dual-core photonic crystal fiber for dispersion compensation," IEEE Photonics Technol. Lett. 16, 1516-1518 (2004).
[CrossRef]

Anis, Hanan

Argyros, A.

Arriaga, J.

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, "Soliton effects in photonic crystal fibers at 850nm," Electron. Lett. 36, 53-55 (2000).
[CrossRef]

Bigot, L.

Bird, D. M.

Birks, T. A.

Bise, R.

Bouwmans, G.

Broderick, N. G. R.

Chong, A.

Cordeiro, C. M. B.

Cucinotta, A.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, "Holey fiber analysis through the finite element method," IEEE Photonics Technol. Lett. 14, 1530-1532 (2002).
[CrossRef]

DiGiovanni, D. J.

Douay, M.

Fan, C.

Y. Ni, L. An, J. Peng, and C. Fan, "Dual-core photonic crystal fiber for dispersion compensation," IEEE Photonics Technol. Lett. 16, 1516-1518 (2004).
[CrossRef]

George, A. K.

Hedley, T. D.

Her, Tsing Hua

Jasapara, J.

Joannopoulos, J. D.

Johnson, S. G.

Kalosha, V. P.

Knight, J. C.

Koshiba, M.

Leon-Saval, S. G.

Lim, H.

Logvin, Yury

Lopez, F.

Luan, F.

Mortensen, N. A.

Ni, Y.

Y. Ni, L. An, J. Peng, and C. Fan, "Dual-core photonic crystal fiber for dispersion compensation," IEEE Photonics Technol. Lett. 16, 1516-1518 (2004).
[CrossRef]

Ortigosa-Blanch, A.

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, "Soliton effects in photonic crystal fibers at 850nm," Electron. Lett. 36, 53-55 (2000).
[CrossRef]

Pearce, G. J.

Peng, J.

Y. Ni, L. An, J. Peng, and C. Fan, "Dual-core photonic crystal fiber for dispersion compensation," IEEE Photonics Technol. Lett. 16, 1516-1518 (2004).
[CrossRef]

Poletti, F.

Provino, L.

Quiquempois, Y.

Ranka, J. K.

Richardson, D. J.

Russell, P. St. J.

Saitoh, K.

Selleri, S.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, "Holey fiber analysis through the finite element method," IEEE Photonics Technol. Lett. 14, 1530-1532 (2002).
[CrossRef]

Silvestre, E.

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, "Soliton effects in photonic crystal fibers at 850nm," Electron. Lett. 36, 53-55 (2000).
[CrossRef]

Stentz, A. J.

Taru, T.

Vincetti, L.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, "Holey fiber analysis through the finite element method," IEEE Photonics Technol. Lett. 14, 1530-1532 (2002).
[CrossRef]

Wadsworth, W. J.

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, "Soliton effects in photonic crystal fibers at 850nm," Electron. Lett. 36, 53-55 (2000).
[CrossRef]

Wang, Z.

Windeler, R.

Windeler, R. S.

Wise, F. W.

Yi, Ni

Ni Yi, "Large negative dispersion in square solid-core photonic bandgap fibers," IEEE J. Quantum Electron. 41, 666-670 (2005).
[CrossRef]

Zoboli, M.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, "Holey fiber analysis through the finite element method," IEEE Photonics Technol. Lett. 14, 1530-1532 (2002).
[CrossRef]

Electron. Lett. (1)

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, "Soliton effects in photonic crystal fibers at 850nm," Electron. Lett. 36, 53-55 (2000).
[CrossRef]

IEEE J. Quantum Electron. (2)

Ni Yi, "Large negative dispersion in square solid-core photonic bandgap fibers," IEEE J. Quantum Electron. 41, 666-670 (2005).
[CrossRef]

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, "Holey fiber analysis through the finite element method," IEEE Photonics Technol. Lett. 14, 1530-1532 (2002).
[CrossRef]

Y. Ni, L. An, J. Peng, and C. Fan, "Dual-core photonic crystal fiber for dispersion compensation," IEEE Photonics Technol. Lett. 16, 1516-1518 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (9)

K. Saitoh, N. A. Mortensen, and M. Koshiba, "Air-core photonic band-gap fibers: the impact of surface modes," Opt. Express 12, 394-400 (2004).
[CrossRef] [PubMed]

A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. St. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005).
[CrossRef] [PubMed]

H. Lim, A. Chong, and F. W. Wise, "Environmentally-stable femtosecond ytterbium fiber laser with birefringent photonic bandgap fiber," Opt. Express 13, 3460-3464 (2005).
[CrossRef] [PubMed]

G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (<20dB/km) around 1550nm," Opt. Express 13, 8452-8459 (2005).
[CrossRef] [PubMed]

F. Poletti, N. G. R. Broderick, and D. J. Richardson, "The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers," Opt. Express 13, 9115-9124 (2005)
[CrossRef] [PubMed]

Yury Logvin, V. P. Kalosha, and Hanan Anis, "Third-order dispersion impact on mode-locking regimes of Yb-doped fiber laser with photonic bandgap fiber for dispersion compensation," Opt. Express 15, 985-991 (2007).
[CrossRef] [PubMed]

Z. Wang, T. Taru, T. A. Birks, and J. C. Knight, "Coupling in dual-core photonic bandgap fibers: theory and experiment," Opt. Express 15, 4795-4803 (2007).
[CrossRef] [PubMed]

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a plane-wave basis," Opt. Express 8, 173-190 (2001).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, "Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003).
[CrossRef] [PubMed]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematics of proposed all-solid photonic bandgap fiber.

Fig. 2
Fig. 2

(a) Effective index of LP 01 mode as a function of normalized wavelength and (b) the effective index difference between index when no defect is introduced ( d 2 Λ = 0.4 ) and index when defect cladding is introduced ( d 2 Λ = 0.6 or d 2 Λ = 0.7 ) for the region I shown in (a).

Fig. 3
Fig. 3

Mode field of points A, B, C, and D (from left to right).

Fig. 4
Fig. 4

Phase (solid curve) and group (dotted curve) birefringence as a function of normalized wavelength.

Fig. 5
Fig. 5

Waveguide GVD of LP 01 mode as a function of normalized wavelength when d 1 Λ is fixed as 0.4. The solid curve and the dotted curve are the waveguide GVD curves when d 2 Λ is 0.4 and 0.6, respectively.

Fig. 6
Fig. 6

Defect rods with different diameters: (a) Waveguide GVD as a function of normalized wavelength and (b) β 3 (third-order dispersion parameter) as a function of normalized wavelength.

Fig. 7
Fig. 7

Schematics of all-solid PBGF cross section for type 1, type 2, and type 3 PBGFs (from left to right).

Fig. 8
Fig. 8

(a) Normalized waveguide GVD curves and (b) normalized TOD curves as a function of normalized wavelength for the three types of AS-PBGF as shown in Fig. 6, where d 1 Λ and d 2 Λ are fixed as 0.4 and 0.7, respectively.

Fig. 9
Fig. 9

Schematics of all-solid PBGF cross section for type a, type b, and type c PBGFs (from left to right).

Fig. 10
Fig. 10

(a) Normalized waveguide GVD curves and (b) normalized TOD curves as a function of normalized wavelength for the three types of AS-PBGF as shown in Fig. 8, where d 1 Λ and d 2 Λ are fixed as 0.4 and 0.7, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

β 2 = d 2 β d ω 2 ,
β 3 = d 3 β d ω 3 ,
D = 2 π c λ 2 β 2 ,
B ( λ ) = λ 2 π ( β x ( λ ) β y ( λ ) ) ,
G ( λ ) = d β x d k d β y d k = B ( λ ) λ d B ( λ ) d λ ,

Metrics